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Motivation

 Field theory motivation:
 Strongly coupled fields in curved spacetime.
 Stepping stone for full-blown quantum gravity.

 AdS/CFT motivation:
 General constraints on bulk spacetimes.
 New insights into the detailed workings of the correspondence.

 Phenomenological motivation:
 Limiting case of induced gravity (brane-world) models.



An invitation to QFTs on curved spacetime

 Quantum fields in curved spacetime are rife with many 
interesting physical phenomena:
 nature of the vacuum 
 particle production
 The details are important to : 
 understand inflationary cosmology
  Hawking radiation

 Learnt lots in the last 4 decades, but at the level of free fields.



An invitation to QFTs on curved spacetime

 Can one tackle strongly coupled QFTs on curved spacetime 
backgrounds?
 Are there qualitative differences from the behaviour of weakly 

coupled quantum fields?
 Can there be non-trivial phase structure/transitions?
 Derive quantitative results for vacuum polarization effects?
 e.g. expectation value of expectation values of appropriate 

operators (stress tensor).



A sampling of possibilities 

 Explore a class of strongly coupled field theories on various 
curved manifolds.
 Main tool: the holographic gauge/gravity duality.

Hubeny, Marolf, MR Marolf, MR, van Raamsdonk Aharony, Marolf, MR

 QFTs on asymptotically flat  backgrounds  (          ) 
 QFTs in cosmological spacetimes   (          )
 QFTs in negatively curved backgrounds  (          )

Λ = 0

Λ > 0

Λ < 0



The AdS/CFT correspondence: Basic dictionary

 AdS/CFT relates dynamics of a class of strongly coupled field 
theories to string theory in an asymptotically AdS spacetime. 
 However, in a suitable limit   c or N >> 1, λ >>1, restrict attention 

to the massless closed string modes → gravity limit.
 Canonical example N = 4  SYM in four dimensions which is dual 

to gravity on AdS5 X S5.

 Strong-weak duality allows one to probe dynamics in strongly 
coupled gauge theories.
 Phase structure of the field theories maps to the classical phase 

structure of gravitational solutions.



The AdS/CFT correspondence: Basic dictionary

Global AdS is like a cylinder with a time-like 
boundary which is a copy of the Einstein Static 
Universe (Lorentzian cylinder). 

We will also have occasion to use the 
Poincare patch where the boundary is a 
copy of Minkowski spacetime.

z = 0

z

�

xµ



AdS/CFT’s role in strongly coupled field theories

 Consider a boundary field theory on a non-dynamical  curved 
spacetime background with a prescribed metric γµν.
 QFT dynamics is governed at strong coupling by ``asymptotically 

locally AdS’’ geometries.

 Focus on situations where we turn on a non-trivial (non-
dynamical) gravity background for our field theory. 
 Non-normalizable mode (source) for gravity

 ⇒ restrict attention to the universal sub-sector (consistent 
truncation) involving  only bulk metric dynamics.



AdS/CFT’s role in strongly coupled field theories

  Can’t get all the data from a Fefferman-Graham expansion 
  Don’t know & would like to compute the response of the field 

theory to the background curvature:  <Tµν>.

 Want solutions, Md+1, to Einstein’s equations with negative cc 
with the bulk metric asymptoting to Bd with chosen metric  γµν.

limit, there exists a class of theories which can be understood via the AdS/CFT corre-

spondence. While we will specifically have such holographic models in mind, we hope that

the general lessons extracted here will continue to hold in the case of physically interesting

theories.

The essence of the AdS/CFT correspondence is that the strongly coupled field theory

dynamics is recorded in terms of string theory (or classical gravity if the field theory admits

an appropriate planar limit) with appropriate asymptotically Anti-de Sitter boundary con-

ditions. If the bulk AdS spacetime geometry is some negatively curved (d + 1)-dimensional

Lorentzian manifold, Md+1, with conformal boundary ∂Md, then the field theory lives on a

spacetime Bd of dimension d in the same conformal class as ∂Md. Choosing an appropriate

conformal frame, one may identify Bd and ∂Md and speak of the field theory as living on

the AdS boundary. From the standpoint of the bulk theory, the choice of metric on Bd fixes

a boundary condition that the bulk solution must satisfy.7 The correspondence is simplest

to state for conformal field theories in dimensions where the trace anomaly vanishes, but

with appropriate care the correspondence also holds in the presence of a trace anomaly and

it can accommodate non-conformal deformations.

Given this set-up we can probe the detailed phase structure of strongly coupled CFTs

on de Sitter spacetime simply by taking the boundary manifold B = dSd. The space of field

theory states on dSd then is simply the same as the classical solution space of asymptotically

locally AdS states of string theory subject to the boundary condition above. In the planar

limit of the field theory, the latter is essentially the solution space of classical (super-)gravity

with the given boundary condition. The different phases of the CFT on dSd should thus

correspond to different bulk spacetime geometries Md+1 in this solution space.

Let us therefore consider a CFT in d-dimensions which we know has a holographic dual in

terms gravity in AdSd+1 spacetime. Protypical examples of such CFTs are the N = 4 Super

Yang-Mills theory or other N = 1 superconformal field theories in four dimensions obtained

by placing D3-branes at various singularities. Likewise examples in other dimensions can be

constructed by placing other brane configurations available in string/M-theory at appropriate

singularities. For all such examples the conformally invariant vacuum state of the CFT on

ESUd ≡ R× Sd−1 is just dual to the global AdSd+1 spacetime.

To investigate the CFT dynamics on dSd it suffices to consider the universal sector of

the AdS/CFT correspondence, wherein the bulk spacetime Md+1 is a solution to Einstein’s

equations with a negative cosmological constant. The bulk action is therefore taken to be8

Sbulk =
1

16πG(d+1)
N

�
dd+1x

√
−g (R− 2Λ) , (3.1) bulkact

7In standard AdS/CFT parlance, this amounts to fixing the non-normalizable mode of the bulk graviton
to obtain the desired metric on Bd.

8We will use gAB to denote the bulk metric on Md+1 with uppercase Latin indices indicating the bulk
spacetime dimensions. The metric on Bd will be denoted as γµν with lowercase Greek indices labeling
boundary directions.
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ds2 =
dz2 +

�
γµν + · · ·+ zd Tµν dwµ dwν + · · ·

�

z2

cf. Janik’s talk



A sample of previous work

 Studies of N = 4 SYM on various backgrounds:

 squashed spheres

 near horizon geometry of extreme black holes, AdS2 X S2.

 perturbed boundary metric (isotropization)

Copsey, Horowitz

Kaus, Reall Suzuki, Shiromizu, Tanahaski

Chesler, Yaffe Bhattacharyya, Minwalla Beuf, Heller, Janik, Peschanski



QFTs in black hole backgrounds

Study quantum fields on 
black hole backgrounds, say 
the asymptotically flat 
Schwarzschild black hole 
with a horizon at r+.

ds2∂ = γµν dx
µ dxν = −f(r) dt2 +

dr2

f(r)
+ r2 dΩ2

d−2

f(r) = 1−
rd−3
+

rd−3

Fig. 2: Penrose digram for de Sitter spacetime in d dimensions. The static patch associated with the
observer on the north pole of the Sd−1 is shown as the shaded region. Lines of constant t are
indicated as the solid (blue) curves. The dashed lines are the cosmological horizons, with H±

being the future/past cosmological horizons of the static observer.

I +

I −

H+

H−

North pole

of Sd−1

f:staticp

that there is a heat bath sitting at, or just in front of the de Sitter horizon in order to hold

the temperature at a temperature different from TdS. In this picture, the geometry does not

smoothly continue through the horizon because we run into the heat bath which is visible

as the conical singularity in S
d
χ.

If we were considering perturbative quantum fields, we would perform the Euclidean

path integral for the field theory on S
1
χ to compute say local correlation functions. On the

other hand, for theories with a gravity dual description, the equilibrium state of the field

theory for general T and H will be determined by the minimum action bulk solution of the

appropriate gravity theory with boundary geometry S
d
χ. It is important to note that despite

the conical singularity in the boundary geometry for χ �= 2π, the bulk geometry can be

completely non-singular.6

3 Holographic duals of CFTs on de Sitter spacetime

s:cftds
As described in the Introduction, we wish to investigate strongly interacting quantum fields

in de Sitter spacetime. While generic theories are hard to understand in the strong coupling

6To illustrate this, consider an (American) football-shaped region of flat Euclidean space. The interior of
the football is clearly non-singular, but the boundary has conical singularities at the ends of the football.
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QFTs on asymptotically flat bh spacetimes

 Hawking: black holes radiate thermally. 
 Equilibrium state: Hartle-Hawking vacuum is thermal.
 For Schwarzschild black hole

 ∃ other states of interest, e.g., stationary  Unruh state (relevant for 
stationary Kerr bhs).

TH =
d− 3

4π

1

r+

 More generally, consider spacetimes, with multiple length scales:
 horizon size R
 temperature T



QFTs on asymptotically flat bh spacetimes

 Extract <Tµν> using heat kernel techniques for free fields.
 Conformally coupled scalar field in 4 dimensions: 

Page ’82

Tµ
ν =

π2 T 4

90

�
A
�r+

r

� �
δµν − 4 δµ0 δ0ν

�
+B

�r+
r

� �
3 δµ0 δ0ν + δµ1 δ1ν

��

A(x) =
1− (4− 3x)2 x6

(1− x)2
, B(x) = 24x6

 Thermal far from the black hole and regular on the horizon. 
 Local energy density is negative near the horizon (due to vacuum 

polarization). 



Strongly coupled CFTs on asymptotically flat bh spacetimes

 Consider strongly coupled QFT (SU(N) N = 4 SYM) on  
Schwarzschild background. 
 For the Hartle-Hawking state of the field theory:
  <Tµν> ~ N2 (TH)4  ⇒ theory in deconfined phase.
 N = 4 SYM is a CFT and the only scale is set by the temperature. 

2.1 Brief Review: Deconfinement transitions in AdS/CFT

It is useful to begin by reviewing the AdS/CFT description of the confinement/deconfinement

transition; we will first discuss the case where there is no black hole on the boundary.

Moreover, we take Bd to have compact spatial sections where there is a sharp transition in

the planar (large N) limit. For instance, one can consider a CFT on the Einstein Static

Universe, i.e., Bd = R × Sd−1, which is the boundary of the global AdS spacetime. As a

prototype example, the reader can keep in mind the phase structure of the four dimensional

N = 4 Super-Yang Mills (SYM) in d = 4, but the discussion extends analogously to other

dimensions.

At low temperature we have the confined phase with O(1) free energy and at high tem-

peratures a deconfined phase with O(c) free energy, where c is the central charge7 of the

CFT which we take to scale as c ∼ Nα. In the case of N = 4 SYM, α = 2, reflect-

ing the non-abelian gluon degrees of freedom. In the holographic dual this transition is the

Hawking-Page transition [31] where the thermal AdSd+1 geometry exchanges dominance with

the Schwarschild-AdSd+1 spacetime [32].8 The phase transition occurs at the deconfinement

temperature TD which is set by the curvature radius of the Sd−1 (which is the only other

dimensionful parameter in the problem if we consider conformal field theories).

One can also consider the situation where the boundary is just a Minkowski space, Bd =

Rd−1,1, which is of greater relevance to our immediate considerations. In this case there isn’t

a phase transition since the only scale in the problem is the temperature. As we will describe

below, at any non-zero temperature the field theory always prefers to live in the deconfined

phase. Formally, however, one can consider the two distinct phases and their dual geometries

to gain intuition for the physics of the field theories. The relevant bulk solutions are i) pure

AdSd+1 spacetime expressed in a conformal frame such that the boundary metric just the

flat Minkowski metric, e.g.,

ds2

planar AdS
=

1

z2

�
−dt2 + dx2

d−1
+ dz2

�
, (2.2)

which is dual to the confined phase, and ii) the planar Schwarschild-AdSd+1 black hole,

ds2

planar BH
=

1

z2

�
−df(z) dt2 + dx2

d−1
+

dz2

df(z)

�
, (2.3)

dual to the deconfined phase. Here and below we use t, xi to denote coordinates along the

7The central charge c can be defined either from the two point function of the energy momentum tensor,
or by looking at the entropy density of a CFT at finite temperature, which from dimensional analysis scales
as s ∼ c T d−1.

8A similar confinement-deconfinement transition can be seen at weak coupling as well for four dimensional
large N gauge theories on compact spatial manifolds [33, 34]. See also [35] for analogous results for three
dimensional Chern-Simons matter theories.
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boundary at z = 0. In this sense, z is a radial coordinate in AdS. In addition we have

df(z) = 1− zd

zd
0

, (2.4)

so that the horizon is located at z = z0 and has temperature T =
d

4π z0
. The stress tensor

of the large N field theory is given by the boundary stress tensor (aka “holographic stress

tensor”) of the bulk solution [36, 37], which is readily computed (following, say, [38]) from

the Fefferman-Graham expansion [39]; i.e., by expanding the metric in powers of z in the

above coordinates. One finds (see for example [40]):

T planar AdS

µν = 0, T planar BH

µν =
(πT )4

16πG(d+1)

N

(ηµν
+ 4 δµ

t δν
t ) . (2.5)

In particular, we should note that the correspondence relates the central charge of the field

theory to the AdS radius measured in Planck units, i.e., c =
�d−1
d+1

16 π G(d+1)
N

, providing the desired

mapping between the field theory and the gravitational parameters. In the case of N = 4

SYM in four dimensions we have c = N2 =
π

2πG(5)
N

. The planar black hole corresponds to

a field theory state with stress energy of order c, consistent with the interpretation as a

deconfined phase.

Comparing the free energies of the corresponding Euclidean spacetimes, one finds that

the planar black hole has lower free energy for any T > 0. In fact, for T > 0 the confined

phase is thermodynamically unstable. This can be seen from the fact that the horizon of

(2.2) is degenerate. As a result, while the thermal circle in the Euclidean solution shrinks to

zero size near the horizon, it remains non-contractible. This means that strings wrapped on

the thermal circle have a tachyon near the horizon [41], rendering the phase unstable.9 In

contrast, the planar black hole is thermodynamically stable.

2.2 Boundary black holes and deconfined plasmas: the bulk description

It is an interesting fact that, for the only known asymptotically locally AdS solutions with

asymptotically flat boundary black holes, the boundary stress tensor vanishes far from the

black hole [16, 17]. These solutions are essentially the Schwarzschild black string solution

of [15] up to minor modifications.10 Numerical investigations to date [25, 27] also suggest

solutions of this sort; see however [28].11 As a result, these solutions appear to represent a

confined phase of the dual field theory in the black hole background.

9
A similar instability would be expected in any theory of quantum gravity that allows topology change,

as reducing the size of the infinite throat tends to decrease the action.

10
Ref. [17] cuts off the singular part of the solution with a so-called IR brane. Perhaps a nicer modification

is to replace the boundary metric with a Schwarzschild black string compactified on a Scherk-Schwarz circle

so that the spacetime develops a smooth IR floor. See §5 for comments on this situation.

11
Here the numerical investigations have been carried out for the case of braneworld models with a UV

brane located at a finite radial scale in the bulk AdS spacetime so that gravity on the brane is also dynamical.
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 Finite temperature N = 4 SYM on Minkowski spacetime has a 
holographic dual which is a black hole in AdS5.

T =
d

4π z0



QFTs on asymptotically flat bh spacetimes

z = 0

z

�

r → ∞

  First guess for N = 4  on Schwarzschild: bulk horizon is given by 
local temperature

Tlocal =
1�
f(r)

TH

Strongly coupled CFTs on asymptotically flat bh spacetimes

  Necks get thinner; instability?
 Schwarzschild is tricky: decouple TH and R.



New black hole spacetimes in AdS

 Dominant solution for any given non-dynamical boundary 
metric depends on the dimensionless combination of

  characteristic horizon size
 boundary Hawking temperature

 Phase transitions as we move in the space of boundary metrics?
 Schwarzschild exactly on the boundary TH R = 1.
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Qualitative new behaviour of QFTs

 Expect field theory for large TH to be a deconfined plasma: 
 Funnel phase: plasma couples strongly to the black hole.  
 Droplet phase: plasma couples weakly to the black hole.

 Interaction between the (deformed) planar bh and the droplet is 
suppressed by powers of c or N → achieved by bulk Hawking 
radiation.
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Explicit examples

  1+1 dim CFT on a 2 dim black hole background:

ds2 = − tanh2 r dt2 + dr2

ds2 =
1

z2
�
−f(r, z) dt2 + g(r, z) dr2 + dz2

�

 In Fefferman-Graham gauge with the bulk metric ansatz:

 Einstein’s equations can be solved analytically

f(r, z) =
1

16

�
4 tanh r + z2

1− 2 r+ cosh4 r

sinh r cosh3 r

�2

g(r, z) =

�
1 + z2

2 r+ cosh4 r − 1− 4 sinh2 r

4 sinh2 r cosh2 r

�2



Explicit examples

z

AdS boundary
Boundary black hole

r

 Bulk event horizon at:
zH(r) =

2 cosh r�
cosh2 r + 1

, & r = 0

 ∃ one-parameter family of solutions where the bulk  horizon has 
a constant temperature, different from that of the boundary bh.



QFTs in de Sitter

Study quantum fields on de 
Sitter with Hubble scale H. 
Concentrate on the static patch.

ds2∂ = γµν dx
µ dxν = −f(r) dt2 +

dr2

f(r)
+ r2 dΩ2

d−2

Fig. 2: Penrose digram for de Sitter spacetime in d dimensions. The static patch associated with the
observer on the north pole of the Sd−1 is shown as the shaded region. Lines of constant t are
indicated as the solid (blue) curves. The dashed lines are the cosmological horizons, with H±

being the future/past cosmological horizons of the static observer.
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that there is a heat bath sitting at, or just in front of the de Sitter horizon in order to hold

the temperature at a temperature different from TdS. In this picture, the geometry does not

smoothly continue through the horizon because we run into the heat bath which is visible

as the conical singularity in S
d
χ.

If we were considering perturbative quantum fields, we would perform the Euclidean

path integral for the field theory on S
1
χ to compute say local correlation functions. On the

other hand, for theories with a gravity dual description, the equilibrium state of the field

theory for general T and H will be determined by the minimum action bulk solution of the

appropriate gravity theory with boundary geometry S
d
χ. It is important to note that despite

the conical singularity in the boundary geometry for χ �= 2π, the bulk geometry can be

completely non-singular.6

3 Holographic duals of CFTs on de Sitter spacetime

s:cftds
As described in the Introduction, we wish to investigate strongly interacting quantum fields

in de Sitter spacetime. While generic theories are hard to understand in the strong coupling

6To illustrate this, consider an (American) football-shaped region of flat Euclidean space. The interior of
the football is clearly non-singular, but the boundary has conical singularities at the ends of the football.
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f(r) = 1−H
2
r
2



Field theories in de Sitter

 Vacuum state of global de Sitter obtained by analytically 
continuing the Euclidean Bunch-Davies vacuum.
 Static observer sees the Gibbons-Hawking vacuum which is 

thermal at the de Sitter temperature.
The Euclidean vacuum in de Sitter spacetime may be characterized by a temperature

TdS related to the Hubble parameter by [2]

TdS =
1

2π
H ≡ 1

2πRdS

. (2.5)

Physically, an observer on a timelike geodesic equipped with an Unruh detector will observe

a thermal bath of particles at this temperature.

Note that the de Sitter invariant vacuum state is well defined on the entire manifold. One

can choose to view this state in the static patch, where a local observer would associate the

thermal nature of the vacuum to the presence of his/her cosmological horizon. This is similar

to the Hartle-Hawking state of black holes and describes the sensible equilibrium state in

the geometry. In particular, it is worth noting that the state is regular on the cosmological

horizon (this follows from the Euclidean continuation).

2.3 Thermodynamics in the static patch of de Sitter Space
s:staticp

As we have reviewed, quantum field theory in the de Sitter-invariant vacuum state has a

characteristic temperature inversely proportional to the de Sitter radius. However, in the

static patch of dS, it is also possible to study field theory at other temperatures, as we now

explain.

In the static patch description of dS we have a timelike Killing vector ∂t, and thus a

conserved energy (which can be defined by integrating T
00 over a surface of constant t), see

Fig. 2. This is all we need to discuss the usual thermodynamic ensembles for quantum field

theory as long as we restrict attention to the static patch. In particular, we can thus ask

about the equilibrium state in the canonical ensemble for any given H and any temperature

T which may not be equal to the de Sitter temperature; this should be the state of minimum

free energy. For any field theory, we can draw a phase diagram as a function of these two

variables.

To understand the issues involved here a bit better, it is useful to pass to the Euclidean

geometry. Analytically continuing t → −i tE and redefining r = H
−1 sin θ one has the

standard round metric on Sd, with tE now being identified as one of the angular isometries:

ds
2 =

1

H2

�
cos2 θ dt2

E
+ dθ2 + sin2 θ dΩ2

d−2

�
. (2.6) geom

This geometry would be non-singular only if we take the period of tE to be 2π
H

and thus the

state of the Euclidean QFT to be at TdS. We can nevertheless pick a different periodicity

for tE, say tE ∼ tE + 1
T

which corresponds to a temperature T �= TdS. We denote such

geometries as Sd

χ characterized by the dimensionless ratio χ ≡ H

T
. This Euclidean manifold

has singularities at θ = ±π
2 which map in the Lorentzian spacetime to the de Sitter horizon.

As long as we do not try to extend the geometry through the de Sitter horizon, there is

nothing pathological about the associated Lorentzian spacetime. Physically, we can imagine
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 Consider a QFT which is known to undergo a confinement-
deconfinement transition in Minkowski spacetime.
 What happens when we put this theory on de Sitter with time 

varying cosmological constant?
 Is there a phase transition as Hubble radius increases/decreases 

past a critical value?



Warm up: CFTs in the static patch

 A CFT in de Sitter sees only the thermal scale associated with 
cosmic acceleration TdS.
 What happens if we restrict to the static patch and heat up a CFT 

to a temperature different from TdS?

 For free field theories this clearly makes sense: imagine a heat 
source located on/just behind the cosmological horizon.
 In fact, makes sense even for strongly coupled field theories.

 However, phase structure of the theory is trivial despite existence 
of a dimensionless scale T/H.



Warm up: CFTs in the static patch

 Dual solutions are hyperbolic AdS black holes interpreted in a 
conformal frame, where boundary is de Sitter

the static Killing field ∂t of de Sitter maps to the static Killing field of the hyperbolic cylinder

as can be see by writing:

ds
2 = (1−H

2
r
2)

�
−dt

2 +
dr

2

(1−H2 r2)2
+

r
2

1−H2 r2
dΩ2

d−2

�
(3.11)

and performing the coordinate change H r = tanh ξ. Therefore, if one has the holographic

duals for the hyperbolic cylinder with Euclidean time period given by T
−1 with T �= TdS,

then by the above described Weyl rescaling one can immediately construct the duals for the

static patch of dSd with T �= TdS (or equivalently for the boundary Eulcidean manifold S
1
χ).

Fortunately, such solutions are indeed known; these are the hyperbolic (also referred to

sometimes as topological) black holes described in [36, 37, 38]. In addition, it was argued in

[36, 37] that these are the unique solutions with the desired symmetries and thus that there

are no phase transitions for the dual gauge theory on R × Hd−1. It follows that there are

again no phase transitions on de Sitter as a function of T/TdS.

The metric for the hyperbolic black hole geometries takes the form:

ds
2 = −f(ρ) dt2 +

dρ2

f(ρ)
+ ρ2 dΣ2

d−1 , f(ρ) =
ρ2

�2d+1

− 1− ρd−2
+

ρd−2

�
ρ2+
�2d+1

− 1

�
(3.12)

where dΣ2
d−1 = dξ2 + sinh2 ξ dΩ2

d−2 is the metric on the Euclidean hyperboloid. This bulk

d + 1 dimensional spacetime has a horizon at the zero locus of f(ρ) and the corresponding

Euclidean solution will be regular provided

tE ∼ tE + β , β ≡ T
−1 =

4π �2d+1 ρ+
d ρ2+ − (d− 2) �2d+1

. (3.13)

Given this hyperbolic black hole (3.12), all we need to do is perform a diffeomorphism in

the bulk that acts as a boundary conformal transformation, achieving the mapping indicated

in (3.11). This is easily done for instance by defining

r =
1

H
tanh ξ (3.14)

which results in the metric

ds
2 =

ρ2

1−H2 r2

�
−f(ρ)

ρ2
(1−H

2
r
2) dt2 +

dr
2

1−H2 r2
+ r

2
dΩ2

d−2

�
+

dρ2

f(ρ)
. (3.15)

We claim that (3.15) are the bulk geometries appropriate to describe the dynamics of CFTs

on the static patch of dSd at temperature T given by (3.13), which in general differs from

the de Sitter temperature TdS. Of course, for the particular case T = TdS, the metric (3.15)

differs from (3.3) only by a simple coordinate change.

Having identified the relevant holographic dual geometries we are in a position to answer

physical questions about the dynamics of CFTs at T �= TdS on the static patch of dSd. The
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 Bulk solutions are completely regular, but the stress tensor 
induced on the boundary diverges on the cosmological horizon.

which results in the metric

ds
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ρ2 H2
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We claim that (??) are the bulk geometries appropriate to describe the dynamics of CFTs

on the static patch of dSd at temperature T given by (??), which in general differs from the

de Sitter temperature TdS. Of course, for the particular case T = TdS, the metric (??) differs

from (??) only by a simple coordinate change.

Having identified the relevant holographic dual geometries we are in a position to answer

physical questions about the dynamics of CFTs at T �= TdS on the static patch of dSd. The

simplest observable one can extract from the holographic dual is the quantum expectation

value of the stress tensor. As described in §?? one can compute this by using the holographic

prescription of [?, ?]. Fortunately, our task is simplified for the case of odd dimensional

de Sitter spacetimes (d odd) since one can obtain the result by following the conformal

transformation.

First of all note that the boundary stress tensor for the hyperbolic black hole (??) has

been previously determined in [?]:

T
µ
ν =

1

16 πG
(d+1)
N �d+1

�
ε+

ρd−2
+

�d−2
d+1

�
ρ2+
�2d+1

− 1

��
diag

�
1− d, 1, 1, · · · , 1

�
(3.16)

where

ε =
(d− 1)!!2

d!
for even d , (3.17)

and vanishes for odd d. We then note that under a Weyl rescaling of the metric gµν = e
2φ
g̃µν

the stress tensor transforms as T
µ
ν = e

−dφ
T̃

µ
ν . This suffices to explicitly determine the

boundary stress tensor for CFTs on dSd for odd d – in particular, we find the following

stress tensor on the static patch of de Sitter with temperature T in terms of the central

charge c =
�d−1
d+1

16πG(d+1)
N

) of the CFT:

T
µ
ν = c

H
d

(1−H2 r2)
d
2

ρd−2
+

�d−2
d+1

�
ρ2+
�2d+1

− 1

�
diag

�
1− d, 1, 1, · · · , 1

�
(3.18)

The expression for the one-point function of the stress tensor (??) is accurate for odd

d because there is no conformal anomaly in odd dimensions. For even dimensional CFTs,

the above expression does not capture the conformal anomaly. One then indeed has to

use the covariant formalism of boundary stress tensor or transform to Fefferman-Graham

coordinates to extract the expectation value of the stress tensor. For example in d = 4 one

would find a coordinate transformation

(ρ, r) → (z, r̄) (3.19)

16



Visulaizing the solutions

 The bulk solutions schematically look like:

 Very curious feature: bulk horizon knows about T not TdS.
 NB: cosmological horizon is continuously connected to the bulk 

black hole horizon.

AdS boundary

Boundary dS horizons

Bulk horizon



Confining theories on de Sitter

 A simple model of confining theories on de Sitter can be 
obtained by Scherk-Schwarz compactification (on a circle of 
radius R) of CFTs. 

 e.g. N = 4 SYM on dS3 X S1.
 Holographic duals simple the → boundary geometry is simply 

a double Wick rotation of the Einstein Static Universe.
 Two geometries with the chosen boundary  which exchange 

dominance  at a critical value of H (for fixed R).

Aharony, Fabinger, Horowitz, Silverstein Balasubramanian, Ross

Hutasoit, Kumar, Rafferty

Ross, Titchener Balasubramanian, Larjo, Simon



Confining theories on de Sitter

 Lorentzian geometries in question are:

Fig. 1: The geometries relevant for holographic descriptions of confining theories on de Sitter space-
time: (a) the bubble of nothing spacetime in AdS and (b) the Bañados black hole. The outer
cylinder in both cases is the AdS boundary. For the bubble of nothing, the part of the space-
time behind the bubble whose trajectory is shown is not part of the spacetime manifold. For
the Bañados black hole we have sketched the causal diagram: the singularities are hyperbolae
located behind an event horizon H+ ∪H−. The curious feature of this solution is that it has
a bifurcation point, as opposed to a regular bifurcation surface encountered for more familiar
black hole spacetimes. .

Bubble wall Bifurcation point

Future singularity

Past singularity

H+

H−

(a) (b)

of a holographic dual for QCD. To obtain a confining gauge theory that can be studied

using holographic methods, we consider a conformal field theory compactified on a circle

with antiperiodic boundary conditions for fermions (i.e. Scherk-Schwarz compactification).

As we will review, the the resulting lower-dimensional theory is confining, and in particular,

undergoes a deconfinement phase transition at a temperature of order the Kaluza-Klein

scale. To study confining gauge theory on dSd−1, one need only study conformal field theory

on S1
SS× dSd−1. The scale of confinement is simply the radius R of the S1

SS, and we will

keep this fixed as we vary the Hubble parameter of the de Sitter space. The equilibrium

state of the field theory for a given H is the state dual to the asymptotically locally AdSd+1

geometry whose boundary geometry is S1
SS× dSd−1. As noted in [10] following earlier work

[4, 5, 6, 7, 8, 9], it is easy to see using the Euclidean picture that one indeed has a non-trivial

phase transition in this set-up. Since the Euclidean continuation is an AdS spacetime with

boundary Sd−1 × S1
SS, this is nothing but the familiar Hawking-Page transition [14, 15].

The current set-up is simply a double Wick rotation of the situation discussed in [15]; one

starts with Sd−1 × S1
SS and analytically continues the Sd−1

into dSd−1 in contrast to the

usual Hawking-Page story where one analytically continues the S1
SS to obtain a Lorentzian

spacetime.

In §4.2, we review the qualitative properties of the dual gravity solutions as a function

of HR. For small HR the dual gravity solution is the well known “bubble of nothing”

5

First of all on can eliminate the class of solutions (4.10) with ρ+ ≤ H �2d+2 as they corre-

spond to unstable saddle points of the Euclidean path integral.13 From the Euclidean action

computation of [15], one can then learn that the large ρ+ solution (4.10) and the second

solution (4.12) with ρ+ = 0 exchange dominance at a critical radius. More specifically, the

critical ratio of circle radius to sphere radius RS1
SS
/RSd in the boundary geometry for which

the transition occurs is given by

RS1
SS
/RSd =

1

d
. (4.14)

In terms of the parameters in the metric above, this translates to

H =
1

dR
. (4.15)

In terms of the de Sitter temperature TdS and the critical temperature Tc for the Minkowski

space phase transition, we have

TdS =
Tc

d
. (4.16)

Perhaps surprisingly, the transition occurs when the de Sitter temperature is lower by a

factor of d than the critical temperature in Minkowski space!

4.2.2 Lorentzian geometries dual to confining theories on de Sitter

Having seen the Euclidean description of confining theories on de Sitter, we now return to

discussing the Lorentzian geometry and investigate the properties of the two solutions, (4.9)

with the function f(ρ) being given by (4.10) and (4.12) respectively. The relevant spacetimes

in coordinates covering the static patch of de Sitter are simply

ds
2 =

ρ2

�2d+2

�
−(1−H

2
r
2) dt2 +

dr
2

1−H2 r2
+ r

2
dΩ2

d−2 + f(ρ) dχ2

�
+

�
�d+2

ρ

�2
dρ2

f(ρ)
. (4.17)

As mentioned earlier, for f(ρ) given by (4.10) we have the AdS “bubble of nothing”

spacetime [4], with spacetime ending smoothly at the radius ρ = ρ+ defined in (4.11). From

the point of view of the confining gauge theory, the existence of a bubble of nothing is quite

natural: the spacetime has to cap off in the IR, and if the geometry on which the field

theory lives is quite flat relative to the QCD scale, one might expect that the full spacetime

to look like a “thickened” version of the boundary. This solution smoothly goes over to the

zero-temperature Minkowski solution (4.17) for H → 0, as we should expect.

On the other hand for HR > 1/d, the solution with lower Euclidean action takes the

same form as in (4.17), but now we take f(ρ) as given by the second solution (4.12) above.

This solution has a horizon at ρ = 0, so immediately, we see that it shares one feature with

the deconfined solution (4.6). However, the nature of the horizon is somewhat different,

since the entire de Sitter factor in the metric goes to zero at this point. One might worry

13This can be seen by noting that for ρ+ ≤ H �2d+2 that the Euclidean fluctuation operator (Lichnerowicz
operator) has a single negative mode in its spectrum [41, 42].
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 The phase transition happens at a lower value of cosmic 
temperature (benchmark against the Minkowski transition point).

bubble of nothing topological bh



Interpolating from Minkowski to de Sitter

 Continously connect Minkowski confinement/deconfinement 
transition to the cosmological phase transition? 
 Indications from perturbation theory in H 
 Again de Sitter QFTs with T different from TdS.

T

H

T

?

confined

deconfined

c

T = H/(    )2π



QFTs on AdS black holes

Interacting field theories on 
AdS black hole backgrounds
e.g. Schwarzshild AdS (SAdS).

ds2∂ = γµν dx
µ dxν = −f(r) dt2 +

dr2

f(r)
+ r2 dΩ2

d−2

f(r) =
r2

�2
+ 1−

�r+
r

�d−3
�
r2+
�2

+ 1

�

with

fd(r) =
r2

�2
+ 1−

�r+
r

�d−3
�
r2+
�2

+ 1

�
. (2.2)

where � determines the AdS scale and r+ is the horizon radius. While small AdSd black

holes (those with r+ �
�

d−3
d−1 �) are similar to their asymptotically flat counterparts, the

thermodynamic properties of large AdS black holes are quite different. For example, large

AdS black holes have positive specific heat and are thermodynamically stable, while asymp-

totically flat black holes are thermodynamically unstable. This difference results from the

interaction between the horizon and the asymptotically AdS boundary conditions and has

much to do with the diverging redshift experienced by observers near AdS infinity. This

fact plays an important role in the AdS/CFT correspondence where the large black holes in

AdSd are dual to the high temperature phase of the dual field theory.

The temperature of a Schwarzschild-AdSd black hole is

TH =
(d− 1) r2+ + (d− 3) �2

4π r+ �2
. (2.3)

However, from the point of view of local dynamics in these spacetimes, the diverging redshift

near the boundary ensures that the high temperatures associated with large values of r+ are

not locally observable. In particular, for a free field in the Hartle-Hawking state outside a

large Schwarzschild-AdS black hole, no static observer ever experiences a local temperature

significantly greater than the Unruh temperature associated with their proper acceleration,

despite the fact that the black hole temperature TH diverges as r+ → ∞. While the state is

not precisely thermal with respect to freely falling observers, it is nevertheless true that no

local freely falling observer anywhere outside the horizon would find significant excitations

above the AdS scale; see for example [18]. This fact may come as a surprise to readers

most used to thinking about asymptotically AdS spacetimes as the AdS (or bulk) side of the

AdS/CFT correspondence. However, one should recall the key role played in AdS/CFT by

the conformal rescaling performed to obtain field theory observables in the latter context.

By stripping off the leading r2 fall-off in the gravitational potential, the AdS/CFT dictionary

relates local results in the CFT to the global AdS temperature (2.3).

A simple argument that local AdS measurements do not see high temperatures is to

recall that large Schwarzschild-AdSd black holes are well-approximated by so-called planar

AdS black holes with translationally invariant horizons. In particular, for r+ � �, (2.1) with

(2.2) reduces to

ds2 = −r2

�2

�
1− rd−1

+

rd−1

�
dt2 +

dr2

r2

�2

�
1− r

d−1
+

rd−1

� + r2 dx2
d−2 . (2.4)

Now any two such planar black holes are related by a diffeomorphism (see e.g. [19]), since

the parameter r+ can be absorbed by scaling the coordinates t,x. This means that local

5



QFTs on asymptotically AdS bh spacetimes

 SU(N) N = 4 SYM on AdS black hole background. 
 Nature of the Hartle-Hawking state?
 Is it thermal? 
 Boundary conditions? (AdS is not globally hyperbolic)

 Will use transparent boundary conditions. 

 Role of AdS asymptopia:
 thermodynamics of AdS bhs is quite different
 global properties differ, e.g. rotating AdS bhs admit Hartle-
Hawking state (small rotation). 



Local Quantum Fields in AdS bh background

 Local quantum field in SAdS  does not see the Hawking 
temperature due to the divergent red-shift.
 Equilibrium state around a SAdS black hole won’t necessarily be 

thermal. 
 N = 4 SYM on a large radius SAdS background <Tµν> ~ O(1) in the  

Hartle-Hawking state.
 Naively might have expected <Tµν> ~ O(N2).

 Aside: AdS/CFT works around this by instructing us to 
conformally rescale the boundary data which compensates for the 
red-shift.

Gregory, Ross & Zegers

Fitzpatrick, Randall, Wiseman



3d CFTs on BTZ: dual geometries

 Consider the static, spherically symmetric global AdS4  spacetime:

of dS2 into the black hole horizon of BTZ.

Let us therefore start with a static, spherically symmetric, asymptotically AdS4 spacetime

in global coordinates:

ds2 = −f(ρ) dT 2 +
dρ2

f(ρ)
+ ρ2

�
dθ2 + sin2 θ dΦ2

�
(4.5)

for some f(ρ) which asymptotes as ρ→∞ to ρ2

L2 + 1−O (ρ−1). A double Wick rotation

T = i χ , Φ = i t̃ (4.6)

then casts the metric (4.5) into the form

ds2 = f(ρ) dχ2 +
dρ2

f(ρ)
+ ρ2

�
−(1− r̃ 2) dt̃ 2 +

dr̃ 2

1− r̃ 2

�
(4.7)

where we have also performed a coordinate change cos θ = r̃. This metric is an asymptotically

AdS4 geometry whose boundary is now dS2 × S1, with dS2 size L inherited from the AdS4

scale, and the S1 size determined from the original black hole temperature.

To further recast (4.7) into a form which has conformally BTZ boundary metric, we

merely need to let

t̃ =
r+

�2
t , r̃ =

r+

r
, χ =

L

�
r+ φ , (4.8)

which yields the following bulk metric:

ds2 =
ρ2 r2

+

r2 �2

�
−

r2 − r2
+

�2
dt2 +

�2

r2 − r2
+

dr2 + r2 L2 f(ρ)

ρ2
dφ2

�
+

dρ2

f(ρ)
. (4.9)

Since as ρ → ∞, the factor in parenthesis is the standard BTZ metric with radius r+ and

AdS3 scale �, it is clear that the boundary is conformal to BTZ. The rescaling of the χ

coordinate used in (4.8) was performed to ensure that the φ circle has period 2π. Assuming

that after our analytic continuation the χ circle has period ∆χ, this identifies r+ = �
L

∆χ
2π .

Note that both the pure AdS4 and the Schwarzschild-AdS4 geometries may be written in

the form (4.9), and that these are the only static spherically symmetric asymptotically AdS

solutions with S2 × R boundary metric [44]. This observation justifies the choice of the

ansatz (4.5).

For the special case where the initial seed metric was pure AdS4, taking f(ρ) = ρ2

L2 + 1,

by an appropriate change of coordinates23 the result (4.9) can be written in the form (4.3)

23Specifically,
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L2 r2
, r̂2 = r2

+

�
1 +

ρ2

L2

� �
1 +

r2
+ ρ2

L2 r2

�−1

with r̂ being the radial coordinate for the BTZ part of the metric γµν in (4.3).
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 Pure AdS4  → BTZ black string.
 SAdS4 → AdS bubble of nothing.



3d CFTs on BTZ: dual geometries

 CFT on large BTZ is dual to the BTZ black string.
 ⇒ for  TBTZ >> 1 one has <Tµν> ~ O(1).

 CFT on small BTZ is dual to the AdS bubble of nothing 
 ⇒ for TBTZ << 1 has <Tµν> ~ O(c).

is conformally flat (and since there is no d = 3 conformal anomaly), this vanishes exactly in

any conformally-invariant renormalization scheme. Further analysis of the BTZ black string

phase is similar to that of the Schwarzschild-AdS black string discussed in §4.2. The bulk

solution is again a black funnel in the sense described in §4.2, and the qq̄ potential in the

field theory displays no linear regime.

However, the bubble-of-nothing phases are quite different. At large N , we may compute

the stress tensor either by double Wick rotation of known results for phases on AdS3 or by a

holographic computation of the boundary stress tensors for the relevant 4-dimensional bulk

duals (4.9) with f(ρ) given as in (4.10). We find

T
ν

µ = c
µ

L �3

r3
+

3 r3

�
1, 1,−2

�
(4.12)

to leading order in large N , with c ∼ O(N
3
2 ). For the M2-brane world-volume theory the

central charge c is given in footnote 22. Furthermore, µ = µ(r+) is defined by (4.10) and

(4.11):

µ(r+) =
4 L �3

27 r3
+

�
1 +

�
1 +

3 r2
+

2 �2

� �
1− 3 r2

+

�2

�
. (4.13)

As noted in §3, (4.12) describes a negative energy density in parallel with known results [25]

for free fields.

This result might suggest that the phase is deconfined. Recall, however, that in the

limit ρ+ → ∞ the large Schwarzschild-AdS4 black hole becomes the (unboosted) planar

hole (3.11). As a result, in the limit TBTZ → 0 the large AdS4 bubble of nothing obtained

by double Wick rotation becomes just the AdS4 soliton,
25

a static solution which is the

prototypical example of the bulk dual to a confining phase [13]!
26

As is well known, there

is no tension between the confining properties of this state and its O(N3/2
) stress tensor.

For TBTZ small but non-zero, the bubble of nothing spacetimes have much in common with

those discussed
27

in [14] in which the horizon extends from the boundary down to an AdS-

soliton-like IR floor.

The AdS4 soliton of radius 2π �LTBTZ and AdS length scale L is a useful approximation

to the AdS4 bubbles of nothing in the region far from the bulk horizon. There it leads

immediately to a linear qq̄ potential
28

on scales much smaller than � but much larger than

25This is the same AdS4 soliton spacetime which appeared as a boundary spacetime in §4.2, where it played
the role of a background for a 4-dimensional field theory in a context where gravity was not dynamical. In
contrast, here the 4-dimensional soliton approximates the bulk AdS4 dual of a state of a 3-dimensional CFT
on the BTZ background. In particular, here the 4-dimensional soliton arises as the solution of the bulk
gravitational equations of motion.

26The phase transition for field theories with Scherk-Schwarz boundary conditions was also discussed in
[40, 41], which are all similar to the Hawking-Page transition originally described in [42].

27Or, at least, the analogous solutions obtained by removing the so-called UV brane.
28The coefficient of this linear relation has a mild position dependence that varies on length scales of O(�).
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 Free field result (conformally coupled scalar):

�, the low energy states of any free field theory will have energies of order ω ∼ �−1 so that

their contributions to the partition function (or any other thermodynamic quantity) will be

exponentially suppressed for TAdS � � 1. In particular, the expected stress tensor will be

exponentially small at high TBTZ .

This is precisely the behavior found by explicit calculation in [25] for the expected stress

tensor �T µ

ν �HH of a conformally-coupled scalar in the Hartle-Hawking state on the BTZ

background. There it was shown that, for the static black hole with r− = 0 (or equivalently

Ω = 0),

� T µ

ν �HH =
A(r+)

r3
diag{1, 1,−2} for A(r+) =

2

32 π

∞�

n=1

cosh 2π n r+ + 3

(cosh 2π n r+ − 1)3/2
, (3.9)

which indeed vanishes exponentially for TBTZ ∼ r+ � 1. The stress tensor for free fields in

the general case with r− �= 0 is described in [25]; we will describe the analogous result for

strongly coupled quantum fields in §4.3.2.

One may also reproduce the results of [25] at small TBTZ by using the analytic continuation

described above and the fact that AdS3 can be mapped conformally into ESU3. Applying

these operations to the stress tensor

� T µ

ν �S2×R = σ3 T 3diag{−2, 1, 1} (3.10)

on S2 × R yields a result that agrees with (3.9) for small r+. In particular, the interchange

of t and φ under the double Wick rotation for Ω = 0 explains why the stress tensor found in

[25] has a negative energy density (and is in fact proportional to diag{1, 1,−2}). Note that

taking σ3 to be the 2+1-dimensional Stefan-Boltzman constant, i.e., σ3 = 2 ζ(3) the stress

tensor (3.10) describes the thermal state of any free scalar on S2 × R at large T .

Let us now consider interacting theories with non-trivial phase structure, where (3.8)

implies that for a given value of Ω, the high temperature phases on BTZ are in direct

correspondence with the low temperature phases on AdS. One generally expects that there

is a unique such low temperature phase, typified by the ground state. Furthermore, in a

large N confining gauge theory one expects that for small TAdS (below the phase transition),

thermodynamic quantities receive contributions only from the O(1) singlet degrees of freedom

even at large N . In such theories, we see that thermodynamic quantities will be independent

of N at large TBTZ.

3.2 Field theories on planar AdS black hole backgrounds

The simplest examples of higher dimensional asymptotically AdS black hole spacetimes are

the planar AdS black holes with translationally invariant horizons (2.4). We will also con-

sider field theories on boosted planar AdSd black holes, for they can be studied by precisely

the same methods as in §3.1 and describe the large-radius limit of rotating AdS black holes.
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Summary

 Interesting new classes of gravitational solutions in 
asymptotically locally AdS spacetimes. 
 Allows quantitative predictions for physical quantities, e.g. <Tµν>.
 Interesting to compute correlation functions of local operators

 Stepping stone towards understanding induced gravity (brane-
world) models. 

 Holographic gauge/gravity duality provides a useful tool to 
obtain quantitative results for strongly coupled fields in curved 
spacetime. 


