
1

Automata based graph algorithms

for logically defined problems

Part 3: beyond MSO logic for graph properties and functions

on graphs.

Summary

A fly-automaton for regularity of graphs (not an MSO property).

Boolean and first-order constructions of properties and functions,

 and their interpretations in terms of fly-automata.

Monadic-second order constructions.

Implementation (in AUTOGRAPH).

 Conclusions and call for interesting problems to handle in this way.

 Part 4 (Bonus) : Edge quantification and special tree-width.

2

The example of regularity

 This property is not MSO (Kn,m is regular �� n = m).

 Information q(u) relative to G(t/u) :

 (deg(a), …, deg(d), #(a), …., #(d)) or Error

 where deg(p) = common degree of all p-vertices,

 #(p) = number of p-vertices.

 Error : two p-vertices have different degrees

 (G(t) cannot be regular, because all its p-vertices are

 linked to the same vertices outside of t/u, where t

 is an irredundant term; easy preprocessing).

3

Some “programmed” transitions :

 For Adda,b: deg(a) := deg(a) + #(b), deg(b) := deg(b) + #(a)

 other values of deg and # are not modified.

 For ⊕⊕⊕⊕ : : : : for each a, #(a) := #(a) 1 + #(a) 2

 yields Error if deg(a) 1 ≠ deg(a) 2 for some a.

 A state is Error or belongs to [0,n]2k, n = number of vertices of G(t),

k = number of labels in t. Firing a transition takes time O(k.log(n)). We

have a P-FA.

 Application: Partition into 2 regular graphs : ∃X (Reg[X] ∧ Reg[Xc]),

is an XP-decidable property (not FPT because of ∃X).

4

Boolean and first-order compositions of properties and
functions, and of automata.

 P ∧ Q, P ∨ Q, ¬ P, g(α1 , …, αp) where g is poly-time

computable (can be a relation such as a comparison of numbers),

 P[X∩∩∩∩Y] : property of subgraph induced on X ∩ ∩ ∩ ∩ Y (set term)

 First-order (FO) quantifications : ∃ x.P(x), x =tuple of FO var.

 Set of satisfying assignments : Sat x.P(x) (a query)

 Number of satisfying assignments : # x.P(x).

 Set of values α(x) such that P(x) is true.

5

 Min (Max) of values α(x) such that P(x) is true.

Type of automata Finite P-FA FPT-FA XP-FA

P∧ Q,P∨ Q, ¬ P , P[X∩∩∩∩Y] Finite P FPT XP

g(α1 , …, αp), α(X∩∩∩∩Y) P FPT XP

∃ x.P(x), ∀ x.P(x) Finite P FPT XP

Sat x.P(x), # x.P(x) P P FPT XP

SetVal x.α(x) / P(x) P FPT XP

Finite : Finite signature and sets of states.

We have “nice preservations” of the types of automata.

6

Main proof ideas for ∃ x.P(x), # x.P(x) , Sat x.P(x),

 where x is a p-tuple of first-order variables.

Projection pr : F(p)
�F, a relabelling of F(p) designed to handle p

variables. From a deterministic automaton A over F(p) for P(x),

we get a FA pr(A), that is not deterministic and decides

∃ x.P(x). But, its nondeterminism degree is < np , hence

polynomially bounded in the number n of vertices. We get

a P-FA or an FPT-FA, or an XP-FA if A is so.

 Same idea for Sat x.P(x). For # x.P(x), we transform pr(A) into

a deterministic FA that counts the number of its accepting runs.

7

Monadic second-order constructions

The spectrum SpX.P(X) of a property P(X) is the set of tuples of

cardinalities of the components of the X satisfying P(X).

The multispectrum MSpX.P(X) is the corresponding multiset of

tuples of SpX.P(X). If X = X (one component), it is :

 the set of pairs (m ,i) such that i > 0 is

 the number of sets X of cardinality m that satisfy P(X).

If X is a p-tuple and n is the number of vertices, a multispectrum is a

function [0,n]p � [0,2 p.n]; it can be encoded in size

O(n p.log(2 p.n)) = O(n p+1).

8

Type of automaton A for P(X) Finite P-FA FPT-FA XP-FA

∃X.P(X), ∀X.P(X) F P FPT XP

MSp X.P(X), Sp X.P(X), # X.P(X),

MaxCard X.P(X)

P P FPT XP

P-FA means : A is P-FA and pr(A) has a polynomially

bounded nondeterminism degree. Similar for FPT and XP.

(FPT- or XP-bounded nondeterminism degree). Hence, there are

more contraints for the preservation of types of automata than for

FO constructions.

9

Some examples : (1) Equitable p-coloring (not MSO) :

 ∃X1,…,Xp (Partition(X1,…,Xp) ∧ Stable[X1] ∧...∧ Stable[Xp]

 ∧ X1=…=Xi-1>Xi =…=Xp>X1 - 1).

 It is FPT (for fixed p).

(2) A P-FA computable (not MSO) function : the generalized

degree:

e(X,Y) = number of edges between X and Y, where X ∩ Y = ∅.

Its minimimal value such that P[X] ∧ Q[Xc] where P, Q are MSO

properties (for an example) is XP-computable.

10

(3) Counting p-colorings with particular properties, e.g., acyclic

or equitable.

(4) One can minimize (or maximize) the use of a particular

color. Minimization gives a “distance to p-colorability”.

(5) Covering the edges of a graph by p cliques whose vertex

sets satisfying MSO constraints

11

The system AUTOGRAPH (by Irène Durand)

 Fly-automata for basic graph properties :

 Clique, Stable (no edge), Link(X,Y), NoCycle,

 Connected, Regular, Partition(X, Y, Z), etc…

 and functions :

 #Link(X,Y) (number of edges between X and Y)

 Maximum degree, etc..

12

 Procedures for combining fly-automata (combinations of descriptions)

 (defined in Part 2)

 product : for P∧ Q, P∨ Q, g(α1 , …, αp)

 A → A/X : for P → P[X], (P in induced subgraph on X)

 A → A/(X ∩ Y) ∪ (Y ∩ Z)
c
 for relativization to set terms

 image automaton: A → pr(A) : in the transitions of A, each

 function symbol f is replaced by pr(f) ;

 makes pr(A) nondeterministic : for P(X) → ∃X.P(X)

13

Procedures : to build automata that compute functions:

 #X.P(X) : the number of tuples X that satisfy P(X) in

 the input term or graph.

 SpX.P(X) defined as the set of tuples of cardinalities of the

 components of the X that satisfy P(X).

 MSpX.P(X) defined as the corresponding multiset.

 SetValX.α(X)/P(X) defined as the set of values of α(X)

 for the tuples X that satisfy P(X).

 For each case, a procedure transforms FA for P(X) and α(X)

 into ones computing the associated functions.

 (These transformations do not depend on P(X) and α(X), but only

 on the relevant signature.)

Counting 3-colorings of grids

grid time number
6x8 7 s (*) ≃ 3×10¹⁰
6x60 120 s ≃ 4×10⁷³
6x525 300 s

(*) : also spectrum.

Counting 3-colorings of modified grids

Modified grid Time Number
6x10 3 s ≃ 7×10⁹
6x20 8 s ≃ 10²²
6x30 13 s ≃ 2×10³⁴
6x40 18 s ≃ 2×10⁴⁶

Exact numbers are computed.

Spectra of 3-colorings of modified grids (set of triples of cardinalities of colors)

Modified grid Time Number of triples
6x10 5 s 253
6x20 207 s 1378
6x30 ?? Out of memory

14

Conclusion

 We get XP algorithms in most cases, that can be

obtained independently. We get FPT ones in some cases.

 We have tools for constructing automata from logical

descriptions � flexibility. Constructions of automata are

implemented. Tests have been made for colorability and

connectedness problems.

 Thank you for suggesting algorithmic problems that could

fit in this framework.

15

 Further topics to present or to investigate :

 Using directed acyclic graphs for sharing identical

subterms. Deterministic FA run on dags. The question is to

transform a term so as to get a dag with “few” nodes, perhaps

by loosing on the number of labels.

16

 Handling directly tree-decompositions in the same way,

and the variant of monadic second-order logic allowing edge set

quantifications.

A technical difficulty comes from parallel composition (the

operation G//H) because one vertex “comes from” several

positions in the term. The notion of special tree-width (weaker

than tree-width) handles this problem. See Part 4 of this set of

slides.

17

 Comparing several logical expressions of a same problem.

 For example the number cc(G) of connected components of a

graph G can be computed as :

 #X.(Conn[X] ∧ X not empty ∧ ¬ Link(X,Xc)),

 or as log2(#X. ¬ Link(X,Xc)),
 or by a FA (already sketched in Part 1) that modifies

 the one for connectedness.

 Is there a generalization to other functions of this

observation ?

