Incidentor coloring; methods and results

A.V. Pyatkin

"Graph Theory and Interactions"
Durham, 2013

4-color problem

Reduction to the vertex coloring

Vertex coloring problem

Edge coloring problem

Incidentor coloring

- Incidentor is a pair (ν, e) of a vertex ν and an arc (edge) e, incident with it.
\checkmark It is a half of an arc (edge) adjoining to a given vertex.
initial final
(mated incidentors)

Incidentor coloring problem

- Color all incidentors of a given multigraph by the minimum number of colors in such a way that the given restrictions on the colors of adfacent (having a joint vertex) and mated (having a joint arc) incidentors would be stisfied

An example of incidentor coloring

Incidentor coloring generalizes both vertex and edge coloring

Incidentor coloring generalizes both vertex and edge coloring

Motivation

Central computer

All links capacities are equal to 1
i-th object must send to j-th one $d_{i j}$ units of information

There are two ways of information transmission:

1) Directly from i-th object to j-th one (during one time unit);
-2) With memorizing in the central computer (receive the message from i-th object, memorize it, and transmit to j-th one later).

Reduction to the incidentor coloring

J Each object corresponds to a vertex of the multigraph (n vertices).
J Each unit of information to transmit from ith object to j-th one corresponds to the are $i j$ of the multigraph (there are $d_{i j}$ arcs going from a vertex i to the a vertex j).

- The maximum degree Δ equals the maximum load of the link.

Scheduling

To each information unit two time moments should be assigned - when it goes via i-th and j-th links.

- These moments could be interpreted as the colors of the incidentors of the arc $i j$.

Restrictions

The colors of adjacent incidentors must be distinct.
o For every arc, the color of its initial incidentor is at most the color of the final incidentor, i.e. $a \leq b$.

J It is required to color all incidentors by the minimum number of colors x satisfying all the restrictions (the length of the schedule is $\%$).

For this problem $\chi=\Delta$. Such coloring can be found in $O\left(n^{2} \Delta^{2}\right)$ time.
(P., 1995)

Sketch of the algorithm

- Consider an arc that is not colored yet

J Try to color its incidentors:

1. In such a way that $a=b$
2. In such a way that $a<b$

Otherwise, modify the coloring (consider bicolored chains)

Further investigations

, 1) Modifications of initial problem
-2) Investigation of the incidentor coloring itself

Modifications of initial problem

- 1) Arbititrary capacities
, 2) Two sessions of message transmission

3) Memory restrictions
4) Problem of Melnikov \& Vizing

- 5) Bilevel network

Memory restriction

- The memory of the central computer is at most Q

If $Q=0$ then second way of transmission is impossible and we have the edge coloring problem

Iff $Q \geq n$ then we can store each message in the central computer during 1 unit of time. Incidentor coloring problem with the following restriction on mated incidentors colors appears:
) $b-1 \leq a \leq b$

- In this case $\chi=\Delta$
- (Melnikov, Vizing, P.; 2000).

(k, l)-coloring of incidentors

- Let $0 \leq k \leq l \leq \infty$. Restrictions:

1) adjacent incidentors have distinct colors;
2) mated incidentors colors satisfy
$k \leq b-a \leq l$.

- Denote the minimum number of colors by $x_{k, l}(G)$.
\checkmark Case $k=0$ is solved:
, $\%, 0(G)$ is an edge chromatic number
$\chi_{\chi_{0,1}}(G)=\chi_{0, \infty}(G)=\Delta$ (Melnikov, P, Vizing, 2000)
\checkmark Another solved case is $l=\infty$:
$x_{k_{0}}(G)=\max \left\{\Delta, k+\Delta^{+}, k+\Delta^{-}\right\}(P, 1999)$

Vizing's proof

Let $t=\max \left\{\Delta, k+\Delta^{+}, k+\Delta^{-}\right\}$

1. Construct a bipartite interpretation H of the graph G :

- $\nu \in V(G)$ corresponds to $\nu^{+}, \nu^{-} \in V(H)$
- $\nu u \in E(G)$ corresponds to $\nu^{+} u^{-} \in E(H)$

Vizing's proof

- 2. Color the edges of H by $\Delta(H)$ colors. Clearly, $\Delta(H)=\max \left\{\Delta^{+}(G), \Delta^{-}(G)\right\}$

3. If $v^{+} u \in E(H)$ is colored a, color a the initial incidentor of the arc $v u \in E(G)$ and color $a+k$ its final incidentor

Vizing's proof

〕 4. Shift colors at every vertex

\checkmark Initial: turn $a_{1}<a_{2}<\ldots<a_{p}$ into $1,2, \ldots, p$
SFinal: turn $b_{1}>b_{2}>\ldots>b_{q}$ into $t, t-1, \ldots, t-q+1$

- We get a required incidentor coloring of G by t colors

Example

Bjpartite interpretation

Edge coloring

Shifting the colors

Equivalent problem in scheduling theory

\checkmark Job Shop with n machines and m jobs, each of which has two unit operations (at dififierent machines), and there must be a delay at least k and at most l between the end of the first operation and the beginning of the second one.
J It is NP-complete to find out whether there is a (1,1)-coloring of a multigraph by Δ colors even for $\Delta=7$ (Bansal, Mahdian, Sviridenko, 2006).

Reduction from 3-edge-coloring of a 3regular graph

Reduction from 3-edge-coloring

- Substitute each edge by the following gadget:

Reduction from 3-edge-coloring

\checkmark It can be verified that in any (1,1)-coloring by 7 colors the incidentors of the initial incidentors of the red edges must be colored by the same even color

Results on (k, l)-coloring

- $\chi_{k, k}(G)=\chi_{k, o \infty}(G)$ for $k \geq \Delta(G)-1$
$\chi_{\chi_{k, \Delta}, \Delta(G)-1}(G)=\chi_{k, \infty}(G) \quad($ Sizing, 2003)

Let $\chi_{k_{1},}(\Delta)=\max \left\{\chi_{k_{1}, l}(G) \mid \operatorname{deg}(G)=\Delta\right\}$ $\chi_{k=0}(\Delta)=k+\Delta$ $\chi_{k, k}(\Delta) \geq \chi_{k, v}(\Delta) \geq k+\Delta$

- $\chi_{0,1}(\Delta)=\Delta$

Results on (k, l)-coloring

- $x_{k, l}(2)=k+2$ except $k=l=0$

」 (Melnikov, P, Vizing, 2000)
$x_{k, l}(3)=k+3$ except $k=l=0$ and $k=l=1$ (P, 2003)
$x_{k, l}(4)=k+4$ except $k=l=0$

- For $l \geq\lceil\Delta / 2\rceil, \chi_{k, l}(\Delta)=k+\Delta$
- (P., 2004)

Resultis on $(1,1)$-coloring

\checkmark For odd $\Delta, \chi_{1,1}(\Delta)>\Delta+1(P, 2004)$

Resultis on $(1,1)$-coloring

- For odd $\Delta, \chi_{1,1}(\Delta)>\Delta+1($ P., 2004 $)$

Resultis on $(1,1)$-coloring

- For odd $\Delta, \chi_{1,1}(\Delta)>\Delta+1($ P., 2004 $)$

Resultis on $(1,1)$-coloring

\checkmark For odd $\Delta, \chi_{1,1}(\Delta)>\Delta+1($ P., 2004 $)$

Resultis on (1,1)-coloring

- For even Δ, it is unknown whether there is a) graph G of degree Δ such that $\chi_{1,1}(G)>$ $\Delta+1$. If such G exists, then it has degree at least 6.

Theorem. $\chi_{1,1}(4)=5$ (P., 2004)

Proof

- Consider an Eulerian route in a given 4regular multigraph
J Say that an edge is red, if its orientation is the same as in the route and blue otherwise
Construct a bipartite interpretation according to this route (it consists of the even cycles)

Find an edge coloring $f: E \rightarrow\{1,2\}$ such that:

- 1) any two edges adjacent at the right side have distinct colors;
〕2) any two blue or red edges adjacent at the left side have distinct colors;
- 3) If a red edge e meets a blue one e ' at the left side, then $f(e) \neq f\left(e^{\prime}\right)+1$
, Construct an incidentor coloring g in the following way:

1) For the right incidentor let $g=2 f$
2) For the left red incidentor let $g=2 f-1$
3) For the left blue incidentor let $g=2 f+1$

- We obtain an incidentor (1,1)-coloring of the initial multigraph by 5 colors

Example

Example

Example

Example

Incidentor coloring of weighted multigraph

- Each arc e has weight w(e)
, Coloring restrictions:

1) adjacent incidentors have distinct colors;
2) For every arc e, $w(e) \leq b-a$

Resultis on weighted coloring

- Problem is NP-hard in a strong sense for $\chi=\Delta$ (P., Vizing; 2005)

For $x>\Delta$ the problem is NP-hard in a strong sense even for multigraphs on two vertices (Lenstra, Hoogevan, Yu; 2004)

- It can be solved approximately with a relative error 3/2 (Vizing, 2006)

List incidentor coloring

- A weighted incidentor coloring where each arc e has a list $L(e)$ of allowed colors for its incidentors

Coniecture. If $|L(e)| \geq w(e)+\Delta$ for every arc e then an incidentor coloring exists

- True for $|L(e)| \geq w(e)+\Delta+1$. Proved for even Δ (Vizing, 2001) and for $\Delta=3$ (P., 2007)

Total incidentor coloring

- Color incidentors and vertices in such a way that vertex coloring is correct and a color of each vertex is distinct from the color of all incidentors adjoining this vertex
$\chi^{\top} x_{k, \infty}^{\top}(G) \leq \chi_{k+1, \infty}(G)+1 \leq \chi_{k, \infty}(G)+2 ;$
- $\chi^{T} 0, \omega_{0}^{2}(G)=\Delta+1$ (Vizing, 2000)
- Conjecture. $\chi^{T}{ }_{k, \infty}(G) \leq \chi_{k, \infty}(G)+1$

Interval incidentor coloring

- The colors of adjacent incidentors must form an interval
,$y^{\prime}\left(0, \omega(G) \leq \max \left\{\Delta, \Delta^{+}+\Delta^{-}-1\right\}\right.$
$x_{1,00}^{\prime}(G) \leq \Delta^{+}+\Delta^{-}$
- For $k \geq 2$ there could be no interval incidentor ($k, \infty)$-coloring (e.g. directed cycle) (Vizing, 2001)

Undirected case

\checkmark Instead of $b-a$ use $|b-a|$ for colors of mated incidentors

Undirected incidentor chromatic number is equal to the best directed ones taken among all orientations

Undirected case

$$
\begin{aligned}
& \text { - } \left.\chi_{k, \infty}(G)=\max \{\Delta, \sqrt{2} / 2\rceil+k\right\} \\
& \text { - } \chi_{k}^{\prime \prime} k_{k, \infty}(G) \leq \chi_{k, \infty}(G)+1 \text { (Vizing,Toft, 2001) }
\end{aligned}
$$

If $k \geq \Delta / 2$ then $\chi_{k, k}(G)=\lceil\Delta / 2\rceil+k$ - If $\Delta=2 k r$ then $\chi_{k, k}(G)=\Delta$

- If $\Delta=2 k r+s$ then $\chi_{k, k}(G) \leq \Delta+k-\lfloor s / 2\rfloor$
- (Vizing, 2005)

Undirected case

- For every regular multigraph G with $\Delta \geq 2 k$ $x_{k, l}(G) \in\left\{\Delta, \chi_{k, k}(G)\right\}$ depending only on l; in particular, $\chi_{k_{0},}(G)=\chi_{k_{2}}(H)$ for every two regular multigraphs G and H of degree \triangle (Vizing,2005)

Undirected case

\checkmark Interval incidentor coloring of undirected multigraphs always exists
$x_{0}^{\prime} 0, \infty(G)=x_{1, \infty}^{\prime}(G)=\Delta$
For $k \geq 2, x_{k, \infty}^{\prime}(G) \geq \max \{\Delta, \min \{2 k, \Delta+k\}\}$ and

- $x_{k, \infty}^{\prime}(G) \leq 2 \Delta+k(k-1) / 2$
- (Vizing,2003)

Undirected case

- The incidentor coloring of weighted undirected multigraph is NP-hard in a strong sense even for $\chi=\Delta$
It can be solved approximately with a relative error 5/4
- (Vizing, P., 2008)

Open problems

$\checkmark 1$. Is it true that for every k there is l such that $\chi_{k, s}(\Delta)=\chi_{k, \infty}(\Delta)=k+\Delta$?

Proved for $k=0(l=1)$. Incorrect for $\chi_{k, l}(G)$

- 2. What are the values of $\chi_{1,2}(5)$ and $x_{2,2}(5)$?

Open problems

3. Given a Δ-regular bipartite graph with red and blue edges is there an edge coloring $f: E \rightarrow\{1,2, \ldots, \Delta\}$ such that:
1) any two edges adjacent at the right side have distinct colors;

- 2) any two blue or red edges adjacent at the left side have distinct colors;
- 3) If a red edge e meets a blue one e ' at the left side, then $f(e) \neq f\left(e^{\prime}\right)+1$?

Open problems

4. Is it true that if $|L(e)| \geq w(e)+\triangle$ for every alc e then a list incidentor coloring exists?
5. Is it true that $\chi^{T}{ }_{k, \infty}(G) \leq \chi_{k, \infty}(G)+1$?

Thanks for your attention!!!

