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Motivation: Uncertainty in Groundwater Flow Standard Monte Carlo Theorem (Multilevel Monte Carlo) Preliminary Numerical Results in 2D
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@ Discretisation w.r.t. w — "Curse of Dimensionality”: - - - T @ Make further approximations of k on coarser levels
stochastic Galerkin (4 sparse versions) Minimising this over all choices of {N,} we get Improvement even bigger for quantities where discretisation PP | '
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@ small (spatial) mesh width h < 1 !l | (right, 5000 KL-modes) for the functional Q = k1 in 1D CPU-time to achieve V[CA)NL] < 107® versus m= h;* such as antithetic sampling.

CECRC I S with f =0, A= 0.1, 02 =1, p(0) = 1, p(1) = 0 (m = h,'}). for Q = keii1, A= 0.1, 0 =1, and 500 KL-modes. @ Change measure/importance sampling for “rare events” .
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