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Ehresmann structure on a manifold Σ: a geometric structure defined
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Ehresmann structure on a manifold Σ: a geometric structure defined
by an atlas of local coordinate charts into a fixed homogeneous space.

For example, every flat Riemannian manifold is locally isometric to
Euclidean space.
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Ehresmann structure on a manifold Σ: a geometric structure defined
by an atlas of local coordinate charts into a fixed homogeneous space.

For example, every flat Riemannian manifold is locally isometric to
Euclidean space.
and can be locally modeled on Euclidean space.

() Geometric Structures on Manifolds
Geometry and Arithmetic of Lattices London

/ 24



Deformation spaces of geometric structures

Ehresmann structure on a manifold Σ: a geometric structure defined
by an atlas of local coordinate charts into a fixed homogeneous space.
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More generally every locally homogeneous space Γ\G/H (where G is
a Lie group, H ⊂ G compact, and Γ discrete torsionfree) is a manifold
locally modeled on the geometry (G ,G/H).

Classify these structures, given a fixed topology Σ and a geometry
(homogeneous space G/H)?
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Ehresmann structure on a manifold Σ: a geometric structure defined
by an atlas of local coordinate charts into a fixed homogeneous space.
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More generally every locally homogeneous space Γ\G/H (where G is
a Lie group, H ⊂ G compact, and Γ discrete torsionfree) is a manifold
locally modeled on the geometry (G ,G/H).

Classify these structures, given a fixed topology Σ and a geometry
(homogeneous space G/H)?

Ideally would like a space whose points classify these geometries...
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Deformation spaces of geometric structures

Ehresmann structure on a manifold Σ: a geometric structure defined
by an atlas of local coordinate charts into a fixed homogeneous space.

For example, every flat Riemannian manifold is locally isometric to
Euclidean space.
and can be locally modeled on Euclidean space.

More generally every locally homogeneous space Γ\G/H (where G is
a Lie group, H ⊂ G compact, and Γ discrete torsionfree) is a manifold
locally modeled on the geometry (G ,G/H).

Classify these structures, given a fixed topology Σ and a geometry
(homogeneous space G/H)?

Ideally would like a space whose points classify these geometries...
Whatever can go wrong in defining such a space will go wrong, for
certain choices of Σ and (G ,X ).
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Deformation spaces of geometric structures

Ehresmann structure on a manifold Σ: a geometric structure defined
by an atlas of local coordinate charts into a fixed homogeneous space.

For example, every flat Riemannian manifold is locally isometric to
Euclidean space.
and can be locally modeled on Euclidean space.

More generally every locally homogeneous space Γ\G/H (where G is
a Lie group, H ⊂ G compact, and Γ discrete torsionfree) is a manifold
locally modeled on the geometry (G ,G/H).

Classify these structures, given a fixed topology Σ and a geometry
(homogeneous space G/H)?

Ideally would like a space whose points classify these geometries...
Whatever can go wrong in defining such a space will go wrong, for
certain choices of Σ and (G ,X ).
Quotients of (possibly singular) R-algebraic sets by algebraic group
actions which are neither locally free nor proper...
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Deformation spaces of geometric structures

Ehresmann structure on a manifold Σ: a geometric structure defined
by an atlas of local coordinate charts into a fixed homogeneous space.

For example, every flat Riemannian manifold is locally isometric to
Euclidean space.
and can be locally modeled on Euclidean space.

More generally every locally homogeneous space Γ\G/H (where G is
a Lie group, H ⊂ G compact, and Γ discrete torsionfree) is a manifold
locally modeled on the geometry (G ,G/H).

Classify these structures, given a fixed topology Σ and a geometry
(homogeneous space G/H)?

Ideally would like a space whose points classify these geometries...
Whatever can go wrong in defining such a space will go wrong, for
certain choices of Σ and (G ,X ).
Quotients of (possibly singular) R-algebraic sets by algebraic group
actions which are neither locally free nor proper...
and then by discrete groups which don’t act properly.
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Geometry through symmetry

In his 1872 Erlangen Program, Felix Klein proposed that a geometry is the
study of properties of an abstract space X which are invariant under a
transitive group G of transformations of X .
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Examples of Klein geometries
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Examples of Klein geometries

Euclidean geometry: X = Rn and G its group of isometries.
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Examples of Klein geometries

Euclidean geometry: X = Rn and G its group of isometries.

Preserves distance, angle, area, straight lines, parallelism..
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Examples of Klein geometries

Euclidean geometry: X = Rn and G its group of isometries.

Preserves distance, angle, area, straight lines, parallelism..

Affine geometry: X = Rn and G its group of affine transformations
x 7→ Ax + b.
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Euclidean geometry: X = Rn and G its group of isometries.
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Affine geometry: X = Rn and G its group of affine transformations
x 7→ Ax + b.

Preserves parallelism, geodesics (curves of zero acceleration).

Projective geometry: X = RPn and G its group of collineations.
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Constant curvature Riemannian geometries...
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Examples of Klein geometries

Euclidean geometry: X = Rn and G its group of isometries.

Preserves distance, angle, area, straight lines, parallelism..

Affine geometry: X = Rn and G its group of affine transformations
x 7→ Ax + b.

Preserves parallelism, geodesics (curves of zero acceleration).

Projective geometry: X = RPn and G its group of collineations.

Preserves (unparametrized) straight lines, incidence...

Constant curvature Riemannian geometries...

More exotic geometries: conformal geometries, indefinite metrics,
complex, quaternionic structures, symplectic, contact structures,
incidence geometries on flag manifolds, ...
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Putting geometric structure on a topological space
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Putting geometric structure on a topological space

Topology: Smooth manifold Σ with coordinate patches Uα;
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Putting geometric structure on a topological space

Topology: Smooth manifold Σ with coordinate patches Uα;
Charts — diffeomorphisms

Uα
ψα

−−→ ψα(Uα) ⊂ X
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Putting geometric structure on a topological space

Topology: Smooth manifold Σ with coordinate patches Uα;
Charts — diffeomorphisms

Uα
ψα

−−→ ψα(Uα) ⊂ X

On components of Uα ∩ Uβ , ∃g ∈ G such that

g ◦ ψα = ψβ .
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Putting geometric structure on a topological space

Topology: Smooth manifold Σ with coordinate patches Uα;
Charts — diffeomorphisms

Uα
ψα

−−→ ψα(Uα) ⊂ X

On components of Uα ∩ Uβ , ∃g ∈ G such that

g ◦ ψα = ψβ .

Local (G ,X )-geometry independent of patch.
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Putting geometric structure on a topological space

Topology: Smooth manifold Σ with coordinate patches Uα;
Charts — diffeomorphisms

Uα
ψα

−−→ ψα(Uα) ⊂ X

On components of Uα ∩ Uβ , ∃g ∈ G such that

g ◦ ψα = ψβ .

Local (G ,X )-geometry independent of patch.

(Ehresmann 1936): Geometric manifold M modeled on X .
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Geometrization in 2 and 3 dimensions
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Geometrization in 2 and 3 dimensions

Dimension 2: every surface has exactly one of:
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Geometrization in 2 and 3 dimensions

Dimension 2: every surface has exactly one of:
Spherical geometry (if χ(Σ) > 0);
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Geometrization in 2 and 3 dimensions

Dimension 2: every surface has exactly one of:
Spherical geometry (if χ(Σ) > 0);
Euclidean geometry (if χ(Σ) = 0);
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Geometrization in 2 and 3 dimensions

Dimension 2: every surface has exactly one of:
Spherical geometry (if χ(Σ) > 0);
Euclidean geometry (if χ(Σ) = 0);
Hyperbolic geometry (if χ(Σ) < 0).
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Geometrization in 2 and 3 dimensions

Dimension 2: every surface has exactly one of:
Spherical geometry (if χ(Σ) > 0);
Euclidean geometry (if χ(Σ) = 0);
Hyperbolic geometry (if χ(Σ) < 0).

Equivalently, Riemannian metrics of constant curvature +1, 0, −1.
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Euclidean geometry (if χ(Σ) = 0);
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Equivalently, Riemannian metrics of constant curvature +1, 0, −1.
Locally homogeneous Riemannian geometries, modeled on X = G/H,
H compact.
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Geometrization in 2 and 3 dimensions

Dimension 2: every surface has exactly one of:
Spherical geometry (if χ(Σ) > 0);
Euclidean geometry (if χ(Σ) = 0);
Hyperbolic geometry (if χ(Σ) < 0).

Equivalently, Riemannian metrics of constant curvature +1, 0, −1.
Locally homogeneous Riemannian geometries, modeled on X = G/H,
H compact.
(Thurston 1976): 3-manifolds canonically decompose into locally

homogeneous Riemannian pieces (8 types). (proved by Perelman)
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Classification of geometric structures

Basic question: Given a topology Σ and a geometry X = G/H,
determine all possible ways of providing Σ with the local geometry of
(X ,G ).
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Classification of geometric structures

Basic question: Given a topology Σ and a geometry X = G/H,
determine all possible ways of providing Σ with the local geometry of
(X ,G ).

Example: The 2-sphere admits no Euclidean structure:
6 ∃ metrically accurate world atlas.
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Classification of geometric structures

Basic question: Given a topology Σ and a geometry X = G/H,
determine all possible ways of providing Σ with the local geometry of
(X ,G ).

Example: The 2-sphere admits no Euclidean structure:
6 ∃ metrically accurate world atlas.
Example: The 2-torus admits a moduli space of Euclidean structures.
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Quotients of domains

Suppose that Ω ⊂ X is an open subset invariant under a subgroup
Γ ⊂ G such that:
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Quotients of domains

Suppose that Ω ⊂ X is an open subset invariant under a subgroup
Γ ⊂ G such that:

Γ is discrete;
Γ acts properly and freely on Ω

() Geometric Structures on Manifolds
Geometry and Arithmetic of Lattices London

/ 24



Quotients of domains

Suppose that Ω ⊂ X is an open subset invariant under a subgroup
Γ ⊂ G such that:

Γ is discrete;
Γ acts properly and freely on Ω

Then M = Ω/Γ is a (G ,X )-manifold covered by Ω.
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Quotients of domains

Suppose that Ω ⊂ X is an open subset invariant under a subgroup
Γ ⊂ G such that:

Γ is discrete;
Γ acts properly and freely on Ω

Then M = Ω/Γ is a (G ,X )-manifold covered by Ω.

Convex RPn-structures: Ω ⊂ RPn convex domain.
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Suppose that Ω ⊂ X is an open subset invariant under a subgroup
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Γ is discrete;
Γ acts properly and freely on Ω

Then M = Ω/Γ is a (G ,X )-manifold covered by Ω.

Convex RPn-structures: Ω ⊂ RPn convex domain.

Projective geometry inside a quadric Ω is hyperbolic geometry.
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Quotients of domains

Suppose that Ω ⊂ X is an open subset invariant under a subgroup
Γ ⊂ G such that:

Γ is discrete;
Γ acts properly and freely on Ω

Then M = Ω/Γ is a (G ,X )-manifold covered by Ω.

Convex RPn-structures: Ω ⊂ RPn convex domain.

Projective geometry inside a quadric Ω is hyperbolic geometry.

Hyperbolic distance is defined by cross-ratios: d(x , y) = log[A, x , y ,B].
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Quotients of domains

Suppose that Ω ⊂ X is an open subset invariant under a subgroup
Γ ⊂ G such that:

Γ is discrete;
Γ acts properly and freely on Ω

Then M = Ω/Γ is a (G ,X )-manifold covered by Ω.

Convex RPn-structures: Ω ⊂ RPn convex domain.

Projective geometry inside a quadric Ω is hyperbolic geometry.

Hyperbolic distance is defined by cross-ratios: d(x , y) = log[A, x , y ,B].
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Projective geometry contains hyperbolic geometry.
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Quotients of domains

Suppose that Ω ⊂ X is an open subset invariant under a subgroup
Γ ⊂ G such that:

Γ is discrete;
Γ acts properly and freely on Ω

Then M = Ω/Γ is a (G ,X )-manifold covered by Ω.

Convex RPn-structures: Ω ⊂ RPn convex domain.

Projective geometry inside a quadric Ω is hyperbolic geometry.

Hyperbolic distance is defined by cross-ratios: d(x , y) = log[A, x , y ,B].
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Projective geometry contains hyperbolic geometry.

Hyperbolic structures are convex RPn-structures.
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Example: Projective tiling of RP2 by equilateral

60o-triangles

This tesselation of the open triangular region is equivalent to the tiling of
the Euclidean plane by equilateral triangles.
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Example: A projective deformation of a tiling of the

hyperbolic plane by (60o,60o,45o)-triangles.

Both domains are tiled by triangles, invariant under a Coxeter group
Γ(3, 3, 4). First domain bounded by a conic (hyperbolic geometry), second
domain bounded by C 1+α-convex curve where 0 < α < 1. Second domain
invariant under Zariski dense surface group in SL(3,R).
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Example: A hyperbolic structure on a surface of genus two
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Example: A hyperbolic structure on a surface of genus two

Identify sides of an octagon to form a closed genus two surface.
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Example: A hyperbolic structure on a surface of genus two

Identify sides of an octagon to form a closed genus two surface.
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Realize these identifications isometrically for a regular 45o-octagon.
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Example: CP1-structures
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Hyperbolic geometry extends to complex projective geometry.

() Geometric Structures on Manifolds
Geometry and Arithmetic of Lattices London

/ 24



Example: CP1-structures

Hyperbolic geometry extends to complex projective geometry.
H2 embeds in CP1 as the complex hyperbolic line:
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Hyperbolic geometry extends to complex projective geometry.
H2 embeds in CP1 as the complex hyperbolic line:

CH1 is a component of the complement of circle in CP1 ≈ S2,
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Example: CP1-structures

Hyperbolic geometry extends to complex projective geometry.
H2 embeds in CP1 as the complex hyperbolic line:

CH1 is a component of the complement of circle in CP1 ≈ S2,
PU(1, 1) is the subgroup of PGL(2,C) stabilizing CH1 ⊂ CP1.
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Example: CP1-structures

Hyperbolic geometry extends to complex projective geometry.
H2 embeds in CP1 as the complex hyperbolic line:

CH1 is a component of the complement of circle in CP1 ≈ S2,
PU(1, 1) is the subgroup of PGL(2,C) stabilizing CH1 ⊂ CP1.
Hyperbolic structures on surfaces deform as CP1-structures, through
“bending” or “grafting” constructions (Thurston)
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Modeling structures on representations of π1
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Modeling structures on representations of π1

Marked (G ,X )-structure on Σ: diffeomorphism Σ
f
−→ M where M is a

(G ,X )-manifold.
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Modeling structures on representations of π1

Marked (G ,X )-structure on Σ: diffeomorphism Σ
f
−→ M where M is a

(G ,X )-manifold.

Define deformation space

D(G ,X )(Σ) :=

{

Marked (G ,X )-structures on Σ

}

/Isotopy
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Modeling structures on representations of π1

Marked (G ,X )-structure on Σ: diffeomorphism Σ
f
−→ M where M is a

(G ,X )-manifold.

Define deformation space

D(G ,X )(Σ) :=

{

Marked (G ,X )-structures on Σ

}

/Isotopy

Mapping class group

Mod(Σ) := π0

(

Diff(Σ)
)

acts on D(G ,X )(Σ).
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Representation varieties
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Representation varieties

Let π = 〈X1, . . . ,Xn〉 be finitely generated and G ⊂ GL(N,R) a linear
algebraic group.
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Representation varieties

Let π = 〈X1, . . . ,Xn〉 be finitely generated and G ⊂ GL(N,R) a linear
algebraic group.

The set Hom(π,G ) of homomorphisms

π −→ G

enjoys the natural structure of an affine algebraic variety
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Representation varieties

Let π = 〈X1, . . . ,Xn〉 be finitely generated and G ⊂ GL(N,R) a linear
algebraic group.

The set Hom(π,G ) of homomorphisms

π −→ G

enjoys the natural structure of an affine algebraic variety

Invariant under Aut(π) × Aut(G).
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Representation varieties

Let π = 〈X1, . . . ,Xn〉 be finitely generated and G ⊂ GL(N,R) a linear
algebraic group.

The set Hom(π,G ) of homomorphisms

π −→ G

enjoys the natural structure of an affine algebraic variety

Invariant under Aut(π) × Aut(G).
Action of Out(π) := Aut(π)/Inn(π) on

Hom(π,G)/G := Hom(π,G)/({1} × Inn(G))
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Holonomy

A marked structure determines a developing map Σ̃ −→ X and a
holonomy representation π −→ G .
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Holonomy

A marked structure determines a developing map Σ̃ −→ X and a
holonomy representation π −→ G .

Globalize the coordinate charts and coordinate changes respectively.
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holonomy representation π −→ G .

Globalize the coordinate charts and coordinate changes respectively.

Holonomy defines a mapping

D(G ,X )(Σ)
hol
−−→ Hom(π,G )/G

Equivariant respecting

Mod(Σ) −→ Out
(

π1(Σ)
)
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Holonomy

A marked structure determines a developing map Σ̃ −→ X and a
holonomy representation π −→ G .

Globalize the coordinate charts and coordinate changes respectively.

Holonomy defines a mapping

D(G ,X )(Σ)
hol
−−→ Hom(π,G )/G

Equivariant respecting

Mod(Σ) −→ Out
(

π1(Σ)
)

(Thurston): The mapping hol is a local homeomorphism.
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Holonomy

A marked structure determines a developing map Σ̃ −→ X and a
holonomy representation π −→ G .

Globalize the coordinate charts and coordinate changes respectively.

Holonomy defines a mapping

D(G ,X )(Σ)
hol
−−→ Hom(π,G )/G

Equivariant respecting

Mod(Σ) −→ Out
(

π1(Σ)
)

(Thurston): The mapping hol is a local homeomorphism.

For quotient structures, hol is an embedding.
Discrete cocompact embeddings π →֒ G form open set (Weil 1960).
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Example: Euclidean structures

Euclidean geometry: When X = R2 and G = Isom(R2), every only
closed orientable Euclidean surface ≈ T 2.

The deformation space D(G ,X )(Σ) identifies with H2 × R+.

The coordinate in R+ corresponds to the area of the structure.

Mod(Σ) ∼= PSL(2,Z) acts properly discretely,

with quotient the moduli space of elliptic curves.
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hol embeds F(Σg ) as a connected component of Hom(π1(Σg ),G)/G .
F(Σg ) ≈ R6g−6

Mod(Σg ) acts properly discretely on F(Σg ).

Since every isometry of H2 is conformal, underlying every hyperbolic
surface is a Riemann surface.

Uniformization theorem identifies F(Σg ) with Teichmüller space
T(Σg ) of marked conformal structures on Σg .
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Example: hyperbolic structures

The deformation space of hyperbolic structures on Σg is the Fricke
space, F(Σg )

hol embeds F(Σg ) as a connected component of Hom(π1(Σg ),G)/G .
F(Σg ) ≈ R6g−6

Mod(Σg ) acts properly discretely on F(Σg ).

Since every isometry of H2 is conformal, underlying every hyperbolic
surface is a Riemann surface.

Uniformization theorem identifies F(Σg ) with Teichmüller space
T(Σg ) of marked conformal structures on Σg .

Quotient F(Σg )/Mod(Σg ) identifies the Riemann moduli space

T(Σg )/Mod(Σg ) of curves of genus g .
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Example: CP1-manifolds

Underlying every CP1-manifold is Riemann surface.

Therefore the deformation space CP1(Σ) of marked CP1-structures on
Σ maps to Teichmüller space T(Σ).

(Poincaré) Fiber of CP1(Σ) −→ T(Σ) over marked Riemann surface
M identifies with vector space H0(M, (KM )2) of holomorphic
quadratic differentials.

D(G ,X )(Σ) ≈ R12g−12.
Mod(Σ) acts properly discretely.

(Gallo-Kapovich-Marden) Image of hol consists of representations
π1(Σ) −→ PSL(2,C) which lift to absolutely irreducible unbounded
representations in SL(2,C).
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When X = RP2 and G = PGL(3,R), the deformation space
D(G ,X )(Σ) ≈ R16g−16.
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Identifies with a vector bundle over F(Σ) whose fiber over a Riemann
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surface R is the vector space H0(R ,K 3) of holomorphic cubic

differentials (Labourie, Loftin)

This is the “Teichmüller” component discovered for general R-split
groups by Hitchin (1990), for PGL(3,R). (Choi-G 1999)
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Example: RP2-structures

When X = RP2 and G = PGL(3,R), the deformation space
D(G ,X )(Σ) ≈ R16g−16.

Identifies with a vector bundle over F(Σ) whose fiber over a Riemann
surface R is the vector space H0(R ,K 3) of holomorphic cubic

differentials (Labourie, Loftin)

This is the “Teichmüller” component discovered for general R-split
groups by Hitchin (1990), for PGL(3,R). (Choi-G 1999)

(Choi-G 1990) Deformation space of all RP2-structures on Σ
homeomorphic to R−8χ(Σ) × Z.

() Geometric Structures on Manifolds
Geometry and Arithmetic of Lattices London

/ 24



Example: Closed RP1-manifolds

() Geometric Structures on Manifolds
Geometry and Arithmetic of Lattices London

/ 24



Example: Closed RP1-manifolds

Classified by Kuiper (1954): Quotients of

() Geometric Structures on Manifolds
Geometry and Arithmetic of Lattices London

/ 24



Example: Closed RP1-manifolds

Classified by Kuiper (1954): Quotients of
Universal covering of RP1

() Geometric Structures on Manifolds
Geometry and Arithmetic of Lattices London

/ 24



Example: Closed RP1-manifolds

Classified by Kuiper (1954): Quotients of
Universal covering of RP1

“Elliptic” holonomy

() Geometric Structures on Manifolds
Geometry and Arithmetic of Lattices London

/ 24



Example: Closed RP1-manifolds

Classified by Kuiper (1954): Quotients of
Universal covering of RP1

“Elliptic” holonomy

Affine line R ⊂ RP1

() Geometric Structures on Manifolds
Geometry and Arithmetic of Lattices London

/ 24



Example: Closed RP1-manifolds

Classified by Kuiper (1954): Quotients of
Universal covering of RP1

“Elliptic” holonomy

Affine line R ⊂ RP1

“Parabolic” holonomy

() Geometric Structures on Manifolds
Geometry and Arithmetic of Lattices London

/ 24
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“Parabolic” holonomy

Positive ray (or open interval) R+
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Positive ray (or open interval) R+
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Example: Closed RP1-manifolds

Classified by Kuiper (1954): Quotients of
Universal covering of RP1

“Elliptic” holonomy

Affine line R ⊂ RP1

“Parabolic” holonomy

Positive ray (or open interval) R+
∼= (−1, 1) ⊂ RP1

“Hyperbolic” holonomy

Deformation space RP1(S1) is non-Hausdorff noncompact 1-manifold

(

˜SL(2,R) \ {1}
)

/Inn
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A complete affine manifold is a quotient

Mn = Rn/Γ

where Γ ⊂ Aff(n,R) is a discrete subgroup acting properly and freely.
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A complete affine manifold is a quotient

Mn = Rn/Γ

where Γ ⊂ Aff(n,R) is a discrete subgroup acting properly and freely.

Kuiper (1954): Complete affine closed orientable 2-manifold is either:

Euclidean: R2/Λ, where Λ ⊂ R2 lattice (all affinely equivalent);
non-Riemannian: Polynomial deformation R2/(f ◦ Λ ◦ f −1) where
f (x , y) := (x + y2, y).
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Example: Complete affine structures on the 2-torus

A complete affine manifold is a quotient

Mn = Rn/Γ

where Γ ⊂ Aff(n,R) is a discrete subgroup acting properly and freely.

Kuiper (1954): Complete affine closed orientable 2-manifold is either:

Euclidean: R2/Λ, where Λ ⊂ R2 lattice (all affinely equivalent);
non-Riemannian: Polynomial deformation R2/(f ◦ Λ ◦ f −1) where
f (x , y) := (x + y2, y).

Translation conjugated to affine transformation:

(x , y)
τ
−→ (x + u, y + v)

(x , y)
f ◦ τ ◦ f −1

−−−−−−−→ (x − 2yv + (v2 + u), y + v).
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Chaotic dynamics of the mapping class group

(Baues) Deformation space homeomorphic to R2.

Origin {(0, 0} corresponds to Euclidean structure.

Mapping class group action is the linear action of GL(2,Z) on R2.

The orbit space — the moduli space of complete affine compact
orientable 2-manifolds is non-Hausdorff and intractable.

() Geometric Structures on Manifolds
Geometry and Arithmetic of Lattices London

/ 24



Chaotic dynamics of the mapping class group

(Baues) Deformation space homeomorphic to R2.

Origin {(0, 0} corresponds to Euclidean structure.

Mapping class group action is the linear action of GL(2,Z) on R2.

The orbit space — the moduli space of complete affine compact
orientable 2-manifolds is non-Hausdorff and intractable.

Contrast with the moduli space of Euclidean structures — the
quotient of H2 × R+ by PGL(2,Z) acting properly discretely.
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Classification of Ehresmann structures

For fixed topology Σ and geometry (G ,X ) define a deformation space
D(G ,X )(Σ) of marked (G ,X )-structures on Σ.
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Classification of Ehresmann structures

For fixed topology Σ and geometry (G ,X ) define a deformation space
D(G ,X )(Σ) of marked (G ,X )-structures on Σ.

The holonomy mapping

D(G ,X )(Σ)
hol
−−→ Hom(π,G )/G

is a local homeomorphism,
but it may not be covering-space.

Hom(π,G ) is an R-algebraic set...
but it may be singular.

G acts algebraically on Hom(π,G ) ...
but the action may not be locally free and may not be proper.

Mod(Σ) acts on D(G ,X )(Σ)...
but the action may not be proper and may not be free.

Isomorphism classes of (G ,X )-structures on Σ correspond to
Mod(Σ)-orbits on D(G ,X )(Σ).
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