
1 
 

Automata  based  graph  algorithms   

for  logically  defined  problems 
 

Part 3: beyond MSO logic for graph properties and  functions  

on graphs. 

Summary 

A fly-automaton for regularity of graphs (not an MSO property). 

Boolean and first-order constructions of properties and functions,  

     and their interpretations in terms of fly-automata. 

Monadic-second order constructions.  

Implementation (in AUTOGRAPH). 

   Conclusions and call for interesting problems to handle in this way. 

    Part 4 (Bonus) : Edge quantification and special tree-width. 
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The  example  of  regularity 

     

     This  property  is  not  MSO  ( Kn,m  is  regular  ��  n = m). 

 

 Information  q(u)  relative  to  G(t/u) : 

   (deg(a), …, deg(d), #(a), …., #(d) )  or  Error  

 where   deg(p) = common degree  of all  p-vertices, 

    #(p)     =  number  of  p-vertices. 

    Error :  two  p-vertices   have  different  degrees  

    ( G(t)  cannot be regular, because all  its  p-vertices  are  

    linked  to  the  same  vertices  outside  of  t/u, where  t   

    is an  irredundant   term; easy preprocessing). 
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Some  “programmed”   transitions  : 

 

  For  Adda,b:  deg(a) :=  deg(a) +  #(b), deg(b) :=  deg(b) +  #(a)    

      other values  of  deg  and  #  are  not modified. 

  For  ⊕⊕⊕⊕                     : : : :            for each a,     #(a) := #(a) 1  +   #(a) 2 

         yields  Error  if  deg(a) 1  ≠  deg(a) 2  for some a. 

 

 A  state  is  Error  or  belongs to  [0,n]2k, n = number of vertices of G(t), 

k = number of labels in t. Firing a transition takes time  O(k.log(n)). We  

have  a  P-FA. 
 

 Application: Partition into 2 regular graphs : ∃X (Reg[X] ∧ Reg[Xc]), 

is an  XP-decidable  property  (not FPT  because of   ∃X).  
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Boolean  and  first-order  compositions  of  properties and   
functions,  and  of  automata. 

 
 P ∧  Q, P  ∨  Q,   ¬ P,  g(α1 , …,  αp)  where  g  is  poly-time 

computable  (can  be  a  relation such as a  comparison  of  numbers), 

 P[X∩∩∩∩Y] : property of subgraph  induced  on  X ∩ ∩ ∩ ∩ Y (set term) 

  

 First-order  (FO) quantifications : ∃ x.P(x), x =tuple of  FO  var. 

 Set  of  satisfying   assignments : Sat x.P(x)  (a  query) 

 Number  of  satisfying assignments : # x.P(x). 

 Set  of  values   α(x)  such  that  P(x) is  true. 
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  Min (Max)  of  values  α(x)  such  that  P(x) is  true. 

 

Type of automata Finite P-FA FPT-FA  XP-FA 

P∧  Q,P∨ Q,   ¬ P  , P[X∩∩∩∩Y] Finite P FPT XP 

g(α1 , …,  αp),  α(X∩∩∩∩Y)  P FPT XP 

∃ x.P(x), ∀ x.P(x) Finite P FPT XP 

Sat x.P(x),  # x.P(x) P P FPT XP 

SetVal x.α(x) / P(x)   P FPT XP 

 

 

 

Finite :  Finite signature and sets of states.  
 

We  have “nice preservations” of the types of  automata. 
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Main  proof ideas for   ∃ x.P(x), # x.P(x) , Sat x.P(x),   

  where x  is  a  p-tuple of  first-order variables. 

 

Projection pr : F(p)
�F,  a relabelling of  F(p)  designed to handle p 

variables. From  a deterministic automaton  A  over  F(p)  for  P(x), 

we get  a  FA  pr(A), that is  not  deterministic  and  decides  

∃ x.P(x). But, its  nondeterminism  degree  is  < np , hence 

polynomially bounded  in the number  n  of vertices.  We get  

a  P-FA or an FPT-FA, or an  XP-FA  if A  is  so. 

 Same idea for Sat x.P(x). For # x.P(x), we transform  pr(A) into  

a  deterministic  FA that  counts  the number of its accepting runs. 
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Monadic  second-order  constructions 
 

 

The  spectrum  SpX.P(X)  of a property P(X) is  the  set  of tuples of  

cardinalities of  the components of  the  X  satisfying  P(X). 
 

The  multispectrum  MSpX.P(X)  is  the corresponding  multiset  of  

tuples of  SpX.P(X). If X = X (one component), it is :   

 the  set  of  pairs  (m ,i)  such  that  i  > 0  is   

 the  number  of  sets  X  of  cardinality  m  that satisfy P(X).  
 

If X is a p-tuple and n is the number of vertices, a multispectrum is a 

function [ 0,n ]p � [ 0,2 p.n ]; it  can  be  encoded  in  size   

O(n p.log(2 p.n) ) = O(n p+1).   
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Type of  automaton A  for P(X)     Finite P-FA FPT-FA XP-FA 

∃X.P(X), ∀X.P(X) F P FPT XP 

MSp X.P(X), Sp X.P(X), # X.P(X), 

MaxCard X.P(X)   

P P FPT XP 

 

 

P-FA means : A  is  P-FA and  pr(A ) has  a  polynomially  

bounded  nondeterminism  degree. Similar  for  FPT and XP. 

(FPT- or XP-bounded nondeterminism degree). Hence, there are 

more contraints for the preservation of types of automata than for 

FO constructions. 
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Some examples :  (1)  Equitable  p-coloring  (not MSO) : 

 ∃X1,…,Xp (Partition(X1,…,Xp) ∧ Stable[X1] ∧...∧ Stable[Xp]  

      ∧  X1=…=Xi-1>Xi =…=Xp>X1 - 1).    

 It  is  FPT  (for fixed p). 

 

(2)   A  P-FA  computable (not MSO) function : the  generalized  

degree: 

e(X,Y)  = number of edges between  X  and  Y, where X ∩ Y =  ∅. 

  

Its minimimal value such  that   P[X] ∧ Q[Xc]  where  P, Q  are  MSO  

properties (for an example)  is  XP-computable. 
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(3) Counting  p-colorings  with particular  properties, e.g.,  acyclic 

or equitable.  

(4) One  can  minimize  (or  maximize)  the  use  of  a  particular 

color. Minimization  gives  a  “distance  to  p-colorability”. 

(5) Covering the edges of  a  graph by  p cliques  whose  vertex 

sets  satisfying  MSO  constraints 
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The  system  AUTOGRAPH (by  Irène  Durand) 

 

 

 Fly-automata  for  basic graph properties : 

   Clique, Stable (no edge), Link(X,Y), NoCycle,  

   Connected, Regular, Partition(X, Y, Z), etc… 

 and  functions : 

   #Link(X,Y)  (number of edges between X and Y) 

   Maximum degree, etc..   
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 Procedures  for combining fly-automata (combinations of descriptions) 

              (defined in  Part 2) 

   product :  for  P∧  Q, P∨ Q, g(α1 , …,  αp)  
 

   A → A/X : for  P → P[X], (P in induced  subgraph on X) 
 

   A → A/(X ∩ Y) ∪ (Y ∩ Z)
c
  for relativization  to  set  terms 

 

   image  automaton:  A → pr(A) : in  the transitions of A, each  

   function symbol  f  is replaced  by pr(f) ;   

   makes pr(A) nondeterministic :  for  P(X) → ∃X.P(X)  
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Procedures : to  build automata  that compute functions: 
    

   #X.P(X) : the  number of tuples  X that satisfy P(X) in  

     the input  term   or graph. 

   SpX.P(X) defined as the set of tuples of cardinalities of the  

      components of the X that  satisfy P(X). 

   MSpX.P(X) defined as the corresponding multiset. 

   SetValX.α(X)/P(X) defined as the set of values of α(X)  

      for  the  tuples  X   that  satisfy  P(X). 

  For each case, a procedure transforms FA  for P(X) and  α(X) 

      into ones computing the associated functions. 

  (These transformations do not depend on P(X) and  α(X), but only 

            on the relevant signature.) 



Counting 3-colorings of grids 

         

grid time number 
6x8 7 s (*) ≃  3×10¹⁰ 
6x60 120 s ≃  4×10⁷³ 
6x525 300 s  
     

(*) : also spectrum. 

  



 

Counting 3-colorings of modified grids 

 

 

 

 

 

Modified  grid Time Number  
6x10 3 s ≃ 7×10⁹ 
6x20 8 s ≃ 10²² 
6x30 13 s ≃ 2×10³⁴ 
6x40 18 s ≃ 2×10⁴⁶ 
 

Exact numbers are computed. 



 

 

Spectra of 3-colorings of modified grids  (set of triples of cardinalities of colors) 

 

 

Modified  grid Time Number of triples  
6x10 5 s 253 
6x20 207 s 1378 
6x30 ?? Out of memory 
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Conclusion  
 

  We  get  XP  algorithms  in  most cases, that  can  be 

obtained  independently. We  get FPT ones in some cases. 
 

  We have tools  for constructing  automata  from logical 

descriptions �  flexibility. Constructions  of  automata  are 

implemented. Tests have been made for colorability and 

connectedness problems. 
 

  Thank you for suggesting algorithmic problems that could 

fit in this framework. 
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  Further  topics  to present or to investigate :  

   
 

  Using  directed acyclic graphs  for  sharing  identical 

subterms. Deterministic FA run  on dags. The  question is to 

transform a term so as to get a dag with “few” nodes, perhaps 

by loosing on the number of labels.   
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  Handling  directly  tree-decompositions in the same way, 

and the variant of monadic second-order logic allowing edge set 

quantifications.  

 

A technical difficulty comes from parallel composition (the  

operation G//H) because one vertex “comes from” several 

positions in the term. The notion of special tree-width (weaker 

than tree-width) handles this problem. See Part 4 of this set of 

slides. 
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  Comparing several logical expressions of a same problem.  

 

  For example the number cc(G) of connected components of a 

graph G can be computed as : 

   #X.(Conn[X] ∧ X not empty ∧ ¬ Link(X,Xc) ), 

   or  as log2( #X. ¬ Link(X,Xc) ),  
   or by a FA (already sketched in Part 1) that modifies  

         the one for connectedness. 

 

  Is  there a generalization  to other functions of this 

observation ? 




