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Laplacian in Graph and Riemannian Settings
In Riemannian Geometry the Laplacian on functions is defined as

∆u = − 1
√
g

∑ ∂

∂x i

(
√
gg ij ∂u

∂x j

)
= −g ij ∂2u

∂x i∂x j
+ . . .

where gij are components of the metric tensor, g = det (gij), and(
g ij
)

= (gij)
−1. Thus the Laplace operator contains in it the

complete information about the geometry.

For a graph K = (V ,E ) (without loops and double connections)
and a real-valued function u on the set V of vertices, the
combinatorial Laplacian is given by

Lu(x) =
∑
y∼x

(u(x)− u(y))

= −m(x)

(
1

m(x)

(∑
y∼x

u(y)

)
− u(x)

)
.

Note that according to the first expression z ∼ x if and only if
Lδz(x) = −1.

Thus the combinatorial Laplacian contains the full
information about the graph.
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A continuous analog of the second expression for Lu.
We do it in R2 to simplify the notation. By Taylor’s Theorem

u(x , y) = u(x0, y0)+(xux+yuy )+(1/2)(x2uxx+2xyuxy+y2uyy )+O(r3)

where the subscripts denote partial derivatives and partials are
evaluated at (x0, y0).

Average over a circle Cr of small radius
r > 0 to yield

1

2πr

∫
Cr

u ds = u(x0, y0)− r2

4
∆u(x0, y0) + O(r3).

This translates to

∆u(x0, y0) = − lim
r→0

4

r2

(
1

2πr

∫
Cr

u ds − u(x0, y0)

)
.

This is analogous to our second expression for Lu

Lu(x) = −m(x)

(
1

m(x)

(∑
y∼x

u(y)

)
− u(x)

)
.
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Józef Dodziuk Difference Equations on Graphs



The Maximum Principle

Proposition. Suppose Lu ≥ 0 and for every y ∼ x u(y) ≥ u(x).
Then u(y) = u(x) for every neighbor y of x .

Proof.

0 ≥ −Lu(x) =
∑
y∼x

(u(y)− u(x)) ≥ 0

The proposition ought to be called ”the minimum principle”.
Applying it to −u and reversing all inequalities one obtains ”the
maximum principle.” In particular, a harmonic function (Lu = 0)
cannot attain an ”interior” extremum.
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Harnack inequality

Proposition. Suppose x ∼ y are two neighboring vertices of K
and u ≥ 0 is a function on V with Lu(x) ≥ 0 and Lu(y) ≥ 0. Then

1

m(y)
u(x) ≤ u(y) ≤ m(x)u(x).

If u(x) > 0 we get more symmetric inequalities

1

m(y)
≤ u(y)

u(x)
≤ m(x).

Proof.

0 ≤ Lu(x) = m(x)u(x)−
∑
x∼z

u(z) ≤ m(x)u(x)− u(y).
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Some definitions

C 0(K ) = {u : V −→ R}

C 0
c (K ) = {u : V −→ R | u has finite support}

C 1(K ) = {φ : Ẽ −→ R | φ([x , y ]) = −φ([y , x ])} where Ẽ is the set
of oriented edges of K .

`2,0 = {u : V −→ R |
∑

x∈V u(x)2 <∞}

`2,1 = {φ : Ẽ −→ R |
∑

[x ,y ]∈Ẽ φ([x , y ])2 <∞}

The last two spaces become Hilbert spaces if equipped with the
natural inner products

(u, v) =
∑
x∈V

u(x)v(x) and (φ, ψ) =
1

2

∑
[x ,y ]∈Ẽ

φ([x , y ])ψ([x , y ])

respectively.
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C 1(K ) = {φ : Ẽ −→ R | φ([x , y ]) = −φ([y , x ])} where Ẽ is the set
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Józef Dodziuk Difference Equations on Graphs



Some definitions

C 0(K ) = {u : V −→ R}

C 0
c (K ) = {u : V −→ R | u has finite support}
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L2, self-adjointness, and the spectrum

There are natural maps from functions to cochains and back.

du([x , y ]) = u(y)− u(x) and d∗φ(x) =
∑
y∼x

φ([y , x ])

which are adjoints with respect to the inner products defined
above. d is the difference analog of the gradient while −d∗ is the
analog of the divergence.

A simple check shows that

Lu = d∗d

in analogy with
∆u = − div grad u.

Clearly
(Lu, v) = (d∗du, v) = (du, dv)

if at least one of u, v has finite support.
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Józef Dodziuk Difference Equations on Graphs



L2, self-adjointness, and the spectrum

There are natural maps from functions to cochains and back.

du([x , y ]) = u(y)− u(x) and d∗φ(x) =
∑
y∼x

φ([y , x ])

which are adjoints with respect to the inner products defined
above. d is the difference analog of the gradient while −d∗ is the
analog of the divergence. A simple check shows that

Lu = d∗d

in analogy with
∆u = − div grad u.

Clearly
(Lu, v) = (d∗du, v) = (du, dv)

if at least one of u, v has finite support.
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L2, self-adjointness, and the spectrum - continued
Our graphs will be always connected and for the most part infinite.
If the valence function m(x) is bounded, the Laplacian is a
bounded operator on on `2(K ). It is also symmetric and hence
self-adjoint.

In general, when the valence is not bounded we have

Theorem. L with the domain C 0
c (K ) is a symmetric, positive,

essentially self-adjoint operator on `2(K ).

This is analogous to the fact that the Laplacian ∆ on a complete
Riemannian manifold M with the domain C∞0 (M) is essentially
self-adjoint.
In view of the theorem we can talk unambiguously about the
spectrum of L and derive invariants of the graph from it. In
particular,

λ0(K ) = inf{λ ∈ Spec(L)} = inf

{
(du, du)

(u, u)
| u ∈ C 0

c (K ) \ {0}
}

is a very important one.
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Cheeger’s constant and bounds on λ0(K )

Define, for a finite subgraph N of K ,

h(N) =
#{x ∈ V | x ∈ N, ∃y ∈ V , y 6∈ N, y ∼ x}

#{y ∈ V | y ∈ N}
=

L(∂N)

A(V )

and
h = h(K ) = inf

N
h(N).

Theorem. Suppose K satisfies m(x) ≤ m for all x ∈ V . Then

h2

2m
≤ λ0(K ) ≤ h.
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Comments on Cheeger Inequality

I The proof of the lower bound was motivated by and followed
the same pattern as the proof of corresponding result in
Riemannian Geometry.

I An analog for finite graphs is more important and gave rise to
an explosion of research on expanding graphs.

I The appearance of m in the denominator of the lower bound
is counterintuitive. Understanding the formulation that would
not have this defect came in a recent work of Bauer, Keller
and Wojciechowski using the new notion of intrinsic metric on
a graph to modify the way that the size of the boundary is
measured.
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Cheeger constant and smallest positive eigenvalue for finite
graphs

For finite graphs λ0 = 0 (constant eigenfunction).

One looks
instead at

λ1 = inf
u 6=0,

∑
x∈V u(x)=0

{
(du, du)

(u, u)

}
.

The appropriate isoperimetric (Cheeger) constant is

h = h(K ) = inf
N⊂V ,|N|≤(1/2)|V |

L(∂N)

A(N)

and the estimates above hold for λ1 and h i.e.

h2

2m
≤ λ1(K ) ≤ h.

It is worth pointing out that the two results (about λ0 for infinite
graphs and λ1 for finite ones, at least the lower bounds, are proved
in practically the same way.
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To see the connection note that the first eigenfunction φ1 of L is
perpendicular to constants, i.e.

∑
x∈V φ(x) = 0. Replacing φ by

its negative if necessary, we can assume that
#{x ∈ V | φ(x) > 0} ≤ (1/2)#V .

Define φ+ = max(φ, 0). We
then have

λ1 =
(Lφ, φ+)

(φ+, φ+)
≥ (Lφ+, φ+)

(φ+, φ+)
=

(dφ+, dφ+)

(φ+, φ+)

since for points x where φ(x) > 0 Lφ(x) ≥ Lφ+(x).Thus to give a
lower bound for λ1 we estimate the Rayleigh-Ritz quotient of a
function with finite support which is precisely what we need to do
to estimate λ0 in the case of an infinite graph.
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Józef Dodziuk Difference Equations on Graphs



To see the connection note that the first eigenfunction φ1 of L is
perpendicular to constants, i.e.

∑
x∈V φ(x) = 0. Replacing φ by

its negative if necessary, we can assume that
#{x ∈ V | φ(x) > 0} ≤ (1/2)#V . Define φ+ = max(φ, 0). We
then have

λ1 =
(Lφ, φ+)

(φ+, φ+)
≥ (Lφ+, φ+)

(φ+, φ+)
=

(dφ+, dφ+)

(φ+, φ+)

since for points x where φ(x) > 0 Lφ(x) ≥ Lφ+(x).Thus to give a
lower bound for λ1 we estimate the Rayleigh-Ritz quotient of a
function with finite support which is precisely what we need to do
to estimate λ0 in the case of an infinite graph.
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Surjectivity of the Laplacian
T. Ceccherini-Silberstein, M. Coornaert, JD

Theorem. Suppose K is an infinite connected graph. Then
L : C 0(K ) −→ C 0(K ) is surjective.

Remarks.

I For finite graphs, the image of L is perpendicular to constants.

I The proof uses only the maximum principle. Therefore the
theorem holds for a large class of operators.

Outline of proof. Consider the equation Lu = f for a fixed,
arbitrary f .

Step 1. Take an exhaustion of the graph by finite subgraphs and solve
the difference equation on each subgraph.

Step 2. Pass to the limit to get the solution on the whole graph.
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Step 1

Fix x0 ∈ V and consider Bn = {x ∈ V | d(x , x0) ≤ n}. Let Kn be
the full subgraph with Bn as the set of vertices. Let Fn be the set
of all real-valued functions on Bn. Define Ln : Fn −→ Fn as follows.

Lnu = (Lũ) |Bn

where ũ denotes the extension by zero of u to V .

Lemma. Ln is surjective.

Proof.
We show that Ln is injective. Suppose u ∈ Fn is in the kernel of
Ln. Then ũ is harmonic on Bn and vanishes on its boundary. By
the maximum principle ũ and hence u are identically zero.

Fix f ∈ C 0(K ). The lemma implies that the set
Sn = {u ∈ Fn | Lnu = f |Bn} is nonempty for every n.
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Step 2
For m ≥ n, let rm,n : Fm −→ Fn be the restriction rm,nu = u|Bn .
Consider the sets

Xm,n = rm,n(Sm) ⊂ Fn.

These sets are affine subspaces of Fn, are nonempty by the
Lemma, and form a decreasing sequence, i.e. Xm+1,n ⊂ Xm,n. It
follows that they stabilize in the sense that there exists m0(n) such
that Xm0(n),n =

⋂
m≥n Xm,n =: Un.

Lemma. For every n ≥ 1, rn+1,n : Un+1 −→ Un is surjective.

Proof.
Take u ∈ Un and choose m ≥ max{m0(n),m0(n + 1)}. There
exists v ∈ Sm such that rm,nv = u. Now u′ = rm,n+1v ∈ Un+1 and
rn+1,nu

′ = u.

Now take u1 ∈ U1 and choose inductively un+1 ∈ Un+1 so that
un+1|Bn = un. Then define u on V by u(x) = un(x) if x ∈ Bn.
Clearly, u is well defined and satisfies Lu = f .
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