Classifying spaces

Finiteness properties

Brown's criterion

Application

Classifying spaces for families of subgroups and their finiteness properties

Stefan Witzel

WWU Münster

LMS Durham Symposium, 13 August 2013

Classifying	spaces

Finiteness properties

Brown's criterion

Application

- 2 Finiteness properties
- Brown's criterion

Actions with prescribed stabilizers

Let a group *G* act on a CW-complex *X* (always assume that G_{σ} fixes $\sigma \in X$ pointwise). Then *X* is a *G*-CW-complex. Let \mathcal{F} be a family of subgroups of *G*:

•
$$H \in \mathcal{F} \implies H^g \in \mathcal{F}, g \in G,$$

•
$$H \in \mathcal{F}, K < H \implies K \in \mathcal{F}.$$

We say that *G* has stabilizers in \mathcal{F} if $G_{\sigma} \in \mathcal{F}$ for every $\sigma \in X$.

Example

- $\mathcal{F} = \{1\} \rightsquigarrow$ free actions.
- $\mathcal{F} = \{$ finite subgroups $\} \rightsquigarrow$ proper actions.
- $\mathcal{F} = \{ virtually cyclic subgroups \} \rightsquigarrow \dots$

Classifying spaces	Finiteness properties	Brown's criterion	Application
000			
000			

Classifying spaces for families of stabilizers

The category of *G*-CW-complexes up to equivariant homotopy equivalence has a terminal object $E_{\mathcal{F}}G$. A model *X* for $E_{\mathcal{F}}G$ is a **classifying space for G with stabilizers in** \mathcal{F} and is characterized by

2
$$X^H = \emptyset$$
 for $H < G, H \notin \mathcal{F}$.

Example

- $\mathcal{F} = \{1\}$: $\mathcal{F} \cong \mathsf{pt.}$, $\mathcal{F} \cong \mathsf{pt.}$, $\mathcal{F} \cong \mathsf{action.}$ $\rightarrow X$ classifying space (for free actions).
- *F* = {finite subgroups}, *G* acts properly on a CAT(0)-cell complex *X*. Then ② by assumption and ③ by CAT(0)-geometry. → *X* is a model for *E_FG*.

Classifying spaces ○○●	Finiteness properties o	Brown's criterion	Application
Homology			

If X is a classifying space (for free actions) then

$$\ldots \to H_2(X^{(2)}, X^{(1)}) \to H_1(X^{(1)}, X^{(0)}) \to H_0(X^{(0)}) \to \mathbb{Z}$$

is a free resolution of the $\mathbb{Z}G$ -module \mathbb{Z} .

Here $\mathcal{O}_{\mathcal{F}}G$ is the small category with objects $G/H, H \in \mathcal{F}$ and morphisms $G/H \to G/K^g, H \mapsto gK^g, g \in G, H < K$.

A (right) $\mathcal{O}_{\mathcal{F}}G$ -module is a (contravariant) functor $\mathcal{O}_{\mathcal{F}}G \to Ab$.

Example

٠

• $\underline{\mathbb{Z}}$: $G/H \mapsto \mathbb{Z}, (G/H \to G/K) \mapsto (\mathsf{id} : \mathbb{Z} \to \mathbb{Z})$

• $\underline{H}_n(X)$: $G/H \mapsto H_n(X^H)$ $(G/H \xrightarrow{g} G/K^g) \mapsto H_n(g^{-1}X^K \hookrightarrow X^H), H < K$

Classifying spaces ○○●	Finiteness properties o	Brown's criterion	Application
Homology			

If X is a classifying space with stabilizers in \mathcal{F} then

$$\ldots \to \underline{H}_2(X^{(2)}, X^{(1)}) \to \underline{H}_1(X^{(1)}, X^{(0)}) \to \underline{H}_0(X^{(0)}) \to \underline{\mathbb{Z}}$$

is a free resolution of the $\mathcal{O}_{\mathcal{F}}G$ -module $\underline{\mathbb{Z}}$.

Here $\mathcal{O}_{\mathcal{F}}G$ is the small category with objects $G/H, H \in \mathcal{F}$ and morphisms $G/H \to G/K^g, H \mapsto gK^g, g \in G, H < K$.

A (right) $\mathcal{O}_{\mathcal{F}}G$ -module is a (contravariant) functor $\mathcal{O}_{\mathcal{F}}G \to Ab$.

Example

•
$$\underline{\mathbb{Z}}$$
: $G/H \mapsto \mathbb{Z}, (G/H \to G/K) \mapsto (\mathsf{id} \colon \mathbb{Z} \to \mathbb{Z})$

• $\underline{H}_n(X)$: $G/H \mapsto H_n(X^H)$ $(G/H \xrightarrow{g} G/K^g) \mapsto H_n(g^{-1}X^K \hookrightarrow X^H), H < K$

Classifying spaces	Finiteness properties •	Brown's criterion	Application
Finiteness prope	erties		

G is said to be **of type** $F_n^{\mathcal{F}}$ if there is a model for $E_{\mathcal{F}}G$ whose *n*-skeleton is finite modulo the action of *G*.

G is said to be **of type** $FP_n^{\mathcal{F}}$ if there is a projective resolution (by right $\mathcal{O}_{\mathcal{F}}G$ -modules) of $\underline{\mathbb{Z}}$ whose first *n* terms are finitely generated.

Last slide: $F_n^{\mathcal{F}} \implies FP_n^{\mathcal{F}}$.

Example

• G is
$$F_1^{\{1\}} \Leftrightarrow G$$
 is $FP_1^{\{1\}} \Leftrightarrow G$ is finitely generated.

2 G is
$$F_2^{\{1\}} \Leftrightarrow G$$
 is finitely presented.

• G is $F_0^{\{\text{finites}\}} \Leftrightarrow G$ is $FP_0^{\{\text{finites}\}} \Leftrightarrow G$ has finitely many conjugacy classes of finite subgroups.

Classifying spaces	Finiteness properties o	Brown's criterion ●○○○	Application
Essential trivial	ness		

A directed system of $\mathcal{O}_{\mathcal{F}}G$ -modules $(M_{\alpha})_{\alpha \in D}$ is **essentially trivial** if ______

$$\varinjlim_{lpha} \prod_{H \in \mathcal{F}} \prod_{I_H} M_{lpha}(G/H) = 0$$

for any family of index sets I_H .

Observation

That $(M_{\alpha})_{\alpha}$ be essentially trivial is equivalent to either of

- $\forall \alpha \exists \beta \geq \alpha$ such that $M_{\alpha} \rightarrow M_{\beta}$ is trivial.
- $\forall \alpha \exists \beta \geq \alpha \ \forall H \in \mathcal{F} \ M_{\alpha}(G/H) \rightarrow M_{\beta}(G/H)$ is trivial.

Brown's criterion

Brown's criterion

Theorem (Brown '87 $\mathcal{F} = \{1\}$, Fluch–W.)

Let G be a group and let \mathcal{F} a family of subgroups. Assume that G acts on X such that

• $\underline{\tilde{H}}_i(X) = 0, 0 \leq i \leq n-1$,

• G_{σ} is of type $FP_{n-p}^{\mathcal{F}\cap G}$ for every p-cell of X.

Let $(X_{\alpha})_{\alpha \in D}$ be a cocompact filtration of X. Then G is of type $FP_n^{\mathcal{F}}$ if and only if $(\underline{\tilde{H}}_i(X_{\alpha}))_{\alpha}$ is essentially trivial for $0 \leq i < n$.

Note: $(\underline{\tilde{H}}_i(X_\alpha))_\alpha$ is essentially trivial if

$$\forall \alpha \in \boldsymbol{D} \quad \exists \beta \geq \alpha \quad \forall \boldsymbol{H} \in \mathcal{F} \quad \tilde{H}_i(\boldsymbol{X}^{\boldsymbol{H}}_{\alpha} \rightarrow \boldsymbol{X}^{\boldsymbol{H}}_{\beta}) = \boldsymbol{0}$$

Classifying spaces	Finiteness properties o	Brown's criterion	Application
Proof electob 1			

Proposition (Bieri–Eckmann '74 $\mathcal{F} = \{1\}$, Martínez-Pérez–Nucinkis '11)

Let G be a group and \mathcal{F} a family of subgroups. These are equivalent:

• G is of type
$$FP_n^{\mathcal{F}}$$
,

UUL SKEIGI

2 for any index sets $I_H, H \in \mathcal{F}$ the morphism

 $H_{i}^{\mathcal{F}}(G, \prod_{H \in \mathcal{F}} \prod_{I_{H}} \mathbb{Z}[G/H, -]) \rightarrow \prod_{H \in \mathcal{F}} \prod_{I_{H}} H_{i}^{\mathcal{F}}(G, \mathbb{Z}[G/H, -])$

is an isomorphism for i < n and an epimorphism for i = n. 3 LHS=0 in 2 for 0 < i < n and 2 for i = 0.

Classifying spaces	Finiteness properties o	Brown's criterion 000●	Application
Proof sketch 2			

i > 0:

$$\underbrace{\tilde{H}_{j}(X) = 0, j < n}_{H_{i}^{\mathcal{F}}(G, \prod \mathbb{Z}[G/H, -]) \cong H_{i}^{\mathcal{F}}(X, \prod \mathbb{Z}[G/H, -])}_{\mathbb{R}}$$

$$\lim_{I \ge 1} \prod H_{i}(X_{i})(G/H) \cong \lim_{I \ge 1} H_{i}^{\mathcal{F}}(X_{i}, \prod \mathbb{Z}[G/H, -])$$

$$\varinjlim \prod \underline{H}_{i}(X_{\alpha})(G/H) \cong \varinjlim H_{i}^{\mathcal{F}}(X_{\alpha}, \prod \mathbb{Z}[G/H, -])$$

$$X_{\alpha} \text{ cocompact, } G_{\sigma} \text{ of type } FP_{n-p}^{\mathcal{F} \cap G_{\sigma}}$$

= 0 if and only if $\underline{H}_i(X_\alpha)$ essentially trivial.

Classifying spaces

Brown's criterion

Generalizations of Abels's groups

Let $v, w \in \mathbb{Z}^{n+1}$ be such that

• $(v_i)_i$ and $(w_i)_i$ are monotonically decreasing,

•
$$\sum_i v_i > 0$$
 and $\sum_i w_i \le 0$.

Consider

$$G = \left\{ \begin{pmatrix} d_{1} & * & \cdots & * \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \cdots & 0 & d_{n+1} \end{pmatrix} \in \operatorname{GL}_{n+1}(\mathbb{Z}[1/p]) \middle| \begin{array}{c} \prod_{i} d_{i}^{v_{i}} = 1 \\ \prod_{i} d_{i}^{w_{i}} = 1 \end{array} \right\}$$

Finiteness properties of generalized Abels's groups

- The group *G* acts on a Bruhat–Tits building.
- Applying Brown's criterion:
 G is of type *F*_{n-1} but not of type *F*_n.
- Applying the generalization of Brown's criterion:
 For any chosen 0 < m ≤ n on can arrange v, w so that G to has type F^{finites}_{m-1} but not type F^{finites}_m.