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Actions with prescribed stabilizers

Let a group G act on a CW-complex X (always assume that Gσ

fixes σ ∈ X pointwise). Then X is a G-CW-complex.
Let F be a family of subgroups of G:

H ∈ F =⇒ Hg ∈ F ,g ∈ G,
H ∈ F , K < H =⇒ K ∈ F .

We say that G has stabilizers in F if Gσ ∈ F for every σ ∈ X .

Example

F = {1} free actions.
F = {finite subgroups} proper actions.
F = {virtually cyclic subgroups} . . .
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Classifying spaces for families of stabilizers

The category of G-CW-complexes up to equivariant homotopy
equivalence has a terminal object EFG.
A model X for EFG is a classifying space for G with
stabilizers in F and is characterized by

1 X H ∼= pt. for H ∈ F ,
2 X H = ∅ for H < G,H 6∈ F .

Example

F = {1}: 1 ⇔ X ∼= pt., 2 ⇔ free action.
 X classifying space (for free actions).

F = {finite subgroups}, G acts properly on a CAT(0)-cell
complex X . Then 2 by assumption and 1 by
CAT(0)-geometry.  X is a model for EFG.
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Homology

If X is a classifying space (for free actions) then

. . .→ H2(X (2),X (1))→ H1(X (1),X (0))→ H0(X (0))→ Z

is a free resolution of the ZG-module Z.

Here OFG is the small category with objects G/H,H ∈ F
and morphisms G/H → G/K g ,H 7→ gK g ,g ∈ G,H < K .

A (right) OFG-module is a (contravariant) functor OFG→ Ab.

Example

Z : G/H 7→ Z, (G/H → G/K ) 7→ (id : Z→ Z)
Hn(X ) : G/H 7→ Hn(X H)

(G/H
g→ G/K g) 7→ Hn(g−1X K ↪→ X H),H < K
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Finiteness properties

G is said to be of type FF
n if there is a model for EFG whose

n-skeleton is finite modulo the action of G.
G is said to be of type FPF

n if there is a projective resolution
(by right OFG-modules) of Z whose first n terms are finitely
generated.
Last slide: FFn =⇒ FPFn .

Example

1 G is F {1}1 ⇔ G is FP{1}1 ⇔ G is finitely generated.

2 G is F {1}2 ⇔ G is finitely presented.

3 G is F {finites}
0 ⇔ G is FP{finites}

0 ⇔ G has finitely many
conjugacy classes of finite subgroups.
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Essential trivialness

A directed system of OFG-modules (Mα)α∈D is essentially
trivial if

lim−→
α

∏
H∈F

∏
IH

Mα(G/H) = 0

for any family of index sets IH .

Observation
That (Mα)α be essentially trivial is equivalent to either of

∀α ∃β ≥ α such that Mα → Mβ is trivial.
∀α ∃β ≥ α ∀H ∈ F Mα(G/H)→ Mβ(G/H) is trivial.
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Brown’s criterion

Theorem (Brown ’87 F = {1}, Fluch–W.)

Let G be a group and let F a family of subgroups. Assume that
G acts on X such that

H̃ i(X ) = 0,0 ≤ i ≤ n − 1,
Gσ is of type FPF∩G

n−p for every p-cell of X .
Let (Xα)α∈D be a cocompact filtration of X . Then G is of type
FPFn if and only if (H̃ i(Xα))α is essentially trivial for 0 ≤ i < n.

Note: (H̃ i(Xα))α is essentially trivial if

∀α ∈ D ∃β ≥ α ∀H ∈ F H̃ i(X H
α → X H

β ) = 0
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Proof sketch 1

Proposition (Bieri–Eckmann ’74 F = {1},
Martínez-Pérez–Nucinkis ’11)
Let G be a group and F a family of subgroups. These are
equivalent:

1 G is of type FPFn ,
2 for any index sets IH ,H ∈ F the morphism

HFi (G,
∏

H∈F

∏
IH

Z[G/H,−])→
∏

H∈F

∏
IH

HFi (G,Z[G/H,−])

is an isomorphism for i < n and an epimorphism for i = n.
3 LHS=0 in 2 for 0 < i < n and 2 for i = 0.
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Proof sketch 2

i > 0:

HFi (G,
∏

Z[G/H,−])

H̃ j(X ) = 0, j < n︸ ︷︷ ︸
∼= HFi (X ,

∏
Z[G/H,−])

∼=

lim−→
∏

H i(Xα)(G/H) ∼=︷ ︸︸ ︷
Xα cocompact,Gσ of type FPF∩Gσ

n−p

lim−→HFi (Xα,
∏

Z[G/H,−])

= 0 if and only if H i(Xα) essentially trivial.
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Generalizations of Abels’s groups

Let v ,w ∈ Zn+1 be such that
(vi)i and (wi)i are monotonically decreasing,∑

i vi > 0 and
∑

i wi ≤ 0.
Consider

G =




d1 ∗ · · · ∗

0
. . . . . .

...
...

. . . . . . ∗
0 · · · 0 dn+1

 ∈ GLn+1(Z[1/p])

∣∣∣∣∣
∏

i dvi
i = 1∏

i dwi
i = 1

 .
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Finiteness properties of generalized Abels’s groups

The group G acts on a Bruhat–Tits building.
Applying Brown’s criterion:
G is of type Fn−1 but not of type Fn.
Applying the generalization of Brown’s criterion:
For any chosen 0 < m ≤ n on can arrange v ,w so that G
to has type F {finites}

m−1 but not type F {finites}
m .
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