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Motivation: Uncertainty in Groundwater Flow
(e.g. risk analysis for radioactive waste disposal)
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Darcy’s Law: ~q + k∇p = f

Incompressibility: ∇ · ~q = 0

+ Boundary Conditions

(More advanced: multiphase flow in porous media,
e.g. oil reservoir simulation or CO2 sequestration)
c©NIREX UK Ltd.

Stochastic Modelling of Uncertainty (lognormal)

Typical Realisation (here with n = 5122, λ = 1/64, σ2 = 8)

log k(x , ω) = Gaussian with
mean 0 & covariance function

R(x , y) := σ2 exp (−‖x − y‖1/λ)

(Data suggests this is reasonable representation of

reality [Gelhar, 1975], [Hoeksema et al, 1985])

Quantities of Interest

Leaking repository at (0, 1
2).
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λ = 0.3, σ2 = 4, t = 0.2

flow field ~q

particle position at time t

breakthrough time (to right)

effective permeability:
keff,1 :=

∫
D q1 d~x

/ ∫
D px1

d~x

Key Computational Challenges

Discretisation w.r.t. ω – “Curse of Dimensionality”:
I stochastic Galerkin (+ sparse versions)
I stochastic collocation (+ anisotropic versions)
I Monte Carlo (+ variants), etc... ← used here!

Sample from random field k efficiently (& accurately):
I truncated Karhunen-Lòeve expansion ← used here!

I Matrix factorisation, e.g. circulant embedding, etc...

Solve huge number of deterministic PDEs
(with rough coefficients and small mesh size) Here: FVM + Sparse LU

Model problem
Elliptic PDE in bounded domain D ⊂ Rd , d = 1, 2, 3

−∇. (k(x, ω)∇p(x, ω)) = f (x , ω), x ∈ D, (1)

where the random coefficient k(x , ω) is very rough =⇒

large number of KL–modes � 100 !!

small (spatial) mesh width h� 1 !!

Standard Monte Carlo
Assume we are interested in expected value of an output
functional Q = G(p). Standard Monte Carlo estimator
for this is

E [Q] ≈ Q̂MC
h :=

1

N

N∑
i=1

Q
(i)
h ,

where Q
(i)
h is the ith sample of Q approximated on grid Th.

The mean square error of this estimator is given by

E
[(

Q̂MC
h −E[Q]

)2
]

= V[Q̂MC
h ]︸ ︷︷ ︸

Variance of MC estimator

+
(
E[Q̂MC

h ]− E[Q]
)2︸ ︷︷ ︸

(spatial) discretisation error

It is well known that V[Q̂MC
h ] = V[Qh]/N (independent of

dimension, i.e. independent of the number of KL modes).

Multilevel Monte Carlo (MLMC)
Consider approximations of (1) on a sequence of levels,
s.t. h` = 2−`h0, ` = 0, 1, . . . , L, and set Q` = Qh`. The key
idea is now to use the following telescoping sum

E[QL] = E[Q0] +
L∑
`=1

E[Q` − Q`−1].

Let Y` := Q` − Q`−1, ` > 0, and Y0 := Q0. Then we can
define the following multilevel MC estimator for E[Q]:

Q̂ML
L := Q̂MC

0 +
L∑
`=1

Ŷ MC
`

using the same sample k(x , ω(i)) for Q
(i)
` and Q

(i)
`−1 in Y

(i)
`

and N` samples on level `. For the variance we have

V[Q̂ML
L ] := V[Q0]N−1

0 +
L∑
`=1

V[Y`]N
−1
`

Minimising this over all choices of {N`} we get

N` ∼
√

V[Y`]/C`

where C` is the computational cost to get one sample Y
(i)
` .

Decay of V[Y`] and E[Y`] (1D Numerics)
The key observation is now that V[Y`] decays with
`→∞ (or equivalently with h`→ 0):

V[Y`] (left, with 105, 210, 5000 KL–modes) and E[Y`]
(right, 5000 KL–modes) for the functional Q = keff,1 in 1D

with f = 0, λ = 0.1, σ2 = 1, p(0) = 1, p(1) = 0 (m = h−1
` ).

Theorem (Multilevel Monte Carlo)
If there exist α, β, γ > 0 such that α≥ 1

2 min(β, γ) and

(A1)
∣∣∣E[Q̂MC

` − Q]
∣∣∣ = O(2−α`)

(A2) V[Ŷ MC
` ] = O(N−1

` 2−β`)

(A3) C` = O(2γ`)

then for any ε < 1 there exist L and {N`} such that

E
[(

Q̂ML
L − E[Q]

)2
]

= O(ε2)

and the total computational cost CML satisfies

CML =


O(ε−2), if β > γ,

O(ε−2(log ε)2), if β = γ,

O(ε−2−(γ−β)/α), if β < γ.

Note for comparison that the cost of standard Monte Carlo to achieve
the same mean square error of O(ε2) is CMC = O(ε−2−γ/α).

Application of MLMC Theorem

From plots on left we see that in 1D for Q = keff,1 we
observe (numerically) α ≈ 1.5 and β ≈ 2. In 1D γ = 1.

The behaviour of Y` in 2D is similar (in our experiments)
and with optimal linear solver (e.g. AMG) γ ≈ 2.

Hence we expect the following relative costs to achieve a
root mean square error (RMSE) of ε (“extrapolating” to 3D):

dim CMC CML

1 ε−8/3 ε−2

2 ε−10/3 ε−2 log(ε)2

3 ε−4 ε−8/3

Improvement even bigger for quantities where discretisation
error is bigger: in 2D if α = 1 and β = γ = 2 (as before)
then CMC = O(ε−4) while CML = O(ε−2 log(ε)2).
(If Q`→ Q linearly with h` (i.e. α = 1) then solving for 1 sample Q

(i)
` costs O(ε−2).)

Preliminary Numerical Results in 2D

CPU-time to achieve V[Q̂ML
L ] < 10−6 versus m = h−1

L

for Q = keff,1, λ = 0.1, σ2 = 1, and 500 KL-modes.

Preliminary Numerical Results in 2D

V[Q̂ML
L ] versus CPU–time for fixed mesh size m = h−1

L = 256,

for Q = keff,1, λ = 0.1, σ2 = 1 and 500 KL-modes.

Further 2D Results
E[keff,1]

CPU-time to get V[Q̂ML
L ] < 10−6 vs. m

for λ = 0.05, σ2 = 4, and 500 KL-modes

E[(keff,1)2]

V[Q̂ML
L ] versus CPU–time for m = 256,

λ = 0.1, σ2 = 4 and 500 KL-modes.

Further work
Confirm predicted rate for computational cost w.r.t. ε.

Theoretically bound E[Q̂MC
` −Q] and V[Ŷ MC

` ].

Make further approximations of k on coarser levels,
e.g. drop KL–modes:

V[Y`] for Q = keff,1 in 1D with f = 0, λ = 0.1, σ2 = 1.

Dashed line: 5000 KL-modes; solid line: m KL-modes.

Circulant embedding instead of truncated KL-series.

Combine with Quasi–MC sampling (gains complement!)

Combine with other variance reduction techniques,
such as antithetic sampling.

Change measure/importance sampling for “rare events”.
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