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Introduction

m Human Immunodeficiency Virus (HIV) affects people of all

demographics, 33.3 million infected with HIV as of 2009
(WHO/UNAIDS).

m Approximately 1.8 million died in 2009 (WHO).
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Introduction

m Target T-helper
cells of the immune system.

m HIV is a retrovirus.

m Causative
agent for Acquired Immune
Deficiency Syndrome (AIDS).

m No known cure.
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Introduction

HIV viral load setpoints:
m 12,000 copies/mL - Slow Progression (very slowly developing AIDS).
m 30,000 copies/mL - Moderate Progression (AIDS in 8-15 years).
m 60,000 copies/mL - Rapid Progression (AIDS in 1-4 years).
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Introduction

m Most common treatment is Highly Active Antiretroviral Therapy
(HAART), a combination of multiple drugs.

m The “cocktail drugs" are protease inhibitors (PI) and reverse
transcriptase inhibitors (RTI).

m The best way to treat patients, and when, is still an open question.

m The use of mathematical models becoming more prevalent in
treatment planning.

Project Goals:
m Develop patient specific mathematical model for HIV dynamics.

m Develop patient specific treatment regimen.

NC STATE UNIVERSITY



HIV Model

(1-fe, )k,
uninfected  infectious infected non-infectious immune effectors
virus virus (CTLs)

Model compartments include Ty (type 1 target cells, e.g CD4 Th-cells),
T, (type 2 target cells, e.g. macrophages), V; and Vi, (infectious and
non-infectious virus), and E (cytotoxic T-Lymphocytes). An asterisk

denotes infected cells. AT
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HIV Model

The associated differential equations are

Ti=M—dTy —(1-ea)kViTy
To=X—hT—(1-fe)kVT,
Tr=Q—e))kyV\ Ty =0T —m T E
TS =0 —fe)koViTo— 6T — myTSE
Vi=(1—e)Nrdo(T{ + T3) — (c+ (1 —e)pmki Ta + (1 — fer)poka T2) Vi
Vi = eaNto(T5 + T3) — ¢V
T+ T Tr+ T

E=Xe+ b -
T AT 4 K, ETI T + Ky

E — 6cE.

= 7 states, 20 parameters, and two control inputs £1(t) = e1u(t),
ea(t) = eau(t).
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HIV Model

Let x denote the vector of solutions to the ODE model. That is,
x(t) = [Ta(t), T2(1), T (1), T, Vi(t), Vi, E(t)].

The model can then be written as

d
ﬁzf(t,X:q), x € R", g € R7,

where g is a vector of model parameters. The observations of the model
are given in terms of the states

yi(t) = Ta(t) + T1'(t)
ya(t) = Vi(t) + Vii(t),

corresponding to CD4™ count and the viral load, respectively.
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Parameter Estimation

We wish to use the HIV model to describe patient specific clinical data
and make patient specific predictions, so it first must be calibrated to
patient data by estimating the model parameters. However, due to model
structure and possible lack of measurements, some parameters may not
be identifiable. In addition,

m Parameters may have a very weak effect on the measured outputs
(sensitivity).

m Effect of certain parameters on the measured outputs may be nearly
linearly dependent (statistically correlated).

Estimation of weak and/or nearly linearly dependent effects can lead to
degradation in the predictive capability of the model.
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Parameter Estimation

Clinical study from 1996 to 2004 of over 100 adults with acute HIV-1
infection, administered by Mass General Hospital.
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m Data are unique in that the study members were identified soon
after initial infection, capturing acute viral dynamics.

m The viral load is censored at either 400 copies/ml or 50 copies/ml
depending on the sensitivity of the assay.

m Statistical methods needed to estimate truth data, e.g. actual viral

load below the censor level. NC STATE UNIVERSITY



Parameter Estimation

After identifying which parameters can be best suited for estimation from
censored data, how to estimate these parameter?

= The classical approach for parameter estimation is to minimize the
residuals. This is done by defining a cost function as the difference in the
squares of the model and the data, and subsequently using an
optimization technique (Levenberg-Marquardt, Conjugate Gradient,
Nelder-Mead, etc.) to find the minimum.

J(q) = Z%‘[

where ydata — ymodel(q) s the residual.

yidata _ y,_model(q)] 2

= Kalman filter (on-line estimation)
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Sensitivity Analysis

Consider a mathematical model

dx
& () = (e (1))

with observation process
y(t.q) = h(t.x(t; q),q)
The sensitivity of outputs y; with respect to parameters g; is defined by

dy;
dq;

Using the chain rule for differentiation,

@ _ond< on
dg Oxdq Og

ddx Of dx Of

dtdg ~ oxdq " aq NC STATE UNIVERSITY



Sensitivity Identifiability

This notion is defined in terms of the output sensitivity functions with
respect to the parameters, that is, dy;/dq;(g*) (local concept)
Define the sensitivity matrix function

[s11(q,t1) - sim(q,t1)]
s11(a,t2) - sim(q,t2)
: ’ : dy;(t
S(@ )= [su(@t) - sa(@t)|. sat)= 20
s1(q,t1) - Ssam(a,t1) g
sk1(a5tn) o Skm(Qsta) ]

Now, let Ag = g — g denote a small perturbation from g*. This gives
rise to a small perturbation in the output Ay = y(t,q) — y(t,q*). By
the chain rule, we obtain the following (approximate) relationship

Ay ~ SAq
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Sensitivity Identifiability

The model is called sensitivity identifiable if
Ay ~ SAq

can be solved uniquely (in the local sense) for Ag. This is the case if and
only if rank(S) = m (m is the number of parameter) or det(S'S) # 0.

= Need to compute the numerical rank k of S = k identifiable
parameters.

|oi|

rank(S, &) = max {i

>s||S||m},

o]

for the ordered singular values o;. Here, ¢ = v/10-16 = 1078,
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Subset Selection

Now that we know we can estimate k; parameters for patient j, which k
parameters? We consider the distance between subspaces for each subset

p.

Consider all (}) subsets of parameters.

Compute the subspace spanned by the k most significant
eigenvectors of STS. Call this Wj.

Define WJ to be the subspace spanned by the elementary basis
generated by p;,i € [1,2,...,(})]

Compute the minimum distance between W; and W2’

min; dist(Wi, Wj).

The best identifiable subset of parameters is then ppi,, and is
different for each patient.

For patient 1, we have k =9 and p = [d1 ki ko my my Nt g 21].
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Inverse Problem

For each patient j, the goal is to fit the ODE model to data by minimizing

g = argmin J(q) = Z Z }zs ys’j}z.

Sil

Minimizing J corresponds to a maximum likelihood estimation of g
assuming the measurements y/ are normally distributed,

yI~ N(z(t':q°),02), s=1,2,

for some true parameter g° and variance o2. For viral load in the absence
of censoring, the log-likelihood function is

N (v — )
L(q,00) = 5 log 2w — Nlog oy — Z %.
i=1 2
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Censored Data

Censored data violate the assumption of full normality, so we assume it is
distributed according to a truncated normal distribution. Define the
standard normal pdf and cdf,

£
O(6) = —— exp(€2/2), (€)= [ o(s)ds,

1
V2r
then the log-likelihood function for all data, based on a truncated normal
distribution, is given by

L(q,02) = zN: (x’ [Iog ¢(y2;222> — log 02}

i=1

- ofome(5))

where xy = 1 for uncensored data and y = 0 for censored data. We wish
to maximize L for g,0,. This is accomplished through the Expectation

Maximization (EM) algorithm. SCSIRERIE T




EM Algorithm

EM iteratively updates g, oo, until the maximum is achieved. The data
are updated according to

(k) ¢(Ci(k)) Ci(k) _L- Zé( :
TGO)] R A

)
The parameters and variance estimates are then updated by performing
the weighted least squares minimization of

q**! = arg min l B Z z1(t;9)) o0 Z 5 (th: q))

Algorithm terminates on small relative changes of g, 01, 02.

~ i i i(k
y(k)=xy2+(1—x){22( (g —o
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Model Validation

Identifiability analysis is performed on all 14 patients, resulting in 14,
subsets of identifiable parameters. The non-identifiable subset p is fixed
to the result of a global optimization process.
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Model Validation
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Kalman Filter (On-Line Estimation)

Dual estimation problems consist of estimating both the states, xx, and
the parameters, 0y, given noisy data, y.

Joint Filtering

x = f(t,x;q)
=0

m Increase the number of states (large number of parameters)

m Errors propagate from the state into the parameter (which
subsequently propagate back into the state)

= Can lead to inaccurate results or divergence of the filter
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Kalman Filter (On-Line Estimatio

Dual Filtering

Idea: Running two filters concurrently
m State Filter estimates the state using the current parameter estimate.

m Parameter Filter estimates the parameters using the current state
estimate.

m Do not increase the number of states for estimation.

m The error of each filter is still passed, but it is better handled due to
each filter updated its covariance.
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Estimation Examples

Lorenz Equations

Edward N. Lorenz (a meteorologist and mathematician from MIT) in
1963 derived the following simplified three-dimensional system for
convection motion of fluid cells:

dx

7 =y =x)

d
%:X(p—Z)—y
d

izxy—ﬁz
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For our test case, we generated simulated data using the following initial
conditions and parameters (parameter values change at t = 10):

X0 0.9 o 10;7
Y| = 1 R pl=12821], w=0.1 At=0.01
X0 1.1 B 81
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Filtered Results Using Simulated Data

State filtering

truth
O data
dual ukf
— — — joint ukf i
3 dual ckf '8

~ ~  joint ckf
: joint ekt

2915 292 2925 203 2935 204 2045 295 2955
time

Figure: Plot of state estimates using joint and dual filters for x;.

truth j. ukf j. ckf j. ekf d. ukf d. ckf
SST 0 3.0251 3.0251 1.1403 0.7987 0.8095
SSP 0 0.1182 0.11784 0.855 0.031416 0.031383

o (1std) || 10,7 | 7.22(3.04) | 7.22(3.27) | 6.91 (0.91) | 6.93(1.02) | 6.93 (1.02)
p (Lstd) || 28; 21 | 21.23 (2.86) | 21.23 (3.14) | 20.63 (0.81) | 20.83 (0.47) | 20.83 (0.47)
B(lstd) || &1 | 0.87(0.94) | 087 (1.14) | 0.84 (0.37) | 1.00 (0.10) | 1.00 (0.10)

3
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Figure: Plot of parameter estimates

for the dual UKF and dual CKF. . .
Figure: Plot of parameter estimates

for the joint EKF, joint UKF and
joint CKF.
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Estimation Examples

A Cardiovascular Regulation Model
Reference: M. Ursino and C.A. Lodi, Journal of Applied Physiology,
81:1256-1269, 1997.

rmorssn wasins qf qo

Cic
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dpic _ kEpic dpa dCa
dt 1+ Cokepic | ° dt dt

Pc — Pic _ Pic — Pvs
R Ro

(pa - pic) +

kg Pava + picRa
R.= 5, Va=G(ps—pic)y, Pc=—F5—5—
a \/32 a a a Cc C va+ Ra
dc, 1
=[Gt o)
(Con + AC,/2) + (Can — AC,/2)e /%
1 —pic)?
O(t,) (pa pIC)

B ACRPV Pg - 2papic + Pic + ﬁ
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Filtered Results Using Clinical Data

For the cardiovascular model, sensitivity and subset selection reveal that only 5 parameters
are most identifiable and sensitive (locally) (out of 13 parameters).

BFV

NLS Filter
SSR 3.578e3 3.8024¢3
Ke (1 std) 117 0.13 (0.335)
7 (1 std) 10.05 | 12.28 (0.334)
G (1 std) 214 | 1.89 (0.334)
Can (1 std) 0.176 0.19 (0.334)
kR (1 std) 4.12e4 | 4.84e4 (0.334)

ime

Figure: Plot of a patient blood flow velocity (model versus
clinical data).

Clinical data: Dr. Vera Novak, Director, Syncope and Falls in the Elderly laboratory at Beth
Israel Deaconess Medical Center and Harvard Medical School.
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Conclusions
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Reference: B. Ibarz-Gabardos, A Kalman filter with censored data, |EEE,
2005.
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