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Metamaterials: dielectric or metal
artificial periodic structure with strong Carbon nanotubes (CNTs)
anisotropy, plasmon frequencies or even Highly heterogeneous advanced
negative index. nano-composites with characteristics
that depend on the dispersion in the
polymer matrix of a reduced quantity
of nano-fillers (CNTs or nano-clays).
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Novel engineered materials: from imaging to optimal design

Material synthesis is an example of emerging technology that urgently needs
efficient multi-scale methods for numerically determining the effective properties
of novel engineered materials, i.e. their constitutive law.

Artificially synthesized materials exhibit exceptional macroscopic properties

that are directly linked to their micro-structural complexity:

v electromagnetic/optical: resistivity, € (EM shielding), e<0 and u<0 (lens without diffraction);
v’ mechanical: resistance, E, Poisson coefficient <0;

v thermal: conductivity.

The ablility to simulate numerically the properties of novel materials is an
invaluable help for design optimization and can avoid expensive and time-
consuming trial and error tests.

Polymer foam structure depends ; P = 280 bar, 16h
highly on fabrication process ES
5 O
347
5 3 "\—-—/‘
P
1
0 - . . .
0 1 2 3 4 5
% CNT

P =280 bar, 16h

3D image reconstruction of
polymer foam
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Project methodology
Image acquisition »

Image treatment: 2D to 3D
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v 2D images obtained by TEM or RX tomography of a RVE of material
v Image treatment applied to reconstruct a 3D mesh: surface to volume
v'Numerical method applied to determine a given magnitude at micro-scale

Extraction of a RVE

Material response

v Multiscale: micro-scale + macro-scale

Macroscale
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v Experimental measurements
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to validate material properties
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Homogenization:
windings & laminations

Skin effect flux patterns .
unit net current imposed in each 5 | = Hexagonal packing
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Proximity effect flux patterns
unit average induction imposed (e.g.
x=3 1 horizontally) via boundary conditions
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[R. Sabariego et al, IEEE Trans. Mag., 44(6):1302-1305, 2008]

Joule losses
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electrical machines usually have a laminated iron core to
reduce eddy current losses due to time-varying flux excitation
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