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Navier Stokes Equations and Data

Write NSE as ODE in H = {u € [3(T?)|V-u =0, [. udx =0}:

v +vAv + B(v,v) =, v(0)=u

dt
v(t) = V(u;t) WO(u) = V(u;jh)
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Write NSE as ODE in H = {u € [3(T?)|V-u =0, [. udx =0}:

v +vAv + B(v,v) =, v(0)=u

dt
v(t) = V(u;t) WO(u) = V(u;jh)

Find u given noisy observations y;:

y; = vO(u) + 1,
nj ~ N(0,T).
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Navier Stokes Equations and Data

Write NSE as ODE in H = {u € [3(T?)|V-u =0, [. udx =0}:

v +vAv + B(v,v) =, v(0)=u

dt
v(t) = V(u;t) WO(u) = V(u;jh)

Find u given noisy observations y;:

y; = vO(u) + 1,
nj ~ N(0,T).
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INVERSE PROBLEM
Bayesian Formulation

@ Prior P(u) on u:

P(u) ~ N (g, Cp). J
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@ Prior P(u) on u:

P(u) ~ N(ing,Co).

@ Bayes formula:
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INVERSE PROBLEM
Bayesian Formulation

@ Prior P(u) on u:

P(U) ~ N(mo, éo)

@ Bayes formula:
P(ulY))
P(u)

P(¥]u).

@ Here

P(Vlu)  exp(-o(u; Yy))
oY) = 3Xi i - o)

& BN ava

@ Posterior is P(u|Yy).
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ALGORITHMS
Posterior Distribution

@ MCMC - Gold standard, state of the art (accurate) :

Propose u* = g + (1 — 28)z (U™ — fing) + /2N (0, Co) and
let

) — u*  with probability 1 A exp{®(u("1) — &(u*)}
— | uwrY else.




ALGORITHMS

Posterior Distribution

@ MCMC - Gold standard, state of the art (accurate) :

Propose u* = g + (1 — 28)z (U™ — fing) + /2N (0, Co) and
let

) — u*  with probability 1 A exp{®(u("1) — &(u*)}
— | uwrY else.

@ 4DVAR - MAP Estimator (approximate) :

U~ N(mp,Ch), ¢, = (D2o(my) +Cy ")~

Al N
mjy, = argminy (CD(U) -+ %HCO 2(u— mO)H2>'
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ALGORITHMS
Approximate Gaussian Filters |

@ Make the Gaussian approximation:

WO« B(u]Y)) = B(y|Y)) ~ N (i,6). J
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ALGORITHMS

Approximate Gaussian Filters |

@ Make the Gaussian approximation:

w0 s B(u] Y)) = B(v| V) ~ N(A.G).

@ Find update rule:

(mjaéj) = (ﬁ"/+1aéj+1)-

= ey
[\ J |



ALGORITHMS

Approximate Gaussian Filters |

@ Make the Gaussian approximation:

w0 s B(u] Y)) = B(v| V) ~ N(A.G).

@ Find update rule:

(mjaéj) = (ﬁ"/+1aéj+1)-

@ Throughout:

M1 = BV (i) + (1= By)y;.
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ALGORITHMS

Approximate Gaussian Filters |l

In all cases

C =

1 5 _
L4 B =Cacy!

41

e 3DVAR
Ci=Cy where CO_1 :CO_1 -

@ FDF For C chosen from Gaussian SPDE parameter fit:
¢ =C.
@ Kalman Filter For V(u) = Lu:
Ciy1 = LGL*.
@ (LR)ExKF (Low rank approximation of):
Cjs1 = DW(iy)C;DW ()"

@ EnKF Particle approximations for /iy; and C;. el
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RESULTS

MCMC & MAP

e I
100
10 0.6 10 0.6
) v 0.4 o o0 L0 04
-0 02 100 0.2
-100
0 0o 10 ° 0 0o 10 °
1 kl kl
h, th
whruth |u:<“" | |u:(”“ |
100
10 0.6 10, 0.6
S0 B 0.4 0 S0 L 0.4
-10 : 02 ~10 E 0.2
-100 o
-10 0 10 -10 0 10
K, Ky
U] Jug™]
100
10 0.6 10, 0.6
&0 i 0.4 o &0 ] 04
B 0.2 _ - [s=f
-10) 10
° ()]
-0 010 710010




RESULTS
Relative Error in Mean c/w Posterior

Mean

| method | 6mean |

4DVAR(f = 0) || 0.000731491
4DVAR(t = T) | 0.00130112

3DVAR 0.0634553
FDF 0.165732
LRExKF 0.00614573
EnKF 0.0596825
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RESULTS
Relative Error in Variance c/w Posterior

Variance

’ method H Cvariance ‘

ADVAR(t = 0) || 0.0932748
4DVAR({ = T) | 0.220154

3DVAR 6.34057
FDF 28.9155
LRExKF 0.195101
EnKF 0.516939
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STABILITY

Error Propagation

Let Cy = 6°A~", T = AP, r?2 = 2/6% and o = v — . Assume
SUP;j>o [Injllv = w. Let mg € By(0, R). Then there exists
re = re(R, ) and A € (0,1) such that, for all r < rg,

17 = vill < Ao — vol| + cw.
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STABILITY

Error Propagation

Theorem

Let Cy = 6°A~", T = AP, r?2 = 2/6% and o = v — . Assume
SUP;j>o [Injllv = w. Let mg € By(0, R). Then there exists
re = re(R, ) and A € (0,1) such that, for all r < rg,

17 = vill < Ao — vol| + cw.

Proof:

e = B+ (1- B)W(y),
iy = B+ (1— B)W(v) + (/- By

Error ; = v; — /i propagates according to

&j+1 ~ BDV(v)e; + (I - By

()]
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Unstable

STABILITY
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Stabilized
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[3DVAR],v=0.01, h=0.2, Re(u, ,)
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STABILITY

Relative Error in Mean c/w Posterior: Stabilized

’ method H €mean ‘ €variance ‘
3DVAR || 0.458527 | 1.8214
[SDVAR] 0.27185 | 6.62328
LRExXKF | 0.632448 | 0.4042
[LREXKF] || 0.201327 | 11.2449
EnKF 0.450555 | 0.583623
[EnKF] 0.279007 | 6.67466
FDF 0.189832 | 11.4573
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CONCLUSIONS

Conclusions

Approximate filters:
@ reproduce the posterior mean accurately;
@ fail to reproduce covariance accurately;
@ can exhibit instability on longer time-intervals.
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CONCLUSIONS

Conclusions

Approximate filters:

@ reproduce the posterior mean accurately;

@ fail to reproduce covariance accurately;

@ can exhibit instability on longer time-intervals.
This instability:

@ can cause loss of accuracy in even mean prediction;
Filter stabilization, via variance inflation can be used:

@ ameliorates instability but can reduce mean accuracy on
short time intervals;

@ makes it impossible to predict the covariance.
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