# Multiscale computational modelling in electromagnetism

Ruth V. Sabariego, Christophe Geuzaine Applied & Computational Electromagnetics (ACE), Dept. of Electrical Engineering and Computer Science, University of Liege, Belgium



### Novel engineered materials: from imaging to optimal design



**Metamaterials:** dielectric or metal artificial periodic structure with strong anisotropy, plasmon frequencies or even negative index.



3D image reconstruction of polymer foam



Carbon nanotubes (CNTs)

Highly heterogeneous advanced nano-composites with characteristics that depend on the dispersion in the polymer matrix of a reduced quantity of nano-fillers (CNTs or nano-clays).





Material synthesis is an example of emerging technology that urgently needs efficient multi-scale methods for numerically determining the effective properties of novel engineered materials, i.e. their constitutive law.

Artificially synthesized materials exhibit exceptional macroscopic properties that are directly linked to their micro-structural complexity:

 $\checkmark$  electromagnetic/optical: resistivity,  $\epsilon$  (EM shielding),  $\epsilon$ <0 and  $\mu$ <0 (lens without diffraction); ✓ mechanical: resistance, E, Poisson coefficient <0;

√ thermal: conductivity.

10KN

7075 19KU X3,000 10Pm WD38

100°C

The ability to simulate numerically the properties of novel materials is an invaluable help for design optimization and can avoid expensive and timeconsuming trial and error tests.

#### Polymer foam structure depends highly on fabrication process







## Project methodology



- ✓2D images obtained by TEM or RX tomography of a RVE of material
- ✓ Image treatment applied to reconstruct a 3D mesh: surface to volume
- ✓ Numerical method applied to determine a given magnitude at micro-scale

✓ Multiscale: micro-scale + macro-scale

√ Experimental measurements to validate material properties



## Homogenization: windings & laminations

