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Motivation: Uncertainty in Groundwater Flow Standard Monte Carlo Theorem (Multilevel Monte Carlo) Preliminary Numerical Results in 2D
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@ Discretisation w.r.t. w — "Curse of Dimensionality”: - - - T @ Make further approximations of k on coarser levels
stochastic Galerkin (4 sparse versions) Minimising this over all choices of {N,} we get Improvement even bigger for quantities where discretisation PP | '
stochastic collocation (+ anisotropic versions) N, ~ \/V[Yg]/Cg error isl\i)(ijgger: In 24D if o = %ﬂ?nd 0= Z = 2 (gs before) e.g. drop KL-modes:

Monte Carlo (+ variants), etc... < |used here! (i) then ' = 0(5_ ) while € = 0(5_ Iog(e) ) 0 s

o Sample from random field k efficiently (& accurately): where C; is the computational cost to get one sample Y, | (If @ — Q linearly with h (i.e. & = 1) then solving for 1 sample Q;” costs O(=~2).) “ﬂ
truncated Karhunen-Loeve expansion «— |used here! Decay of V[W] and 4:[\/6] (1D Numerics) Preliminary Numerical Results in 2D fm
Matrix factorisation, e.g. circulant embedding, etc... The key observation is now that V[Y;] decays with | v pormeabity (120 1 6211 Vatance below 10° ;—;m

@ Solve huge number of deterministic PDEs ¢ — oo (or equivalently with hy — 0): s - L

(with rough coefficients and small mesh size) |Here: FVM + Sparse LU D Outflow for A= 0.1, o= g Outow for 1=0.1, 2= Z _E._i::::: mﬁ : m N
i Y T - I 10* L] —F —5 level MC #E’ i 1D'?§— my, = 5000 AN
0t | F| —@ — Standard MC - ] N e
MOdEl prOblem _—— | IR, £ 'k Eér - /g"f f} mm” T - fm: o 10° 10*
. . . . d L % 5 % E 3 f‘f p . m {humber of nodes in mes
Elliptic PDE in bounded domain D C R9, d=1,2,3 for| A 2" 7 ﬂx,f‘ V[Y/] for Q@ = kyt1 in 1D with f =0, A= 0.1, 0% = 1.
— V. (k(x, w)Vp(X, w)) — f(x, w), X € D, (1) m_m_ -""---.‘f‘;_\ ; 2 fx‘:ff @ I Dashed line: 5000 KL-modes: solid line: m KL-modes.
=0 = 5000 rx'\& 5 10°F 10 ¢ HE - EI""'-‘F-‘ v E ) ) ] ]
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CECRC I S with f =0, A= 0.1, 02 =1, p(0) = 1, p(1) = 0 (m = h,'}). for Q = keii1, A= 0.1, 0 =1, and 500 KL-modes. @ Change measure/importance sampling for “rare events” .
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