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Complete Graphs

Theorem (Pittel 1987)

For every h ∈ ω(1) the randomized model on the complete
graph informs all n vertices within

log2 n + ln n ± h(n)

time-steps with high probability.



Hypercubes and Random Graphs

Let Gn,p denote the Erdős-Rényi random graph on n vertices
with edge probability p.

Theorem (Feige, Peleg, Raghavan and Upfal 1990)

The randomized model on hypercubes and random graphs Gn,p

with p ≥ (1+ε) ln n
n

informs all n vertices within

Θ(log n)

time-steps with high probability.
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I “The ln-Part”: ∼ ln n steps.
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The “good” Properties

The random graph Gn,p, where p = α(n) ln n
n

and α ∈ ω(1), has
w. h. p. the following properties. For any subset S of its
vertices

I if |S | ≥ n
α(n)

, most vertices outside S have

(1± α(n)−1/2)p|S | neighbours in S ,

I if |S | ≤ n
α(n)

, most vertices outside S have at most εpn
neighbours in S ,

I the cut of S contains |S |(n − |S |)p
(

1±
√

8
α(n)

)
edges.
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Let Gn,p denote the Erdős-Rényi random graph on n vertices
with edge probability p.

I “Good” model for “real” networks...???

I p is measure for density

I Quite regular

I Quite high expansion

I Connected
(

If p ≥ (1+ε) ln n
n

)
I Effort to design networks with properties of random

graphs
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Quasirandom Rumour Spreading

Theorem (Doerr, Friedrich and Sauerwald 2008)

The quasirandom model on hypercubes and random
graphs Gn,p with p ≥ (1+ε) ln n

n
informs all n vertices within

Θ(log n)

time-steps with high probability.



Recall:

Let Rn denote the number of rounds needed to inform all n
vertices of a complete graph in the random model.

Theorem (Frieze and Grimmett 1985)

(1− o(1))(log2 n + ln n) ≤ Rn ≤ (1 + o(1))(log2 n + ln n)

with high probability.
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Recall:

Let Rn denote the number of rounds needed to inform all n
vertices of a complete graph in the random model.

Theorem (Pittel 1987)

For every h ∈ ω(1) one has with high probability

log2 n + ln n − h(n) ≤ Rn ≤ log2 n + ln n + h(n).



Quasirandom Rumour Spreading

Let Qn denote the number of rounds needed to inform all n
vertices of a complete graph in the quasirandom model.

Theorem (Fountoulakis, H., SIDMA 2009)

For every h ∈ ω(1) one has with high probability

log2 n + ln n − 4 ln ln n ≤ Qn ≤ log2 n + ln n + h(n).
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I No notifications of success or failure.
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I What about q ∈ ]0, 1[ ?

I Is quasirandom still as fast as random?
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Robustness

Theorem (Doerr, H., Levavi, ISAAC 2009)

The quasirandom model with transmission success probability
q on the complete graph informs all n vertices in

(1 + o(1))(log1+q n + 1
q

ln n)

time-steps with high probability.



Core Questions
I Where do dependencies help?

I How much randomness is necessary?
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