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Singularities of plurisubharmonic functions

Goal: study local singularities of a psh (plurisubharmonic)
function ϕ on a neighborhood of a point in Cn.

ϕ : X → [−∞,+∞[ upper semicont. / mean value inequality.
Poles : ϕ−1(−∞) (not always closed, sometimes fractal)
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Singularities of plurisubharmonic functions

Goal: study local singularities of a psh (plurisubharmonic)
function ϕ on a neighborhood of a point in Cn.

ϕ : X → [−∞,+∞[ upper semicont. / mean value inequality.
Poles : ϕ−1(−∞) (not always closed, sometimes fractal)
Algebraic setting:

ϕ(z) = 1
2 log(|g1|

2 + . . .+ |gN |
2)

associated to some ideal J = (g1, . . . , gN) ⊂ OX ,p of holo-
morphic (algebraic) functions on some complex variety X .
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Singularities of plurisubharmonic functions

Goal: study local singularities of a psh (plurisubharmonic)
function ϕ on a neighborhood of a point in Cn.

ϕ : X → [−∞,+∞[ upper semicont. / mean value inequality.
Poles : ϕ−1(−∞) (not always closed, sometimes fractal)
Algebraic setting:

ϕ(z) = 1
2 log(|g1|

2 + . . .+ |gN |
2)

associated to some ideal J = (g1, . . . , gN) ⊂ OX ,p of holo-
morphic (algebraic) functions on some complex variety X .

More generally: consider a sequence (Jk)k∈N of such
ideals, with

JkJℓ ⊂ Jk+ℓ

Try to understand “lim(Jk)
1/k ” (Lazarsfeld, Ein, Mustaţǎ...)
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Lelong numbers and log canonical thresholds

The easiest way of measuring singularities of psh
functions is by using Lelong numbers:

ν(ϕ, p) = lim inf
z→p

ϕ(z)

log |z − p|
.

Example :
ϕ(z) = 1

2 log(|g1|
2 + . . .+ |gN |

2) ⇒ ν(ϕ, p) = min ordp(gj) ∈ N.
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Lelong numbers and log canonical thresholds

The easiest way of measuring singularities of psh
functions is by using Lelong numbers:

ν(ϕ, p) = lim inf
z→p

ϕ(z)

log |z − p|
.

Example :
ϕ(z) = 1

2 log(|g1|
2 + . . .+ |gN |

2) ⇒ ν(ϕ, p) = min ordp(gj) ∈ N.

Another useful invariant is the log canonical threshold.

Definition
Let X be a complex manifold, p ∈ X , and ϕ be a
plurisubharmonic function defined on X .
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Lelong numbers and log canonical thresholds

The easiest way of measuring singularities of psh
functions is by using Lelong numbers:

ν(ϕ, p) = lim inf
z→p

ϕ(z)

log |z − p|
.

Example :
ϕ(z) = 1

2 log(|g1|
2 + . . .+ |gN |

2) ⇒ ν(ϕ, p) = min ordp(gj) ∈ N.

Another useful invariant is the log canonical threshold.

Definition
Let X be a complex manifold, p ∈ X , and ϕ be a
plurisubharmonic function defined on X . The log
canonical threshold or complex singularity exponent of ϕ
at p is defined by

cp(ϕ) = sup
{

c ≥ 0 : e−2cϕ is L1 on a neighborhood of p
}
.
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Log canonical threshold of coherent ideals

For simplicity we will take here p = 0 and denote

c(ϕ) = c0(ϕ).
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Log canonical threshold of coherent ideals

For simplicity we will take here p = 0 and denote

c(ϕ) = c0(ϕ).

The log canonical threshold is a subtle invariant !

Calculation in the case of analytic singularities : take

ϕ(z) =
1
2

log(|g1|
2 + . . .+ |gN |

2), J = (g1, . . . , gN).

Then by Hironaka, ∃ modification µ : X̃ → X such that

µ∗J = (g1 ◦ µ, . . . , gN ◦ µ) = O(−
∑

ajEj)

for some normal crossing divisor.
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Log canonical threshold of coherent ideals

For simplicity we will take here p = 0 and denote

c(ϕ) = c0(ϕ).

The log canonical threshold is a subtle invariant !

Calculation in the case of analytic singularities : take

ϕ(z) =
1
2

log(|g1|
2 + . . .+ |gN |

2), J = (g1, . . . , gN).

Then by Hironaka, ∃ modification µ : X̃ → X such that

µ∗J = (g1 ◦ µ, . . . , gN ◦ µ) = O(−
∑

ajEj)

for some normal crossing divisor. Let K
X̃/X

= O(
∑

bjEj)

be the divisor of Jac(µ).
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Log canonical threshold of coherent ideals

For simplicity we will take here p = 0 and denote

c(ϕ) = c0(ϕ).

The log canonical threshold is a subtle invariant !

Calculation in the case of analytic singularities : take

ϕ(z) =
1
2

log(|g1|
2 + . . .+ |gN |

2), J = (g1, . . . , gN).

Then by Hironaka, ∃ modification µ : X̃ → X such that

µ∗J = (g1 ◦ µ, . . . , gN ◦ µ) = O(−
∑

ajEj)

for some normal crossing divisor. Let K
X̃/X

= O(
∑

bjEj)

be the divisor of Jac(µ). We have

c(ϕ) = min
Ej , µ(Ej )∋0

1 + bj

aj

∈ Q∗
+.
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Log canonical threshold : proof of the formula

In fact, we have to find the supremum of c > 0 such that

I =

∫

V∋0

dλ(z)(
|g1|2 + . . .+ |gN |2

)c < +∞.

Let us perform the change of variable z = µ(w). Then

dλ(z) = |Jac(µ)(w)|2 ∼
∣∣∣
∏

w
bj

j

∣∣∣
2

dλ(w)

with respect to coordinates on the blow-up Ṽ of V , and

I ∼

∫

Ṽ

∣∣∏w
bj

j

∣∣2 dλ(w)
∣∣∏w

aj

j

∣∣2c

so convergence occurs if caj − bj < 1 for all j .
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Notations and basic facts

A domain Ω ⊂ Cn is called hyperconvex if ∃ψ ∈ PSH(Ω),
ψ ≤ 0, such that {z : ψ(z) < c} ⋐ Ω for all c < 0.
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Notations and basic facts

A domain Ω ⊂ Cn is called hyperconvex if ∃ψ ∈ PSH(Ω),
ψ ≤ 0, such that {z : ψ(z) < c} ⋐ Ω for all c < 0.

E0(Ω)=

{
ϕ∈PSH ∩ L∞(Ω) : lim

z→∂Ω
ϕ(z)=0,

∫

Ω

(ddcϕ)n<+∞

}
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Notations and basic facts

A domain Ω ⊂ Cn is called hyperconvex if ∃ψ ∈ PSH(Ω),
ψ ≤ 0, such that {z : ψ(z) < c} ⋐ Ω for all c < 0.

E0(Ω)=

{
ϕ∈PSH ∩ L∞(Ω) : lim

z→∂Ω
ϕ(z)=0,

∫

Ω

(ddcϕ)n<+∞

}

F(Ω) =
{
ϕ ∈ PSH(Ω) : ∃ E0(Ω) ∋ ϕp ց ϕ, and

sup
p≥1

∫

Ω

(ddcϕp)
n < +∞

}
,

Ẽ(X ) = {ϕ ∈ PSH(X ) locally in F(Ω) mod C∞(Ω)}
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Notations and basic facts

A domain Ω ⊂ Cn is called hyperconvex if ∃ψ ∈ PSH(Ω),
ψ ≤ 0, such that {z : ψ(z) < c} ⋐ Ω for all c < 0.

E0(Ω)=

{
ϕ∈PSH ∩ L∞(Ω) : lim

z→∂Ω
ϕ(z)=0,

∫

Ω

(ddcϕ)n<+∞

}

F(Ω) =
{
ϕ ∈ PSH(Ω) : ∃ E0(Ω) ∋ ϕp ց ϕ, and

sup
p≥1

∫

Ω

(ddcϕp)
n < +∞

}
,

Ẽ(X ) = {ϕ ∈ PSH(X ) locally in F(Ω) mod C∞(Ω)}

Theorem (U. Cegrell)

Ẽ(X ) is the largest subclass of psh functions defined on a
complex manifold X for which the complex
Monge-Ampère operator is locally well-defined.
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Intermediate Lelong numbers

Set here dc = i
2π (∂ − ∂) so that ddc = i

π
∂∂.
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Intermediate Lelong numbers

Set here dc = i
2π (∂ − ∂) so that ddc = i

π
∂∂. If ϕ ∈ Ẽ(Ω)

and 0 ∈ Ω, the products (ddcϕ)j are well defined and one
can consider the Lelong numbers

ej(ϕ) = ν
(
(ddcϕ)j , 0

)
.

In other words

ej(ϕ) =

∫

{0}
(ddcϕ)j ∧ (ddc log ‖z‖)n−j .

One has e0(ϕ) = 1 and e1(ϕ) = ν(ϕ, 0) (usual Lelong
number).
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Intermediate Lelong numbers

Set here dc = i
2π (∂ − ∂) so that ddc = i

π
∂∂. If ϕ ∈ Ẽ(Ω)

and 0 ∈ Ω, the products (ddcϕ)j are well defined and one
can consider the Lelong numbers

ej(ϕ) = ν
(
(ddcϕ)j , 0

)
.

In other words

ej(ϕ) =

∫

{0}
(ddcϕ)j ∧ (ddc log ‖z‖)n−j .

One has e0(ϕ) = 1 and e1(ϕ) = ν(ϕ, 0) (usual Lelong
number). When

ϕ(z) =
1
2

log(|g1|
2 + . . .+ |gN |

2),

one has ej(ϕ) ∈ N.
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The main result

Main Theorem (Demailly & Pha. m)

Let ϕ ∈ Ẽ(Ω). If e1(ϕ) = 0, then c(ϕ) = ∞.
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The main result

Main Theorem (Demailly & Pha. m)

Let ϕ ∈ Ẽ(Ω). If e1(ϕ) = 0, then c(ϕ) = ∞.
Otherwise, we have

c(ϕ) ≥
n−1∑

j=0

ej(ϕ)

ej+1(ϕ)
.

The lower bound improves a classical result of H. Skoda
(1972), according to which

1
e1(ϕ)

≤ c(ϕ) ≤
n

e1(ϕ)
.
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The main result

Main Theorem (Demailly & Pha. m)

Let ϕ ∈ Ẽ(Ω). If e1(ϕ) = 0, then c(ϕ) = ∞.
Otherwise, we have

c(ϕ) ≥
n−1∑

j=0

ej(ϕ)

ej+1(ϕ)
.

The lower bound improves a classical result of H. Skoda
(1972), according to which

1
e1(ϕ)

≤ c(ϕ) ≤
n

e1(ϕ)
.

Remark: The above theorem is optimal, with equality for

ϕ(z) = log(|z1|
a1 + . . .+ |zn|

an), 0 < a1 ≤ a2 ≤ . . . ≤ an.

Then ej(ϕ) = a1 . . .aj , c(ϕ) =
1
a1

+ . . .+
1
an

.
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Geometric applications

The log canonical threshold has a lot of applications. It is
essentially a local version of Tian’s invariant, which
determines a sufficient condition for the existence of
Kähler-Einstein metrics.
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Geometric applications

The log canonical threshold has a lot of applications. It is
essentially a local version of Tian’s invariant, which
determines a sufficient condition for the existence of
Kähler-Einstein metrics.
Another important application is to birational rigidity.

Theorem (Pukhlikov 1998, Corti 2000, de Fernex 2011)

Let X be a smooth hypersurface of degree d in CPn+1.
Then if d = n + 1, Bir(X ) ≃ Aut(X )

It was first shown by Manin-Iskovskih in the early 70’s that
a 3-dim quartic in CP4 (n = 3, d = 4) is not rational.
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Geometric applications

The log canonical threshold has a lot of applications. It is
essentially a local version of Tian’s invariant, which
determines a sufficient condition for the existence of
Kähler-Einstein metrics.
Another important application is to birational rigidity.

Theorem (Pukhlikov 1998, Corti 2000, de Fernex 2011)

Let X be a smooth hypersurface of degree d in CPn+1.
Then if d = n + 1, Bir(X ) ≃ Aut(X )

It was first shown by Manin-Iskovskih in the early 70’s that
a 3-dim quartic in CP4 (n = 3, d = 4) is not rational.

Question
For 3 ≤ d ≤ n + 1, when is it true that Bir(X ) ≃ Aut(X )
(birational rigidity) ?
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Lemma 1

Lemma 1

Let ϕ ∈ Ẽ(Ω) and 0 ∈ Ω. Then we have that

ej(ϕ)
2 ≤ ej−1(ϕ)ej+1(ϕ),

for all j = 1, . . . , n − 1.

In other words j 7→ log ej(ϕ) is convex, thus we have
ej(ϕ) ≥ e1(ϕ)

j and the ratios ej+1(ϕ)/ej(ϕ) are increasing.

Corollary

If e1(ϕ) = ν(ϕ, 0) = 0, then ej(ϕ) = 0 for
j = 1, 2, . . . , n − 1.

A hard conjecture by V. Guedj and A. Rashkovskii (∼ 1998)
states that ϕ ∈ Ẽ(Ω), e1(ϕ) = 0 also implies en(ϕ) = 0.
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Proof of Lemma 1

Without loss generality we can assume that Ω is the unit
ball and ϕ ∈ E0(Ω).
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Proof of Lemma 1

Without loss generality we can assume that Ω is the unit
ball and ϕ ∈ E0(Ω). For h, ψ ∈ E0(Ω) an integration by
parts and the Cauchy-Schwarz inequality yield

[∫

Ω

−h(ddcϕ)j ∧ (ddcψ)n−j

]2

=

[∫

Ω

dϕ ∧ dcψ ∧ (ddcϕ)j−1 ∧ (ddcψ)n−j−1 ∧ ddch

]2

≤

∫

Ω

dψ ∧ dcψ ∧ (ddcϕ)j−1 ∧ (ddcψ)n−j−1 ∧ ddch

∫

Ω

dϕ ∧ dcϕ ∧ (ddcϕ)j−1 ∧ (ddcψ)n−j−1 ∧ ddch

=

∫

Ω

−h(ddcϕ)j−1∧(ddcψ)n−j+1
∫

Ω

−h(ddcϕ)j+1∧(ddcψ)n−j−1 ,
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Proof of Lemma 1, continued

Now, as p → +∞, take

h(z) = hp(z) = max
(
−1,

1
p

log ‖z‖
)
ր

{
0 if z ∈ Ω\{0}
−1 if z = 0.
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Proof of Lemma 1, continued

Now, as p → +∞, take

h(z) = hp(z) = max
(
−1,

1
p

log ‖z‖
)
ր

{
0 if z ∈ Ω\{0}
−1 if z = 0.

By the monotone convergence theorem we get in the limit
that

[∫

{0}
(ddcϕ)j ∧ (ddcψ)n−j

]2

≤

∫

{0}
(ddcϕ)j−1∧(ddcψ)n−j+1

∫

{0}
(ddcϕ)j+1 ∧ (ddcψ)n−j−1.

For ψ(z) = ln ‖z‖, this is the desired estimate.
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Lemma 2

Lemma 2

Let ϕ, ψ ∈ Ẽ(Ω) be such that ϕ ≤ ψ (i.e ϕ is ”more
singular” than ψ).
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Lemma 2

Lemma 2

Let ϕ, ψ ∈ Ẽ(Ω) be such that ϕ ≤ ψ (i.e ϕ is ”more
singular” than ψ). Then we have

n−1∑

j=0

ej(ϕ)

ej+1(ϕ)
≤

n−1∑

j=0

ej(ψ)

ej+1(ψ)
.

The argument if based on the monotonicity of Lelong
numbers with respect to the relation ϕ ≤ ψ, and on the
monotonicity of the right hand side in the relevant range of
values.
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Proof of Lemma 2

Set

D = {t=(t1, ..., tn)∈[0,+∞)n : t2
1≤t2, t

2
j ≤tj−1tj+1, ∀j = 2, ..., n−1}.
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Proof of Lemma 2

Set

D = {t=(t1, ..., tn)∈[0,+∞)n : t2
1≤t2, t

2
j ≤tj−1tj+1, ∀j = 2, ..., n−1}.

Then D is a convex set in Rn, as can be checked by a
straightforward application of the Cauchy-Schwarz
inequality.
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Proof of Lemma 2

Set

D = {t=(t1, ..., tn)∈[0,+∞)n : t2
1≤t2, t

2
j ≤tj−1tj+1, ∀j = 2, ..., n−1}.

Then D is a convex set in Rn, as can be checked by a
straightforward application of the Cauchy-Schwarz
inequality. Next, consider the function f : int D → [0,+∞)
defined by

f (t1, . . . , tn) =
1
t1

+
t1

t2
. . .+

tn−1

tn
.
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Proof of Lemma 2

Set

D = {t=(t1, ..., tn)∈[0,+∞)n : t2
1≤t2, t

2
j ≤tj−1tj+1, ∀j = 2, ..., n−1}.

Then D is a convex set in Rn, as can be checked by a
straightforward application of the Cauchy-Schwarz
inequality. Next, consider the function f : int D → [0,+∞)
defined by

f (t1, . . . , tn) =
1
t1

+
t1

t2
. . .+

tn−1

tn
.

We have

∂f

∂tj
(t) = −

tj−1

t2
j

+
1

tj+1
≤ 0, ∀t ∈ D .
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Proof of Lemma 2, continued

For a, b ∈ int D such that aj ≥ bj , j = 1, . . . , n, the function

[0, 1] ∋ λ→ f (b + λ(a − b))

is decreasing.
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Proof of Lemma 2, continued

For a, b ∈ int D such that aj ≥ bj , j = 1, . . . , n, the function

[0, 1] ∋ λ→ f (b + λ(a − b))

is decreasing. Hence,

f (a) ≤ f (b) for all a, b ∈ int D, aj ≥ bj , j = 1, . . . , n .
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Proof of Lemma 2, continued

For a, b ∈ int D such that aj ≥ bj , j = 1, . . . , n, the function

[0, 1] ∋ λ→ f (b + λ(a − b))

is decreasing. Hence,

f (a) ≤ f (b) for all a, b ∈ int D, aj ≥ bj , j = 1, . . . , n .

On the other hand, the hypothesis ϕ ≤ ψ implies that
ej(ϕ) ≥ ej(ψ), j = 1, . . . , n, by the comparison principle.
Therefore we have that

f (e1(ϕ), . . . , en(ϕ)) ≤ f (e1(ψ), . . . , en(ψ)) .
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Proof of the Main Theorem

It will be convenient here to introduce Kiselman’s refined
Lelong number.

Definition
Let ϕ ∈ PSH(Ω). Then the function defined by

νϕ(x) = lim
t→−∞

max
{
ϕ(z) : |z1| = ex1t , . . . , |zn| = exn t

}

t

is called the refined Lelong number of ϕ at 0.
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Proof of the Main Theorem

It will be convenient here to introduce Kiselman’s refined
Lelong number.

Definition
Let ϕ ∈ PSH(Ω). Then the function defined by

νϕ(x) = lim
t→−∞

max
{
ϕ(z) : |z1| = ex1t , . . . , |zn| = exn t

}

t

is called the refined Lelong number of ϕ at 0.

The refined Lelong number of ϕ at 0 is increasing in each
variable xj , and concave on Rn

+.
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Proof of the Main Theorem

The proof is divided into the following steps:

Proof of the theorem in the toric case, i.e.
ϕ(z1, . . . , zn) = ϕ(|z1|, . . . , |zn|) depends only on |zj |
and therefore we can without loss of generality
assume that Ω = ∆n is the unit polydisk.
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Proof of the Main Theorem

The proof is divided into the following steps:

Proof of the theorem in the toric case, i.e.
ϕ(z1, . . . , zn) = ϕ(|z1|, . . . , |zn|) depends only on |zj |
and therefore we can without loss of generality
assume that Ω = ∆n is the unit polydisk.

Reduction to the case of plurisubharmonic functions
with analytic singularity, i.e. ϕ = log(|f1|2 + . . .+ |fN |

2),
where f1, . . . , fN are germs of holomorphic functions
at 0.
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Proof of the Main Theorem

The proof is divided into the following steps:

Proof of the theorem in the toric case, i.e.
ϕ(z1, . . . , zn) = ϕ(|z1|, . . . , |zn|) depends only on |zj |
and therefore we can without loss of generality
assume that Ω = ∆n is the unit polydisk.

Reduction to the case of plurisubharmonic functions
with analytic singularity, i.e. ϕ = log(|f1|2 + . . .+ |fN |

2),
where f1, . . . , fN are germs of holomorphic functions
at 0.

Reduction to the case of monomial ideals, i.e. for
ϕ = log(|f1|2 + . . . .+ |fN |

2), where f1, . . . , fN are germs
of monomial elements at 0.
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Proof of the theorem in the toric case

Set

Σ =




x = (x1, . . . , xn) ∈ Rn
+ :

n∑

j=1

xj = 1




 .
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Proof of the theorem in the toric case

Set

Σ =




x = (x1, . . . , xn) ∈ Rn
+ :

n∑

j=1

xj = 1




 .

We choose x0 = (x0
1 , . . . , x

0
n ) ∈ Σ such that

νϕ(x
0) = max{νϕ(x) : x ∈ S}.
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Proof of the theorem in the toric case

Set

Σ =




x = (x1, . . . , xn) ∈ Rn
+ :

n∑

j=1

xj = 1




 .

We choose x0 = (x0
1 , . . . , x

0
n ) ∈ Σ such that

νϕ(x
0) = max{νϕ(x) : x ∈ S}.

By Theorem 5.8 in [Kis94] we have the following formula

c(ϕ) =
1

νϕ(x0)
.
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Proof of the theorem in the toric case,
continued

Set ζ(x) = νϕ(x
0)min

(
x1

x0
1

, . . . ,
xn

x0
n

)
, ∀x ∈ Σ .
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Proof of the theorem in the toric case,
continued

Set ζ(x) = νϕ(x
0)min

(
x1

x0
1

, . . . ,
xn

x0
n

)
, ∀x ∈ Σ .

Then ζ is the smallest nonnegative concave increasing
function on Σ such that ζ(x0) = νϕ(x

0), hence ζ ≤ νϕ.
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Proof of the theorem in the toric case,
continued

Set ζ(x) = νϕ(x
0)min

(
x1

x0
1

, . . . ,
xn

x0
n

)
, ∀x ∈ Σ .

Then ζ is the smallest nonnegative concave increasing
function on Σ such that ζ(x0) = νϕ(x

0), hence ζ ≤ νϕ.
This implies that

ϕ(z1, . . . , zn) ≤ −νϕ(− ln |z1|, . . . ,− ln |zn|)

≤ −ζ(− ln |z1|, . . . ,− ln |zn|)

≤ νϕ(x
0)max

(
ln |z1|

x0
1

, . . . ,
ln |zn|

x0
n

)
:= ψ(z1, . . . , zn).
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Proof of the theorem in the toric case,
continued

Set ζ(x) = νϕ(x
0)min

(
x1

x0
1

, . . . ,
xn

x0
n

)
, ∀x ∈ Σ .

Then ζ is the smallest nonnegative concave increasing
function on Σ such that ζ(x0) = νϕ(x

0), hence ζ ≤ νϕ.
This implies that

ϕ(z1, . . . , zn) ≤ −νϕ(− ln |z1|, . . . ,− ln |zn|)

≤ −ζ(− ln |z1|, . . . ,− ln |zn|)

≤ νϕ(x
0)max

(
ln |z1|

x0
1

, . . . ,
ln |zn|

x0
n

)
:= ψ(z1, . . . , zn).

By Lemma 2 we get that

f (e1(ϕ), ..., en(ϕ)) ≤ f (e1(ψ), ..., en(ψ)) = c(ψ) =
1

νϕ(x0)
= c(ϕ) .
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Reduction to the case of plurisubharmonic
functions with analytic singularity

Let Hmϕ(Ω) be the Hilbert space of holomorphic functions
f on Ω such that

∫

Ω

|f |2e−2mϕdV < +∞ ,
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Reduction to the case of plurisubharmonic
functions with analytic singularity

Let Hmϕ(Ω) be the Hilbert space of holomorphic functions
f on Ω such that

∫

Ω

|f |2e−2mϕdV < +∞ ,

and let ψm = 1
2m

log
∑

|gm,k |
2 where {gm,k}k≥1 be an

orthonormal basis for Hmϕ(Ω).
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Reduction to the case of plurisubharmonic
functions with analytic singularity

Let Hmϕ(Ω) be the Hilbert space of holomorphic functions
f on Ω such that

∫

Ω

|f |2e−2mϕdV < +∞ ,

and let ψm = 1
2m

log
∑

|gm,k |
2 where {gm,k}k≥1 be an

orthonormal basis for Hmϕ(Ω). Using ∂̄-equation with
L2-estimates (D-Kollár), there are constants C1,C2 > 0
independent of m such that

ϕ(z)−
C1

m
≤ ψm(z) ≤ sup

|ζ−z|<r

ϕ(ζ) +
1
m

log
C2

rn

for every z ∈ Ω and r < d(z, ∂Ω).
Jean-Pierre Demailly / Pha. m Hoàng Hiê. p A sharp lower bound for the log canonical threshold



Reduction to the case of plurisubharmonic
functions with analytic singularity, continued

and

ν(ϕ)−
n

m
≤ ν(ψm) ≤ ν(ϕ),

1
c(ϕ)

−
1
m

≤
1

c(ψm)
≤

1
c(ϕ)

.
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Reduction to the case of plurisubharmonic
functions with analytic singularity, continued

and

ν(ϕ)−
n

m
≤ ν(ψm) ≤ ν(ϕ),

1
c(ϕ)

−
1
m

≤
1

c(ψm)
≤

1
c(ϕ)

.

By Lemma 2, we have that

f (e1(ϕ), . . . , en(ϕ)) ≤ f (e1(ψm), . . . , en(ψm)), ∀m ≥ 1.
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Reduction to the case of plurisubharmonic
functions with analytic singularity, continued

and

ν(ϕ)−
n

m
≤ ν(ψm) ≤ ν(ϕ),

1
c(ϕ)

−
1
m

≤
1

c(ψm)
≤

1
c(ϕ)

.

By Lemma 2, we have that

f (e1(ϕ), . . . , en(ϕ)) ≤ f (e1(ψm), . . . , en(ψm)), ∀m ≥ 1.

The above inequalities show that in order to prove the
lower bound of c(ϕ) in the Main Theorem, we only need
prove it for c(ψm) and then let m → ∞.
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Reduction to the case of monomial ideals

For j = 0, . . . , n set

J = (f1, . . . , fN), c(J ) = c(ϕ), and ej(J ) = ej(ϕ) .
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Reduction to the case of monomial ideals

For j = 0, . . . , n set

J = (f1, . . . , fN), c(J ) = c(ϕ), and ej(J ) = ej(ϕ) .

Now, by fixing a multiplicative order on the monomials

zα = zα1
1 . . . zαn

n

it is well known that one can construct a flat family (Js)s∈C
of ideals of OCn,0 depending on a complex parameter
s ∈ C, such that J0 is a monomial ideal, J1 = J and

dim(OCn,0/J
t
s ) = dim(OCn,0/J

t) for all s, t ∈ N .
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Reduction to the case of monomial ideals

For j = 0, . . . , n set

J = (f1, . . . , fN), c(J ) = c(ϕ), and ej(J ) = ej(ϕ) .

Now, by fixing a multiplicative order on the monomials

zα = zα1
1 . . . zαn

n

it is well known that one can construct a flat family (Js)s∈C
of ideals of OCn,0 depending on a complex parameter
s ∈ C, such that J0 is a monomial ideal, J1 = J and

dim(OCn,0/J
t
s ) = dim(OCn,0/J

t) for all s, t ∈ N .

In fact J0 is just the initial ideal associated to J with
respect to the monomial order.
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Reduction to the case of monomial ideals,
continued

Moreover, we can arrange by a generic rotation of
coordinates Cp ⊂ Cn that the family of ideals Js|Cp is also
flat,
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Reduction to the case of monomial ideals,
continued

Moreover, we can arrange by a generic rotation of
coordinates Cp ⊂ Cn that the family of ideals Js|Cp is also
flat, and that the dimensions

dim
(
OCp ,0/(Js|Cp)t

)
= dim

(
OCp,0/(J|Cp)t

)
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Reduction to the case of monomial ideals,
continued

Moreover, we can arrange by a generic rotation of
coordinates Cp ⊂ Cn that the family of ideals Js|Cp is also
flat, and that the dimensions

dim
(
OCp ,0/(Js|Cp)t

)
= dim

(
OCp,0/(J|Cp)t

)

compute the intermediate multiplicities

ep(Js) = lim
t→+∞

p!

tp
dim

(
OCp,0/(Js|Cp)t

)
= ep(J ),
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Reduction to the case of monomial ideals,
continued

Moreover, we can arrange by a generic rotation of
coordinates Cp ⊂ Cn that the family of ideals Js|Cp is also
flat, and that the dimensions

dim
(
OCp ,0/(Js|Cp)t

)
= dim

(
OCp,0/(J|Cp)t

)

compute the intermediate multiplicities

ep(Js) = lim
t→+∞

p!

tp
dim

(
OCp,0/(Js|Cp)t

)
= ep(J ),

in particular, ep(J0) = ep(J ) for all p.
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Reduction to the case of monomial ideals,
continued

Moreover, we can arrange by a generic rotation of
coordinates Cp ⊂ Cn that the family of ideals Js|Cp is also
flat, and that the dimensions

dim
(
OCp ,0/(Js|Cp)t

)
= dim

(
OCp,0/(J|Cp)t

)

compute the intermediate multiplicities

ep(Js) = lim
t→+∞

p!

tp
dim

(
OCp,0/(Js|Cp)t

)
= ep(J ),

in particular, ep(J0) = ep(J ) for all p. The semicontinuity
property of the log canonical threshold implies that
c(J0) ≤ c(Js) = c(J ) for all s, so the lower bound is valid
for c(J ) if it is valid for c(J0).

Jean-Pierre Demailly / Pha. m Hoàng Hiê. p A sharp lower bound for the log canonical threshold



About the continuity of Monge-Ampère
operators

Conjecture

Let ϕ ∈ Ẽ(Ω) and Ω ∋ 0. Then the analytic approximations
ψm satisfy ej(ψm) → ej(ϕ) as m → +∞, in other words, we
have “strong continuity” of Monge-Ampère operators and
higher Lelong numbers with respect to Bergman kernel
approximation.
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About the continuity of Monge-Ampère
operators

Conjecture

Let ϕ ∈ Ẽ(Ω) and Ω ∋ 0. Then the analytic approximations
ψm satisfy ej(ψm) → ej(ϕ) as m → +∞, in other words, we
have “strong continuity” of Monge-Ampère operators and
higher Lelong numbers with respect to Bergman kernel
approximation.

In the 2-dimensional case, e2(ϕ) can be computed as
follows (at least when ϕ ∈ Ẽ(ω) has analytic singularities).
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About the continuity of Monge-Ampère
operators

Conjecture

Let ϕ ∈ Ẽ(Ω) and Ω ∋ 0. Then the analytic approximations
ψm satisfy ej(ψm) → ej(ϕ) as m → +∞, in other words, we
have “strong continuity” of Monge-Ampère operators and
higher Lelong numbers with respect to Bergman kernel
approximation.

In the 2-dimensional case, e2(ϕ) can be computed as
follows (at least when ϕ ∈ Ẽ(ω) has analytic singularities).
Let µ : Ω̃ → Ω be the blow-up of Ω at 0. Take local
coordinates (w1,w2) on Ω̃ so that the exceptional divisor
E can be written w1 = 0.
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About the continuity of Monge-Ampère
operators (II)

With γ = ν(ϕ, 0), we get that

ϕ̃(w) = ϕ ◦ µ(w)− γ log |w1|

is psh with generic Lelong numbers equal to 0 along E ,
and therefore there are at most countably many points
xℓ ∈ E at which γℓ = ν(ϕ̃, xℓ) > 0. Set Θ = ddcϕ,
Θ̃ = ddcϕ̃ = µ∗Θ− γ[E ]. Since E2 = −1 in cohomology,
we have {Θ̃}2 = {µ∗Θ}2 − γ2 in H2(E ,R), hence

(∗)

∫

{0}
(ddcϕ)2 = γ2 +

∫

E

(ddcϕ̃)2.
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About the continuity of Monge-Ampère
operators (II)

With γ = ν(ϕ, 0), we get that

ϕ̃(w) = ϕ ◦ µ(w)− γ log |w1|

is psh with generic Lelong numbers equal to 0 along E ,
and therefore there are at most countably many points
xℓ ∈ E at which γℓ = ν(ϕ̃, xℓ) > 0. Set Θ = ddcϕ,
Θ̃ = ddcϕ̃ = µ∗Θ− γ[E ]. Since E2 = −1 in cohomology,
we have {Θ̃}2 = {µ∗Θ}2 − γ2 in H2(E ,R), hence

(∗)

∫

{0}
(ddcϕ)2 = γ2 +

∫

E

(ddcϕ̃)2.

If ϕ̃ only has ordinary logarithmic poles at the xℓ’s, then∫
E
(ddcϕ̃)2 =

∑
γ2
ℓ , but in general the situation is more

complicated. Let us blow-up any of the points xℓ and
repeat the process k times.
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About the continuity of Monge-Ampère
operators (III)

We set ℓ = ℓ1 in what follows, as this was the first step,
and at step k = 0 we omit any indices as 0 is the only
point we have to blow-up to start with. We then get
inductively (k + 1)-iterated blow-ups depending on
multi-indices ℓ = (ℓ1, . . . , ℓk) = (ℓ′, ℓk) with
ℓ′ = (ℓ1, . . . , ℓk−1),

µℓ : Ω̃ℓ → Ω̃ℓ′ , k ≥ 1, µ∅ = µ : Ω̃∅ = Ω̃ → Ω, γ∅ = γ

and exceptional divisors Eℓ ⊂ Ω̃ℓ lying over points
xℓ ∈ Eℓ′ ⊂ Ω̃ℓ′ , where

γℓ = ν(ϕ̃ℓ′ , xℓ) > 0,

ϕ̃ℓ(w) = ϕ̃ℓ′ ◦ µℓ(w)− γℓ log |w
(ℓ)
1 |,

(w (ℓ)
1 = 0 an equation of Eℓ in the relevant chart).

Jean-Pierre Demailly / Pha. m Hoàng Hiê. p A sharp lower bound for the log canonical threshold



About the continuity of Monge-Ampère
operators (IV)

Formula (∗) implies

(∗∗) e2(ϕ) ≥
+∞∑

k=0

∑

ℓ∈Nk

γ2
ℓ

with equality when ϕ has an analytic singularity at 0. We
conjecture that (∗∗) is always an equality whenever ϕ ∈ Ẽ(Ω).

Jean-Pierre Demailly / Pha. m Hoàng Hiê. p A sharp lower bound for the log canonical threshold



About the continuity of Monge-Ampère
operators (IV)

Formula (∗) implies

(∗∗) e2(ϕ) ≥
+∞∑

k=0

∑

ℓ∈Nk

γ2
ℓ

with equality when ϕ has an analytic singularity at 0. We
conjecture that (∗∗) is always an equality whenever ϕ ∈ Ẽ(Ω).

This would imply the Guedj-Rashkovskii conjecture.
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About the continuity of Monge-Ampère
operators (IV)

Formula (∗) implies

(∗∗) e2(ϕ) ≥
+∞∑

k=0

∑

ℓ∈Nk

γ2
ℓ

with equality when ϕ has an analytic singularity at 0. We
conjecture that (∗∗) is always an equality whenever ϕ ∈ Ẽ(Ω).

This would imply the Guedj-Rashkovskii conjecture.
Notice that the currents Θℓ = ddcϕ̃ℓ satisfy inductively
Θℓ = µ∗

ℓΘℓ′ − γℓ[Eℓ], hence the cohomology class of Θℓ

restricted to Eℓ is equal to γℓ times the fundamental
generator of Eℓ. As a consequence we have

∑
ℓk+1∈N

γℓ,ℓk+1 ≤ γℓ,

in particular γℓ = 0 for all ℓ ∈ Nk if γ = ν(ϕ, 0) = 0.
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