Incidentor coloring: methods and results

A.V. Pyatkin "Graph Theory and Interactions" Durham, 2013

4-color problem

Reduction to the vertex coloring

Vertex coloring problem

Edge coloring problem

Incidentor coloring

Incidentor is a pair (*v*,*e*) of a vertex *v* and an arc (edge) *e*, incident with it.
It is a half of an arc (edge) adjoining to a given vertex.

initial final (mated incidentors)

Incidentor coloring problem

 Color all incidentors of a given multigraph by the minimum number of colors in such a way that the given restrictions on the colors of *adjacent* (having a joint vertex) and *mated* (having a joint arc) incidentors would be stisfied

An example of incidentor coloring

Incidentor coloring generalizes both vertex and edge coloring

Incidentor coloring generalizes both vertex and edge coloring

Motivation

Central computer

All links capacities are equal to 1

i-th object must send to *j*-th one d_{ij} units of information

n

There are two ways of information transmission:

 1) Directly from *i*-th object to *j*-th one (during one time unit);

• 2) With memorizing in the central computer (receive the message from *i*-th object, memorize it, and transmit to *j*-th one later).

Reduction to the incidentor coloring

- Each object corresponds to a vertex of the multigraph (n vertices).
- Each unit of information to transmit from *i*-th object to *j*-th one corresponds to the arc *ij* of the multigraph (there are d_{ij} arcs going from a vertex *i* to the a vertex *j*).
 The maximum degree ∆ equals the maximum load of the link.

Scheduling

 To each information unit two time moments should be assigned – when it goes via *i*-th and *j*-th links.

 These moments could be interpreted as the colors of the incidentors of the arc *ij*.

a

b

Restrictions

 The colors of adjacent incidentors must be distinct.

For every arc, the color of its initial incidentor is at most the color of the final incidentor, i.e. *a* ≤ *b*.

It is required to color all incidentors by the minimum number of colors χ satisfying all the restrictions (the length of the schedule is χ).

For this problem χ = Δ. Such coloring can be found in O(n²Δ²) time.
 (P., 1995)

Sketch of the algorithm

Consider an arc that is not colored yet
Try to color its incidentors:
1. In such a way that a=b
2. In such a way that a<b
Otherwise, modify the coloring (consider bicolored chains)

Further investigations

• 1) Modifications of initial problem

 2) Investigation of the incidentor coloring itself

Modifications of initial problem

1) Arbitrary capacities
2) Two sessions of message transmission
3) Memory restrictions
4) Problem of Melnikov & Vizing
5) Bilevel network

Memory restriction

 The memory of the central computer is at most Q

 If Q=0 then second way of transmission is impossible and we have the edge coloring problem If Q ≥ n then we can store each message in the central computer during 1 unit of time. Incidentor coloring problem with the following restriction on mated incidentors colors appears:

• $b-1 \le a \le b$

In this case χ = ∆
(Melnikov, Vizing, P.; 2000).
(k,l)-coloring of incidentors

- Let 0 ≤ k ≤ l ≤ ∞. Restrictions:
 1) adjacent incidentors have distinct colors;
 2) mated incidentors colors satisfy
 k ≤ b a ≤ l.
 Denote the minimum number of colors by
 - $\chi_{k,l}(G).$

Case k=0 is solved:

k+1

 $k+\Delta^{-}$

- $\chi_{0,0}(G)$ is an edge chromatic number
- $\chi_{0,1}(G) = \chi_{0,\infty}(G) = \Delta$ (Melnikov, P., Vizing, 2000)
- Another solved case is $l=\infty$:
- $\chi_{k,\infty}(G) = \max{\{\Delta, k + \Delta^+, k + \Delta^-\}}$ (P.,1999)

Vizing's proof

• Let $t = \max{\Delta, k + \Delta^+, k + \Delta^-}$

I. Construct a bipartite interpretation H of the graph G:

v∈V(G) corresponds to v⁺,v⁻∈V(H)
 vu∈E(G) corresponds to v⁺u⁻∈E(H)

Vizing's proof

• 2. Color the edges of *H* by $\Delta(H)$ colors. Clearly, $\Delta(H) = \max{\Delta^+(G), \Delta^-(G)}$

Output State S

Vizing's proof

• 4. Shift colors at every vertex

• Initial: turn $a_1 < a_2 < ... < a_p$ into 1, 2, ..., p• Final: turn $b_1 > b_2 > ... > b_q$ into t, t-1, ..., t -q+1

 We get a required incidentor coloring of G by t colors

k=1 $\Delta=3$ $\Delta^{+}=\Delta^{-}=2$ t=3

Bipartite interpretation

Edge coloring

Shifting the colors

Equivalent problem in scheduling theory

 Job Shop with n machines and m jobs, each of which has two unit operations (at different machines), and there must be a delay at least k and at most l between the end of the first operation and the beginning of the second one. It is NP-complete to find out whether there is a (1,1)-coloring of a multigraph by ∆ colors even for ∆=7 (Bansal, Mahdian, Sviridenko, 2006).

Reduction from 3-edge-coloring of a 3regular graph

Reduction from 3-edge-coloring

Substitute each edge by the following gadget:

U

U

v

Reduction from 3-edge-coloring

 It can be verified that in any (1,1)-coloring by 7 colors the incidentors of the initial incidentors of the red edges must be colored by the same even color

• $\chi_{k,k}(G) = \chi_{k,\infty}(G)$ for $k \ge \Delta(G) - 1$ • $\chi_{k,\Delta(G)-1}(G) = \chi_{k,\infty}(G)$ (Vizing, 2003)

- Let $\chi_{k,l}(\Delta) = \max{\{\chi_{k,l}(G) \mid \deg(G) = \Delta\}}$ • $\chi_{k,\infty}(\Delta) = k + \Delta$
- $\stackrel{\bullet}{} \chi_{k,k}(\Delta) \geq \chi_{k,l}(\Delta) \geq k + \Delta$
- $\overset{\bullet}{\chi}_{0,1}(\Delta) = \Delta$

• $\chi_{k,l}(2) = k+2$ except k = l = 0• (Melnikov, P., Vizing, 2000) • $\chi_{k,l}(3) = k+3$ except k = l = 0 and k = l = 1(P., 2003) • $\chi_{k,l}(4) = k + 4$ except k = l = 0• For $l \ge \lceil \Delta/2 \rceil$, $\chi_{k,l}(\Delta) = k + \Delta$ (P., 2004)

 For even ∆, it is unknown whether there is a graph G of degree ∆ such that _{X1,1}(G) > ∆ +1. If such G exists, then it has degree at least 6.

• Theorem. $\chi_{1,1}(4)=5$ (P., 2004)

Proof

Consider an Eulerian route in a given 4-regular multigraph
 Say that an edge is red, if its orientation is

the same as in the route and blue otherwise

 Construct a bipartite interpretation according to this route (it consists of the even cycles)

• Find an edge coloring $f:E \rightarrow \{1,2\}$ such that:

 1) any two edges adjacent at the right side have distinct colors;

 2) any two blue or red edges adjacent at the left side have distinct colors;

• 3) If a red edge *e* meets a blue one *e*' at the left side, then *f*(*e*)≠*f*(*e*')+1

Construct an incidentor coloring g in the following way:

1) For the right incidentor let g=2f
2) For the left red incidentor let g=2f-1
3) For the left blue incidentor let g=2f+1

 We obtain an incidentor (1,1)-coloring of the initial multigraph by 5 colors

Incidentor coloring of weighted multigraph

Each arc e has weight w(e)
Coloring restrictions:
1) adjacent incidentors have distinct colors;
2) For every arc e, w(e) ≤ b - a

Results on weighted coloring

- Problem is NP-hard in a strong sense for χ = Δ (P., Vizing; 2005)
- For χ > Δ the problem is NP-hard in a strong sense even for multigraphs on two vertices (Lenstra, Hoogevan, Yu; 2004)

 It can be solved approximately with a relative error 3/2 (Vizing, 2006)

List incidentor coloring

 A weighted incidentor coloring where each arc e has a list L(e) of allowed colors for its incidentors

• <u>Conjecture</u>. If $|L(e)| \ge w(e) + \Delta$ for every arc *e* then an incidentor coloring exists

• True for $|L(e)| \ge w(e) + \Delta + 1$. Proved for even Δ (Vizing, 2001) and for $\Delta = 3$ (P., 2007)

Total incidentor coloring

 Color incidentors and vertices in such a way that vertex coloring is correct and a color of each vertex is distinct from the color of all incidentors adjoining this vertex

• $\chi^{T}_{k,\infty}(G) \le \chi_{k+1,\infty}(G) + 1 \le \chi_{k,\infty}(G) + 2;$ • $\chi^{T}_{0,\infty}(G) = \Delta + 1$ (Vizing, 2000)

• Conjecture. $\chi^{T}_{k,\infty}(G) \leq \chi_{k,\infty}(G) + 1$

Interval incidentor coloring

 The colors of adjacent incidentors must form an interval

$\chi^{I}_{0,\infty}(G) \le \max\{\Delta, \Delta^{+} + \Delta^{-} - 1\}$ $\chi^{I}_{1,\infty}(G) \le \Delta^{+} + \Delta^{-}$

 For k ≥ 2 there could be no interval incidentor (k,∞)-coloring (e.g. directed cycle) (Vizing, 2001)

 Instead of *b*-a use |*b*-a| for colors of mated incidentors

 Undirected incidentor chromatic number is equal to the best directed ones taken among all orientations

• $\chi_{k,\infty}(G) = \max\{\Delta, \lceil \Delta/2 \rceil + k\}$ • $\chi_{k,\infty}^T(G) \le \chi_{k,\infty}(G) + 1$ (Vizing, Toft, 2001)

• If $k \ge \Delta/2$ then $\chi_{k,k}(G) = \lceil \Delta/2 \rceil + k$ • If $\Delta = 2kr$ then $\chi_{k,k}(G) = \Delta$ • If $\Delta = 2kr + s$ then $\chi_{k,k}(G) \le \Delta + k - \lfloor s/2 \rfloor$ • (Vizing, 2005)

• For every regular multigraph *G* with $\Delta \ge 2k$ $\chi_{k,l}(G) \in \{\Delta, \chi_{k,k}(G)\}$ depending only on *l*; in particular, $\chi_{k,l}(G) = \chi_{k,l}(H)$ for every two regular multigraphs *G* and *H* of degree Δ (Vizing,2005)

 Interval incidentor coloring of undirected multigraphs always exists

• $\chi_{0,\infty}^{I}(G) = \chi_{1,\infty}^{I}(G) = \Delta$ • For $k \ge 2$, $\chi_{k,\infty}^{I}(G) \ge \max\{\Delta, \min\{2k, \Delta + k\}\}$ and • $\chi_{k,\infty}^{I}(G) \le 2\Delta + k(k-1)/2$ • (Vizing,2003)
Undirected case

The incidentor coloring of weighted undirected multigraph is NP-hard in a strong sense even for χ=Δ
It can be solved approximately with a relative error 5/4
(Vizing, P., 2008)

Open problems

• 1. Is it true that for every k there is l such that $\chi_{k,l}(\Delta) = \chi_{k,\infty}(\Delta) = k + \Delta$?

• Proved for k=0 (l=1). Incorrect for $\chi_{k,l}(G)$

• 2. What are the values of $\chi_{1,2}(5)$ and $\chi_{2,2}(5)$?

Open problems

 Given a Δ-regular bipartite graph with red and blue edges is there an edge coloring f:E→{1,2,...,Δ} such that:

- 1) any two edges adjacent at the right side have distinct colors;
- 2) any two blue or red edges adjacent at the left side have distinct colors;
- 3) If a red edge *e* meets a blue one *e*' at the left side, then *f*(*e*)≠*f*(*e*')+1?

Open problems

• 4. Is it true that if $|L(e)| \ge w(e) + \Delta$ for every arc *e* then a list incidentor coloring exists?

• 5. Is it true that $\chi^{T}_{k,\infty}(G) \leq \chi_{k,\infty}(G) + 1?$

Thanks for your attention!!!