Geometric Structures on Manifolds I: Ehresmann structures

William M. Goldman

Department of Mathematics University of Maryland

Geometry and Arithmetic of Lattices London Mathematical Society — EPSRC Durham Symposium University of Durham 5 July 2011

Geometric Structures on Manifolds

· < /⊒ > < ∃ > <

글▶ 글

• *Ehresmann structure* on a manifold Σ: a geometric structure defined by an atlas of local coordinate charts into a fixed homogeneous space.

- *Ehresmann structure* on a manifold Σ: a geometric structure defined by an atlas of local coordinate charts into a fixed homogeneous space.
 - For example, every flat Riemannian manifold is *locally isometric* to Euclidean space.

- *Ehresmann structure* on a manifold Σ: a geometric structure defined by an atlas of local coordinate charts into a fixed homogeneous space.
 - For example, every flat Riemannian manifold is *locally isometric* to Euclidean space.
 - and can be *locally modeled* on Euclidean space.

- *Ehresmann structure* on a manifold Σ: a geometric structure defined by an atlas of local coordinate charts into a fixed homogeneous space.
 - For example, every flat Riemannian manifold is *locally isometric* to Euclidean space.
 - and can be *locally modeled* on Euclidean space.
- More generally every *locally homogeneous space* Γ\G/H (where G is a Lie group, H ⊂ G compact, and Γ discrete torsionfree) is a manifold locally modeled on the geometry (G, G/H).

- *Ehresmann structure* on a manifold Σ: a geometric structure defined by an atlas of local coordinate charts into a fixed homogeneous space.
 - For example, every flat Riemannian manifold is *locally isometric* to Euclidean space.
 - and can be *locally modeled* on Euclidean space.
- More generally every *locally homogeneous space* Γ\G/H (where G is a Lie group, H ⊂ G compact, and Γ discrete torsionfree) is a manifold locally modeled on the geometry (G, G/H).
- Classify these structures, given a fixed topology Σ and a geometry (homogeneous space G/H)?

- *Ehresmann structure* on a manifold Σ: a geometric structure defined by an atlas of local coordinate charts into a fixed homogeneous space.
 - For example, every flat Riemannian manifold is *locally isometric* to Euclidean space.
 - and can be *locally modeled* on Euclidean space.
- More generally every *locally homogeneous space* Γ\G/H (where G is a Lie group, H ⊂ G compact, and Γ discrete torsionfree) is a manifold locally modeled on the geometry (G, G/H).
- Classify these structures, given a fixed topology Σ and a geometry (homogeneous space G/H)?
 - Ideally would like a space whose points classify these geometries...

- *Ehresmann structure* on a manifold Σ: a geometric structure defined by an atlas of local coordinate charts into a fixed homogeneous space.
 - For example, every flat Riemannian manifold is *locally isometric* to Euclidean space.
 - and can be *locally modeled* on Euclidean space.
- More generally every *locally homogeneous space* Γ\G/H (where G is a Lie group, H ⊂ G compact, and Γ discrete torsionfree) is a manifold locally modeled on the geometry (G, G/H).
- Classify these structures, given a fixed topology Σ and a geometry (homogeneous space G/H)?
 - Ideally would like a space whose points classify these geometries...
 - Whatever can go wrong in defining such a space will go wrong, for certain choices of Σ and (G, X).

(本部) (本語) (本語)

- *Ehresmann structure* on a manifold Σ: a geometric structure defined by an atlas of local coordinate charts into a fixed homogeneous space.
 - For example, every flat Riemannian manifold is *locally isometric* to Euclidean space.
 - and can be *locally modeled* on Euclidean space.
- More generally every *locally homogeneous space* Γ\G/H (where G is a Lie group, H ⊂ G compact, and Γ discrete torsionfree) is a manifold locally modeled on the geometry (G, G/H).
- Classify these structures, given a fixed topology Σ and a geometry (homogeneous space G/H)?
 - Ideally would like a space whose points classify these geometries...
 - Whatever can go wrong in defining such a space will go wrong, for certain choices of Σ and (G, X).
 - Quotients of (possibly singular) \mathbb{R} -algebraic sets by algebraic group actions which are neither locally free nor proper...

- *Ehresmann structure* on a manifold Σ: a geometric structure defined by an atlas of local coordinate charts into a fixed homogeneous space.
 - For example, every flat Riemannian manifold is *locally isometric* to Euclidean space.
 - and can be *locally modeled* on Euclidean space.
- More generally every locally homogeneous space Γ\G/H (where G is a Lie group, H ⊂ G compact, and Γ discrete torsionfree) is a manifold locally modeled on the geometry (G, G/H).
- Classify these structures, given a fixed topology Σ and a geometry (homogeneous space G/H)?
 - Ideally would like a space whose points classify these geometries...
 - Whatever can go wrong in defining such a space will go wrong, for certain choices of Σ and (G, X).
 - Quotients of (possibly singular) $\mathbb R\text{-algebraic sets}$ by algebraic group actions which are neither locally free nor proper...
 - and then by discrete groups which don't act properly.

Geometry through symmetry

In his 1872 *Erlangen Program,* Felix Klein proposed that a *geometry* is the study of properties of an abstract space X which are invariant under a transitive group G of transformations of X.

Library of Congress

()

Geometric Structures on Manifolds

2

イロト イヨト イヨト イヨト

• Euclidean geometry: $X = \mathbb{R}^n$ and G its group of isometries.

- Euclidean geometry: $X = \mathbb{R}^n$ and G its group of isometries.
 - Preserves distance, angle, area, straight lines, parallelism..

- Euclidean geometry: $X = \mathbb{R}^n$ and G its group of isometries.
 - Preserves distance, angle, area, straight lines, parallelism..
- Affine geometry: $X = \mathbb{R}^n$ and G its group of affine transformations $x \mapsto Ax + b$.

- Euclidean geometry: $X = \mathbb{R}^n$ and G its group of isometries.
 - Preserves distance, angle, area, straight lines, parallelism..
- Affine geometry: $X = \mathbb{R}^n$ and G its group of affine transformations $x \mapsto Ax + b$.
 - Preserves parallelism, geodesics (curves of zero acceleration).

- Euclidean geometry: $X = \mathbb{R}^n$ and G its group of isometries.
 - Preserves distance, angle, area, straight lines, parallelism..
- Affine geometry: $X = \mathbb{R}^n$ and G its group of affine transformations $x \mapsto Ax + b$.
 - Preserves parallelism, geodesics (curves of zero acceleration).
- Projective geometry: $X = \mathbb{R}P^n$ and G its group of collineations.

- Euclidean geometry: $X = \mathbb{R}^n$ and G its group of isometries.
 - Preserves distance, angle, area, straight lines, parallelism..
- Affine geometry: $X = \mathbb{R}^n$ and G its group of affine transformations $x \mapsto Ax + b$.
 - Preserves parallelism, geodesics (curves of zero acceleration).
- Projective geometry: $X = \mathbb{R}P^n$ and G its group of collineations.
 - Preserves (unparametrized) straight lines, incidence...

- Euclidean geometry: $X = \mathbb{R}^n$ and G its group of isometries.
 - Preserves distance, angle, area, straight lines, parallelism..
- Affine geometry: $X = \mathbb{R}^n$ and G its group of affine transformations $x \mapsto Ax + b$.
 - Preserves parallelism, geodesics (curves of zero acceleration).
- Projective geometry: $X = \mathbb{R}P^n$ and G its group of collineations.
 - Preserves (unparametrized) straight lines, incidence...
- Constant curvature Riemannian geometries...

- Euclidean geometry: $X = \mathbb{R}^n$ and G its group of isometries.
 - Preserves distance, angle, area, straight lines, parallelism..
- Affine geometry: $X = \mathbb{R}^n$ and G its group of affine transformations $x \mapsto Ax + b$.
 - Preserves parallelism, geodesics (curves of zero acceleration).
- Projective geometry: $X = \mathbb{R}P^n$ and G its group of collineations.
 - Preserves (unparametrized) straight lines, incidence...
- Constant curvature Riemannian geometries...
- More exotic geometries: conformal geometries, indefinite metrics, complex, quaternionic structures, symplectic, contact structures, incidence geometries on flag manifolds, ...

Geometric Structures on Manifolds

• Topology: Smooth manifold Σ with coordinate patches U_{α} ;

- Topology: Smooth manifold Σ with coordinate patches U_{α} ;
 - Charts *diffeomorphisms*

$$U_{\alpha} \xrightarrow{\psi_{\alpha}} \psi_{\alpha}(U_{\alpha}) \subset X$$

Topology: Smooth manifold Σ with coordinate patches U_α;
Charts — diffeomorphisms

$$U_{\alpha} \xrightarrow{\psi_{\alpha}} \psi_{\alpha}(U_{\alpha}) \subset X$$

• On components of $U_lpha \cap U_eta$, $\exists g \in G$ such that

$$g \circ \psi_{\alpha} = \psi_{\beta}.$$

Topology: Smooth manifold Σ with coordinate patches U_α;
Charts — diffeomorphisms

$$U_{lpha} \xrightarrow{\psi_{lpha}} \psi_{lpha}(U_{lpha}) \subset X$$

• On components of $U_lpha \cap U_eta$, $\exists g \in G$ such that

$$g \circ \psi_{\alpha} = \psi_{\beta}.$$

• Local (G, X)-geometry independent of patch.

Topology: Smooth manifold Σ with coordinate patches U_α;
Charts — diffeomorphisms

$$U_{lpha} \xrightarrow{\psi_{lpha}} \psi_{lpha}(U_{lpha}) \subset X$$

• On components of $U_lpha \cap U_eta$, $\exists g \in G$ such that

$$g \circ \psi_{\alpha} = \psi_{\beta}.$$

- Local (G, X)-geometry independent of patch.
- (Ehresmann 1936): Geometric manifold M modeled on X.

▲口▶ ▲圖▶ ▲園▶ ▲園▶ ― 園

• Dimension 2: every surface has exactly one of:

▲圖▶ ▲ 国▶ ▲ 国▶

- Dimension 2: every surface has *exactly one* of:
 - Spherical geometry (if $\chi(\Sigma) > 0$);

- Dimension 2: every surface has exactly one of:
 - Spherical geometry (if $\chi(\Sigma) > 0$);
 - Euclidean geometry (if $\chi(\Sigma) = 0$);

- Dimension 2: every surface has exactly one of:
 - Spherical geometry (if $\chi(\Sigma) > 0$);
 - Euclidean geometry (if $\chi(\Sigma) = 0$);
 - Hyperbolic geometry (if $\chi(\Sigma) < 0$).

- Dimension 2: every surface has exactly one of:
 - Spherical geometry (if $\chi(\Sigma) > 0$);
 - Euclidean geometry (if $\chi(\Sigma) = 0$);
 - Hyperbolic geometry (if $\chi(\Sigma) < 0$).
- Equivalently, Riemannian metrics of constant curvature +1, 0, -1.

- Dimension 2: every surface has exactly one of:
 - Spherical geometry (if χ(Σ) > 0);
 - Euclidean geometry (if $\chi(\Sigma) = 0$);
 - Hyperbolic geometry (if $\chi(\Sigma) < 0$).
- Equivalently, Riemannian metrics of constant curvature +1, 0, -1.
- Locally homogeneous Riemannian geometries, modeled on X = G/H, H compact.

- Dimension 2: every surface has exactly one of:
 - Spherical geometry (if $\chi(\Sigma) > 0$);
 - Euclidean geometry (if $\chi(\Sigma) = 0$);
 - Hyperbolic geometry (if $\chi(\Sigma) < 0$).
- Equivalently, Riemannian metrics of constant curvature +1, 0, -1.
- Locally homogeneous Riemannian geometries, modeled on X = G/H, H compact.
- (Thurston 1976): 3-manifolds canonically decompose into *locally* homogeneous Riemannian pieces (8 types). (proved by Perelman)

Classification of geometric structures

3

· < /⊒ > < ∃ > <
Classification of geometric structures

 Basic question: Given a topology Σ and a geometry X = G/H, determine all possible ways of providing Σ with the local geometry of (X, G).

Classification of geometric structures

- Basic question: Given a topology Σ and a geometry X = G/H, determine all possible ways of providing Σ with the local geometry of (X, G).

Classification of geometric structures

- Basic question: Given a topology Σ and a geometry X = G/H, determine all possible ways of providing Σ with the local geometry of (X, G).

 - Example: The 2-torus admits a moduli space of Euclidean structures.

()

Geometric Structures on Manifolds

▲ロト ▲圖ト ▲国ト ▲国ト 三国

 Suppose that Ω ⊂ X is an open subset invariant under a subgroup Γ ⊂ G such that:

・ 同 ト ・ ヨ ト ・ ヨ ト

- Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that:
 - Γ is discrete;

- Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that:
 - Γ is discrete;
 - Γ acts properly and freely on Ω

- Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that:
 - Γ is discrete;
 - Γ acts properly and freely on Ω
- Then $M = \Omega/\Gamma$ is a (G, X)-manifold covered by Ω .

- Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that:
 - Γ is discrete;
 - Γ acts properly and freely on Ω
- Then $M = \Omega/\Gamma$ is a (G, X)-manifold covered by Ω .
- Convex $\mathbb{R}P^n$ -structures: $\Omega \subset \mathbb{R}P^n$ convex domain.

- Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that:
 - Γ is discrete;
 - Γ acts properly and freely on Ω
- Then $M = \Omega/\Gamma$ is a (G, X)-manifold covered by Ω .
- Convex $\mathbb{R}P^n$ -structures: $\Omega \subset \mathbb{R}P^n$ convex domain.
 - Projective geometry inside a quadric Ω is hyperbolic geometry.

- Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that:
 - Γ is discrete;
 - Γ acts properly and freely on Ω
- Then $M = \Omega/\Gamma$ is a (G, X)-manifold covered by Ω .
- Convex $\mathbb{R}P^n$ -structures: $\Omega \subset \mathbb{R}P^n$ convex domain.
 - Projective geometry inside a quadric Ω is hyperbolic geometry.
 - Hyperbolic distance is defined by cross-ratios: $d(x, y) = \log[A, x, y, B]$.

- Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that:
 - Γ is discrete;
 - Γ acts properly and freely on Ω
- Then $M = \Omega/\Gamma$ is a (G, X)-manifold covered by Ω .
- Convex $\mathbb{R}P^n$ -structures: $\Omega \subset \mathbb{R}P^n$ convex domain.
 - Projective geometry inside a quadric Ω is hyperbolic geometry.
 - Hyperbolic distance is defined by cross-ratios: $d(x, y) = \log[A, x, y, B]$.

• Projective geometry contains hyperbolic geometry.

- Suppose that $\Omega \subset X$ is an open subset invariant under a subgroup $\Gamma \subset G$ such that:
 - Γ is discrete;
 - Γ acts properly and freely on Ω
- Then $M = \Omega/\Gamma$ is a (G, X)-manifold covered by Ω .
- Convex $\mathbb{R}P^n$ -structures: $\Omega \subset \mathbb{R}P^n$ convex domain.
 - Projective geometry inside a quadric Ω is hyperbolic geometry.
 - Hyperbolic distance is defined by cross-ratios: $d(x, y) = \log[A, x, y, B]$.

- Projective geometry contains hyperbolic geometry.
 - Hyperbolic structures *are* convex $\mathbb{R}P^n$ -structures.

Example: Projective tiling of $\mathbb{R}P^2$ by equilateral 60° -triangles

This tesselation of the open triangular region is equivalent to the tiling of the Euclidean plane by equilateral triangles.

Example: A projective deformation of a tiling of the hyperbolic plane by $(60^{\circ}, 60^{\circ}, 45^{\circ})$ -triangles.

Both domains are tiled by triangles, invariant under a Coxeter group $\Gamma(3,3,4)$. First domain bounded by a conic (hyperbolic geometry), second domain bounded by $C^{1+\alpha}$ -convex curve where $0 < \alpha < 1$. Second domain invariant under Zariski dense surface group in SL(3, \mathbb{R}).

Example: A hyperbolic structure on a surface of genus two

▲ @ ▶ < ∃ ▶ </p>

Example: A hyperbolic structure on a surface of genus two

• Identify sides of an octagon to form a closed genus two surface.

Example: A hyperbolic structure on a surface of genus two

• Identify sides of an octagon to form a closed genus two surface.

• Realize these identifications isometrically for a regular 45°-octagon.

3

▲口 > ▲圖 > ▲ 園 > ▲ 園 > ―

• Hyperbolic geometry extends to complex projective geometry.

- Hyperbolic geometry extends to complex projective geometry.
- H^2 embeds in $\mathbb{C}P^1$ as the *complex hyperbolic line:*

- Hyperbolic geometry extends to complex projective geometry.
- H^2 embeds in $\mathbb{C}P^1$ as the *complex hyperbolic line:*
 - $\mathbb{C}\mathsf{H}^1$ is a component of the complement of *circle* in $\mathbb{C}\mathsf{P}^1 \approx S^2$,

- Hyperbolic geometry extends to *complex projective geometry.*H² embeds in CP¹ as the *complex hyperbolic line:*
 - $\mathbb{C}H^1$ is a component of the complement of *circle* in $\mathbb{C}P^1 \approx S^2$,
 - PU(1,1) is the subgroup of $PGL(2,\mathbb{C})$ stabilizing $\mathbb{C}H^1 \subset \mathbb{C}P^1$.

- Hyperbolic geometry extends to complex projective geometry.
- H^2 embeds in $\mathbb{C}P^1$ as the *complex hyperbolic line:*
 - $\mathbb{C}H^1$ is a component of the complement of *circle* in $\mathbb{C}P^1 \approx S^2$,
 - PU(1,1) is the subgroup of $PGL(2,\mathbb{C})$ stabilizing $\mathbb{C}H^1 \subset \mathbb{C}P^1$.
 - Hyperbolic structures on surfaces deform as \mathbb{CP}^1 -structures, through "bending" or "grafting" constructions (Thurston)

3

▲口 > ▲圖 > ▲ 園 > ▲ 園 > ―

Marked (G, X)-structure on Σ: diffeomorphism Σ → M where M is a (G, X)-manifold.

- Marked (G, X)-structure on Σ: diffeomorphism Σ → M where M is a (G, X)-manifold.
- Define *deformation space*

$$\mathfrak{D}_{(G,X)}(\Sigma) := \left\{ \mathsf{Marked} \ (G,X) \text{-structures on } \Sigma \right\} / \mathsf{Isotopy}$$

- Marked (G, X)-structure on Σ: diffeomorphism Σ → M where M is a (G, X)-manifold.
- Define *deformation space*

$$\mathfrak{D}_{(G,X)}(\Sigma) := \left\{ \mathsf{Marked} \ (G,X) \text{-structures on } \Sigma \right\} / \mathsf{Isotopy}$$

Mapping class group

$$\mathsf{Mod}(\Sigma) := \pi_0(\mathsf{Diff}(\Sigma))$$

acts on $\mathfrak{D}_{(G,X)}(\Sigma)$.

Representation varieties

()

Geometric Structures on Manifolds

*ロト *部ト * ヨト * ヨト - ヨ

Let π = ⟨X₁,..., X_n⟩ be finitely generated and G ⊂ GL(N, ℝ) a linear algebraic group.

▲圖▶ ▲ 圖▶ ▲ 圖▶ …

- Let π = ⟨X₁,..., X_n⟩ be finitely generated and G ⊂ GL(N, ℝ) a linear algebraic group.
- The set $\operatorname{Hom}(\pi, G)$ of homomorphisms

$\pi \longrightarrow {\cal G}$

enjoys the natural structure of an affine algebraic variety

- 米田 ト 米田 ト 米田 ト 三田

- Let π = ⟨X₁,..., X_n⟩ be finitely generated and G ⊂ GL(N, ℝ) a linear algebraic group.
- The set $Hom(\pi, G)$ of homomorphisms

$$\pi \longrightarrow {\cal G}$$

- enjoys the natural structure of an affine algebraic variety
 - Invariant under $Aut(\pi) \times Aut(G)$.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

- Let π = ⟨X₁,..., X_n⟩ be finitely generated and G ⊂ GL(N, ℝ) a linear algebraic group.
- The set $Hom(\pi, G)$ of homomorphisms

$$\pi \longrightarrow G$$

enjoys the natural structure of an affine algebraic variety

- Invariant under $Aut(\pi) \times Aut(G)$.
- Action of $\mathsf{Out}(\pi) := \mathsf{Aut}(\pi)/\mathsf{Inn}(\pi)$ on

 $\operatorname{Hom}(\pi,G)/G := \operatorname{Hom}(\pi,G)/(\{1\} \times \operatorname{Inn}(G))$

◆□▶ ◆鄙▶ ◆恵▶ ◆恵▶ ─ 恵

Holonomy

()

▲ロト ▲圖ト ▲国ト ▲国ト 三国

Holonomy

• A marked structure determines a developing map $\tilde{\Sigma} \longrightarrow X$ and a holonomy representation $\pi \longrightarrow G$.

イロト イポト イヨト イヨト

Holonomy

- A marked structure determines a *developing map* $\tilde{\Sigma} \longrightarrow X$ and a *holonomy representation* $\pi \longrightarrow G$.
 - Globalize the coordinate charts and coordinate changes respectively.

・ 同 ト ・ 三 ト ・ 三 ト
- A marked structure determines a *developing map* $\tilde{\Sigma} \longrightarrow X$ and a *holonomy representation* $\pi \longrightarrow G$.
 - Globalize the coordinate charts and coordinate changes respectively.
- Holonomy defines a mapping

$$\mathfrak{D}_{(G,X)}(\Sigma) \xrightarrow{\mathsf{hol}} \mathsf{Hom}(\pi,G)/G$$

伺下 イヨト イヨト

- A marked structure determines a *developing map* $\tilde{\Sigma} \longrightarrow X$ and a holonomy representation $\pi \longrightarrow G$.
 - Globalize the coordinate charts and coordinate changes respectively.
- Holonomy defines a mapping

$$\mathfrak{D}_{(G,X)}(\Sigma) \xrightarrow{\mathsf{hol}} \mathsf{Hom}(\pi,G)/G$$

Equivariant respecting

$$\mathsf{Mod}(\Sigma) \longrightarrow \mathsf{Out}(\pi_1(\Sigma))$$

- A marked structure determines a *developing map* $\tilde{\Sigma} \longrightarrow X$ and a *holonomy representation* $\pi \longrightarrow G$.
 - Globalize the coordinate charts and coordinate changes respectively.
- Holonomy defines a mapping

$$\mathfrak{D}_{(G,X)}(\Sigma) \xrightarrow{\mathsf{hol}} \mathsf{Hom}(\pi,G)/G$$

Equivariant respecting

$$\mathsf{Mod}(\Sigma) \longrightarrow \mathsf{Out}(\pi_1(\Sigma))$$

• (Thurston): The mapping hol is a local homeomorphism.

< 同 > < 三 > < 三 > <

- A marked structure determines a *developing map* $\tilde{\Sigma} \longrightarrow X$ and a *holonomy representation* $\pi \longrightarrow G$.
 - Globalize the coordinate charts and coordinate changes respectively.
- Holonomy defines a mapping

$$\mathfrak{D}_{(G,X)}(\Sigma) \xrightarrow{\mathsf{hol}} \mathsf{Hom}(\pi,G)/G$$

• Equivariant respecting

$$\mathsf{Mod}(\Sigma) \longrightarrow \mathsf{Out}(\pi_1(\Sigma))$$

- (Thurston): The mapping hol is a local homeomorphism.
 - For quotient structures, hol is an embedding.

- A marked structure determines a developing map $\tilde{\Sigma} \longrightarrow X$ and a holonomy representation $\pi \longrightarrow G$.
 - Globalize the coordinate charts and coordinate changes respectively.
- Holonomy defines a mapping

$$\mathfrak{D}_{(G,X)}(\Sigma) \xrightarrow{\mathsf{hol}} \mathsf{Hom}(\pi,G)/G$$

Equivariant respecting

$$\mathsf{Mod}(\Sigma) \longrightarrow \mathsf{Out}(\pi_1(\Sigma))$$

- (Thurston): The mapping hol is a local homeomorphism.
 - For quotient structures, hol is an embedding.
 - Discrete cocompact embeddings $\pi \hookrightarrow G$ form open set (Weil 1960).

- * 圖 > - * 圖 > - *

()

Geometric Structures on Manifolds

・ロト ・聞 ト ・ 思 ト ・ 思 ト … 思

Euclidean geometry: When X = ℝ² and G = lsom(ℝ²), every only closed orientable Euclidean surface ≈ T².

- Euclidean geometry: When X = ℝ² and G = lsom(ℝ²), every only closed orientable Euclidean surface ≈ T².
- The deformation space $\mathfrak{D}_{(G,X)}(\Sigma)$ identifies with $H^2 \times \mathbb{R}^+$.

- Euclidean geometry: When $X = \mathbb{R}^2$ and $G = \text{Isom}(\mathbb{R}^2)$, every only closed orientable Euclidean surface $\approx T^2$.
- The deformation space $\mathfrak{D}_{(G,X)}(\Sigma)$ identifies with $H^2 \times \mathbb{R}^+$.
- The coordinate in \mathbb{R}^+ corresponds to the *area* of the structure.

- Euclidean geometry: When $X = \mathbb{R}^2$ and $G = \text{Isom}(\mathbb{R}^2)$, every only closed orientable Euclidean surface $\approx T^2$.
- The deformation space $\mathfrak{D}_{(G,X)}(\Sigma)$ identifies with $H^2 \times \mathbb{R}^+$.
- The coordinate in \mathbb{R}^+ corresponds to the *area* of the structure.
- $\mathsf{Mod}(\Sigma) \cong \mathsf{PSL}(2,\mathbb{Z})$ acts properly discretely,

- Euclidean geometry: When $X = \mathbb{R}^2$ and $G = \text{Isom}(\mathbb{R}^2)$, every only closed orientable Euclidean surface $\approx T^2$.
- The deformation space $\mathfrak{D}_{(G,X)}(\Sigma)$ identifies with $H^2 \times \mathbb{R}^+$.
- The coordinate in \mathbb{R}^+ corresponds to the *area* of the structure.
- $\mathsf{Mod}(\Sigma) \cong \mathsf{PSL}(2,\mathbb{Z})$ acts properly discretely,
 - with quotient the *moduli space* of elliptic curves.

()

Geometric Structures on Manifolds

・ロト ・聞 ト ・ 思 ト ・ 思 ト … 思

• The deformation space of hyperbolic structures on Σ_g is the Fricke space, $\mathfrak{F}(\Sigma_g)$

・聞き ・ ほき・ ・ ほき

- The deformation space of hyperbolic structures on Σ_g is the Fricke space, $\mathfrak{F}(\Sigma_g)$

伺下 イヨト イヨト

Example: hyperbolic structures

- The deformation space of hyperbolic structures on Σ_g is the Fricke space,
 ³(Σ_g)
 - hol embeds
 ³
 ⁶
 (Σ_g) as a connected component of Hom(π₁(Σ_g), G)/G.
 - $\mathfrak{F}(\Sigma_g) \approx \mathbb{R}^{6g-6}$

伺下 イヨト イヨト

Example: hyperbolic structures

- The deformation space of hyperbolic structures on Σ_g is the Fricke space, 𝔅(Σ_g)
 - hol embeds $\mathfrak{F}(\Sigma_g)$ as a *connected component* of $\operatorname{Hom}(\pi_1(\Sigma_g), G)/G$.
 - $\mathfrak{F}(\Sigma_g) \approx \mathbb{R}^{6g-6}$
 - $Mod(\Sigma_g)$ acts properly discretely on $\mathfrak{F}(\Sigma_g)$.

▲聞き ▲ 思き ▲ 思す

Example: hyperbolic structures

- The deformation space of hyperbolic structures on Σ_g is the Fricke space,
 ³(Σ_g)
 - hol embeds $\mathfrak{F}(\Sigma_g)$ as a *connected component* of $\operatorname{Hom}(\pi_1(\Sigma_g), G)/G$.
 - $\mathfrak{F}(\Sigma_g) \approx \mathbb{R}^{6g-6}$
 - $Mod(\Sigma_g)$ acts properly discretely on $\mathfrak{F}(\Sigma_g)$.
- Since every isometry of H² is conformal, underlying every hyperbolic surface is a *Riemann surface*.

- The deformation space of hyperbolic structures on Σ_g is the Fricke space, 𝔅(Σ_g)
 - hol embeds $\mathfrak{F}(\Sigma_g)$ as a *connected component* of $\operatorname{Hom}(\pi_1(\Sigma_g), G)/G$.
 - $\mathfrak{F}(\Sigma_g) \approx \mathbb{R}^{6g-6}$
 - $Mod(\Sigma_g)$ acts properly discretely on $\mathfrak{F}(\Sigma_g)$.
- Since every isometry of H² is conformal, underlying every hyperbolic surface is a *Riemann surface*.
- Uniformization theorem identifies $\mathfrak{F}(\Sigma_g)$ with Teichmüller space $\mathfrak{T}(\Sigma_g)$ of marked conformal structures on Σ_g .

(4) 문 (4) R (4) R

- The deformation space of hyperbolic structures on Σ_g is the Fricke space,
 ³(Σ_g)
 - hol embeds $\mathfrak{F}(\Sigma_g)$ as a *connected component* of $\operatorname{Hom}(\pi_1(\Sigma_g), G)/G$.
 - $\mathfrak{F}(\Sigma_g) \approx \mathbb{R}^{6g-6}$
 - $Mod(\Sigma_g)$ acts properly discretely on $\mathfrak{F}(\Sigma_g)$.
- Since every isometry of H² is conformal, underlying every hyperbolic surface is a *Riemann surface*.
- Uniformization theorem identifies $\mathfrak{F}(\Sigma_g)$ with Teichmüller space $\mathfrak{T}(\Sigma_g)$ of marked conformal structures on Σ_g .
 - Quotient $\mathfrak{F}(\Sigma_g)/Mod(\Sigma_g)$ identifies the *Riemann moduli space* $\mathfrak{T}(\Sigma_g)/Mod(\Sigma_g)$ of curves of genus g.

Example: $\mathbb{C}P^1$ -manifolds

()

▲ロト ▲圖ト ▲国ト ▲国ト 三国

• Underlying every $\mathbb{C}\mathsf{P}^1$ -manifold is Riemann surface.

・ロト ・聞 ト ・ 思 ト ・ 思 ト … 思

- $\bullet~$ Underlying every $\mathbb{C}\mathsf{P}^1\text{-manifold}$ is Riemann surface.
 - Therefore the deformation space $\mathbb{CP}^1(\Sigma)$ of marked \mathbb{CP}^1 -structures on Σ maps to Teichmüller space $\mathfrak{T}(\Sigma)$.

A (1) > A (2) > A

- $\bullet~$ Underlying every $\mathbb{C}\mathsf{P}^1\text{-manifold}$ is Riemann surface.
 - Therefore the deformation space $\mathbb{CP}^1(\Sigma)$ of marked \mathbb{CP}^1 -structures on Σ maps to Teichmüller space $\mathfrak{T}(\Sigma)$.
- (Poincaré) Fiber of $\mathbb{CP}^1(\Sigma) \longrightarrow \mathfrak{T}(\Sigma)$ over marked Riemann surface M identifies with vector space $H^0(M, (K_M)^2)$ of holomorphic quadratic differentials.

- Underlying every $\mathbb{C}\mathsf{P}^1$ -manifold is Riemann surface.
 - Therefore the deformation space $\mathbb{CP}^1(\Sigma)$ of marked \mathbb{CP}^1 -structures on Σ maps to Teichmüller space $\mathfrak{T}(\Sigma)$.
- (Poincaré) Fiber of $\mathbb{CP}^1(\Sigma) \longrightarrow \mathfrak{T}(\Sigma)$ over marked Riemann surface M identifies with vector space $H^0(M, (K_M)^2)$ of holomorphic quadratic differentials.

•
$$\mathfrak{D}_{(G,X)}(\Sigma) \approx \mathbb{R}^{12g-12}$$

- $\bullet~$ Underlying every $\mathbb{C}\mathsf{P}^1\text{-manifold}$ is Riemann surface.
 - Therefore the deformation space $\mathbb{CP}^1(\Sigma)$ of marked \mathbb{CP}^1 -structures on Σ maps to Teichmüller space $\mathfrak{T}(\Sigma)$.
- (Poincaré) Fiber of $\mathbb{CP}^1(\Sigma) \longrightarrow \mathfrak{T}(\Sigma)$ over marked Riemann surface M identifies with vector space $H^0(M, (K_M)^2)$ of holomorphic quadratic differentials.
 - $\mathfrak{D}_{(G,X)}(\Sigma) \approx \mathbb{R}^{12g-12}$.
 - $Mod(\hat{\Sigma})$ acts properly discretely.

- Underlying every $\mathbb{C}\mathsf{P}^1$ -manifold is Riemann surface.
 - Therefore the deformation space $\mathbb{CP}^1(\Sigma)$ of marked \mathbb{CP}^1 -structures on Σ maps to Teichmüller space $\mathfrak{T}(\Sigma)$.
- (Poincaré) Fiber of $\mathbb{CP}^1(\Sigma) \longrightarrow \mathfrak{T}(\Sigma)$ over marked Riemann surface M identifies with vector space $H^0(M, (K_M)^2)$ of holomorphic quadratic differentials.
 - $\mathfrak{D}_{(G,X)}(\Sigma) \approx \mathbb{R}^{12g-12}$.
 - $Mod(\hat{\Sigma})$ acts properly discretely.
- (Gallo-Kapovich-Marden) Image of hol consists of representations $\pi_1(\Sigma) \longrightarrow \mathsf{PSL}(2,\mathbb{C})$ which lift to absolutely irreducible unbounded representations in $\mathsf{SL}(2,\mathbb{C})$.

▲圖▶ ▲ 国▶ ▲ 国▶ 二 国

()

Geometric Structures on Manifolds

◆□▶ ◆圖▶ ◆屈▶ ◆屈▶ ─ 屈

• When $X = \mathbb{R}P^2$ and $G = PGL(3, \mathbb{R})$, the deformation space $\mathfrak{D}_{(G,X)}(\Sigma) \approx \mathbb{R}^{16g-16}$.

- When $X = \mathbb{R}P^2$ and $G = PGL(3, \mathbb{R})$, the deformation space $\mathfrak{D}_{(G,X)}(\Sigma) \approx \mathbb{R}^{16g-16}$.
- Identifies with a vector bundle over
 ³(Σ) whose fiber over a Riemann surface R is the vector space H⁰(R, K³) of holomorphic cubic differentials (Labourie, Loftin)

- When $X = \mathbb{R}P^2$ and $G = PGL(3, \mathbb{R})$, the deformation space $\mathfrak{D}_{(G,X)}(\Sigma) \approx \mathbb{R}^{16g-16}$.
- Identifies with a vector bundle over
 ³(Σ) whose fiber over a Riemann surface R is the vector space H⁰(R, K³) of holomorphic cubic differentials (Labourie, Loftin)
- This is the "Teichmüller" component discovered for general ℝ-split groups by Hitchin (1990), for PGL(3, ℝ). (Choi-G 1999)

- When $X = \mathbb{R}P^2$ and $G = PGL(3, \mathbb{R})$, the deformation space $\mathfrak{D}_{(G,X)}(\Sigma) \approx \mathbb{R}^{16g-16}$.
- Identifies with a vector bundle over
 ³(Σ) whose fiber over a Riemann surface R is the vector space H⁰(R, K³) of holomorphic cubic differentials (Labourie, Loftin)
- This is the "Teichmüller" component discovered for general ℝ-split groups by Hitchin (1990), for PGL(3, ℝ). (Choi-G 1999)
- (Choi-G 1990) Deformation space of all ℝP²-structures on Σ homeomorphic to ℝ^{-8χ(Σ)} × ℤ.

- ★ 圖 ▶ ★ 圖 ▶ ★ 圖 ▶ - - 圖

Geometric Structures on Manifolds

◆□▶ ◆聞▶ ◆恵▶ ◆恵▶ ─ 恵

3

伺 ト イヨト イヨト

• Universal covering of $\mathbb{R}\mathsf{P}^1$

- Universal covering of $\mathbb{R}\mathsf{P}^1$
 - "Elliptic" holonomy

- $\bullet~$ Universal covering of $\mathbb{R}\mathsf{P}^1$
 - "Elliptic" holonomy
- Affine line $\mathbb{R} \subset \mathbb{R}\mathsf{P}^1$
- Universal covering of $\mathbb{R}\mathsf{P}^1$
 - "Elliptic" holonomy
- Affine line $\mathbb{R} \subset \mathbb{R}\mathsf{P}^1$
 - "Parabolic" holonomy

- $\bullet\,$ Universal covering of $\mathbb{R}\mathsf{P}^1$
 - "Elliptic" holonomy
- Affine line $\mathbb{R} \subset \mathbb{R}\mathsf{P}^1$
 - "Parabolic" holonomy
- Positive ray (or open interval) $\mathbb{R}_+\cong (-1,1)\subset \mathbb{R}\mathsf{P}^1$

- $\bullet\,$ Universal covering of $\mathbb{R}\mathsf{P}^1$
 - "Elliptic" holonomy
- Affine line $\mathbb{R} \subset \mathbb{R}\mathsf{P}^1$
 - "Parabolic" holonomy
- Positive ray (or open interval) $\mathbb{R}_+\cong (-1,1)\subset \mathbb{R}\mathsf{P}^1$
 - "Hyperbolic" holonomy

- $\bullet\,$ Universal covering of $\mathbb{R}\mathsf{P}^1$
 - "Elliptic" holonomy
- Affine line $\mathbb{R} \subset \mathbb{R}\mathsf{P}^1$
 - "Parabolic" holonomy
- Positive ray (or open interval) $\mathbb{R}_+\cong (-1,1)\subset \mathbb{R}\mathsf{P}^1$
 - "Hyperbolic" holonomy
- Deformation space $\mathbb{RP}^1(S^1)$ is non-Hausdorff noncompact 1-manifold

$$\left(\widetilde{\mathsf{SL}(2,\mathbb{R})}\setminus\{1\}
ight)/\mathsf{Inn}$$

・ロト ・聞 ト ・ 思 ト ・ 思 ト … 思

• A complete affine manifold is a quotient

$$M^n = \mathbb{R}^n / \Gamma$$

where $\Gamma \subset Aff(n, \mathbb{R})$ is a discrete subgroup acting properly and freely.

• A complete affine manifold is a quotient

$$M^n = \mathbb{R}^n / \Gamma$$

where $\Gamma \subset Aff(n, \mathbb{R})$ is a discrete subgroup acting properly and freely. • Kuiper (1954): Complete affine closed orientable 2-manifold is either:

• A complete affine manifold is a quotient

$$M^n = \mathbb{R}^n / \Gamma$$

where $\Gamma \subset Aff(n, \mathbb{R})$ is a discrete subgroup acting properly and freely. • Kuiper (1954): Complete affine closed orientable 2-manifold is either:

• *Euclidean*: \mathbb{R}^2/Λ , where $\Lambda \subset \mathbb{R}^2$ lattice (all *affinely* equivalent);

• A complete affine manifold is a quotient

$$M^n = \mathbb{R}^n / \Gamma$$

where $\Gamma \subset Aff(n, \mathbb{R})$ is a discrete subgroup acting properly and freely.

- Kuiper (1954): Complete affine closed orientable 2-manifold is either:
 - Euclidean: \mathbb{R}^2/Λ , where $\Lambda \subset \mathbb{R}^2$ lattice (all affinely equivalent);
 - non-Riemannian: Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$ where $f(x, y) := (x + y^2, y)$.

• A complete affine manifold is a quotient

$$M^n = \mathbb{R}^n / \Gamma$$

where $\Gamma \subset Aff(n, \mathbb{R})$ is a discrete subgroup acting properly and freely.

- Kuiper (1954): Complete affine closed orientable 2-manifold is either:
 - *Euclidean*: \mathbb{R}^2/Λ , where $\Lambda \subset \mathbb{R}^2$ lattice (all *affinely* equivalent);
 - non-Riemannian: Polynomial deformation $\mathbb{R}^2/(f \circ \Lambda \circ f^{-1})$ where $f(x, y) := (x + y^2, y)$.
- Translation conjugated to *affine transformation*:

$$(x, y) \xrightarrow{\tau} (x + u, y + v)$$

$$(x, y) \xrightarrow{f \circ \tau \circ f^{-1}} (x - 2yv + (v^2 + u), y + v).$$

2

イロト イ理ト イヨト イヨト

- 2

2

イロト イヨト イヨト イヨト

▲口 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ― 国

- 2

・ロト ・聞 ト ・ 思 ト ・ 思 ト … 思

Chaotic dynamics of the mapping class group

3

《曰》 《圖》 《圖》 《圖》

• (Baues) Deformation space homeomorphic to \mathbb{R}^2 .

・聞き ・ ほき・ ・ ほき

- (Baues) Deformation space homeomorphic to $\mathbb{R}^2.$
 - Origin $\{(0,0)\}$ corresponds to Euclidean structure.

- (Baues) Deformation space homeomorphic to \mathbb{R}^2 .
 - $\bullet~$ Origin $\{(0,0\}~corresponds$ to Euclidean structure.
- Mapping class group action is the *linear* action of $GL(2,\mathbb{Z})$ on \mathbb{R}^2 .

- (Baues) Deformation space homeomorphic to \mathbb{R}^2 .
 - Origin $\{(0,0)\}$ corresponds to Euclidean structure.
- Mapping class group action is the *linear* action of $GL(2,\mathbb{Z})$ on \mathbb{R}^2 .
 - The orbit space the *moduli space* of complete affine compact orientable 2-manifolds is non-Hausdorff and intractable.

- (Baues) Deformation space homeomorphic to \mathbb{R}^2 .
 - $\bullet~$ Origin $\{(0,0\}~corresponds$ to Euclidean structure.
- Mapping class group action is the *linear* action of $GL(2,\mathbb{Z})$ on \mathbb{R}^2 .
 - The orbit space the *moduli space* of complete affine compact orientable 2-manifolds is non-Hausdorff and intractable.
- Contrast with the moduli space of Euclidean structures the quotient of $H^2 \times \mathbb{R}_+$ by PGL(2, \mathbb{Z}) acting properly discretely.

・ロト ・聞 ト ・ 思 ト ・ 思 ト … 思

 For fixed topology Σ and geometry (G, X) define a deformation space D_(G,X)(Σ) of marked (G, X)-structures on Σ.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ 二 国

- For fixed topology Σ and geometry (G, X) define a deformation space D_(G,X)(Σ) of marked (G, X)-structures on Σ.
- The holonomy mapping

$$\mathfrak{D}_{(G,X)}(\Sigma) \xrightarrow{\mathsf{hol}} \mathsf{Hom}(\pi,G)/G$$

- For fixed topology Σ and geometry (G, X) define a deformation space D_(G,X)(Σ) of marked (G, X)-structures on Σ.
- The holonomy mapping

$$\mathfrak{D}_{(G,X)}(\Sigma) \xrightarrow{\mathsf{hol}} \mathsf{Hom}(\pi,G)/G$$

- is a local homeomorphism,
 - but it may not be covering-space.

- For fixed topology Σ and geometry (G, X) define a deformation space D_(G,X)(Σ) of marked (G, X)-structures on Σ.
- The holonomy mapping

$$\mathfrak{D}_{(G,X)}(\Sigma) \xrightarrow{\mathsf{hol}} \mathsf{Hom}(\pi,G)/G$$

- but it may not be covering-space.
- Hom (π, G) is an \mathbb{R} -algebraic set...

- For fixed topology Σ and geometry (G, X) define a deformation space D_(G,X)(Σ) of marked (G, X)-structures on Σ.
- The holonomy mapping

$$\mathfrak{D}_{(G,X)}(\Sigma) \xrightarrow{\mathsf{hol}} \mathsf{Hom}(\pi,G)/G$$

- but it may not be covering-space.
- Hom (π, G) is an \mathbb{R} -algebraic set...
 - but it may be singular.

- For fixed topology Σ and geometry (G, X) define a deformation space D_(G,X)(Σ) of marked (G, X)-structures on Σ.
- The holonomy mapping

$$\mathfrak{D}_{(G,X)}(\Sigma) \xrightarrow{\mathsf{hol}} \mathsf{Hom}(\pi,G)/G$$

- but it may not be covering-space.
- Hom (π, G) is an \mathbb{R} -algebraic set...
 - but it may be singular.
- G acts algebraically on Hom(π, G) ...

- For fixed topology Σ and geometry (G, X) define a deformation space D_(G,X)(Σ) of marked (G, X)-structures on Σ.
- The holonomy mapping

$$\mathfrak{D}_{(G,X)}(\Sigma) \xrightarrow{\mathsf{hol}} \mathsf{Hom}(\pi,G)/G$$

- but it may not be covering-space.
- Hom (π, G) is an \mathbb{R} -algebraic set...
 - but it may be singular.
- G acts algebraically on $Hom(\pi, G)$...
 - but the action may not be locally free and may not be proper.

- For fixed topology Σ and geometry (G, X) define a deformation space D_(G,X)(Σ) of marked (G, X)-structures on Σ.
- The holonomy mapping

$$\mathfrak{D}_{(G,X)}(\Sigma) \xrightarrow{\mathsf{hol}} \mathsf{Hom}(\pi,G)/G$$

- but it may not be covering-space.
- Hom (π, G) is an \mathbb{R} -algebraic set...
 - but it may be singular.
- G acts algebraically on $Hom(\pi, G)$...
 - but the action may not be locally free and may not be proper.
- Mod(Σ) acts on D_(G,X)(Σ)...

- For fixed topology Σ and geometry (G, X) define a deformation space D_(G,X)(Σ) of marked (G, X)-structures on Σ.
- The holonomy mapping

$$\mathfrak{D}_{(G,X)}(\Sigma) \xrightarrow{\mathsf{hol}} \mathsf{Hom}(\pi,G)/G$$

- but it may not be covering-space.
- Hom (π, G) is an \mathbb{R} -algebraic set...
 - but it may be singular.
- G acts algebraically on $Hom(\pi, G)$...
 - but the action may not be locally free and may not be proper.
- Mod(Σ) acts on D_(G,X)(Σ)...
 - but the action may not be proper and may not be free.

- For fixed topology Σ and geometry (G, X) define a deformation space D_(G,X)(Σ) of marked (G, X)-structures on Σ.
- The holonomy mapping

$$\mathfrak{D}_{(G,X)}(\Sigma) \xrightarrow{\mathsf{hol}} \mathsf{Hom}(\pi,G)/G$$

- but it may not be covering-space.
- Hom (π, G) is an \mathbb{R} -algebraic set...
 - but it may be singular.
- G acts algebraically on $Hom(\pi, G)$...
 - but the action may not be locally free and may not be proper.
- $Mod(\Sigma)$ acts on $\mathfrak{D}_{(G,X)}(\Sigma)...$
 - but the action may not be proper and may not be free.
- Isomorphism classes of (G, X)-structures on Σ correspond to Mod(Σ)-orbits on D_(G,X)(Σ).