Helmholtz problems at large wavenumber k

J.M. Melenk

joint work with

S. Sauter (Zürich)
M. Löhndorf (Vienna)
S. Langdon (Reading)
(1) domain-based methods: convergence analysis for $h p$-FEM
(2) discussion of some non-standard FEMs
(3) BEM for Helmholtz problems

[^0]references used in the talks

- F. Ihlenburg: FE Analysis of acoustic scattering, Springer Verlag, 1998
- M. Ainsworth: Discrete dispersion relation for $h p$-version finite element approximation at high wave
number, SINUM 42 (2004), 553-575
- J.M. Melenk, S. Sauter: Convergence Analysis for Finite Element Discretizations of the Helmholtz equation
J.M. Melenk, S. C auter: Convergence Analysis for Finite Element Discretizations of the
with Dirichlet-to-Neumann boundary conditions, Math. Comp., 79 (2010), 1871-1914
- J.M. Melenk, S. Sauter: Wave-Number Explicit Convergence Analysis for Galerkin Discretizations of the
holtz Equation, ASC Rep. 31/2009
I. Babuška, S. Sauter: Is the pollution effect of the FEM avoidable for the Helmholtz equation?, SIREV, 42
(2000), 451-484
- E. Perrey-Debain, O. Laghrouche, P. Bettess, J. Trevelyan: Plane wave basis finite elements and boundar
elements for three-dimensional wave scattering., Phil. Trans. R. Soc. Lond. A, 262 (2004), $561-577$
R. Tezaur and C. Farhat, three-dimensional discontinous Galerkin elements with plane waves and Lagrange
multipliers for the solution of mid-frequency Helmholtz problems, INME, 66 (2006), $796-815$
- C. Gittelson, R. Hiptmair, I. Perugia: Plane wave Discontinuous Galerkin methods, $M^{2} A N, 43$ (2009),

297-331

- A. Buffa, P. Monk, error estimates for the UWVF of the Helmholtz equation, $M^{2} A N, 42$ (2008), 925-940 - R. Hiptmair, A. Moiola, I. Perugia, Approximation by plane waves, SAM Report 2009-27, ETH Zürich.
R. Hiptmair, A. Moiola, I. Perugia, Plane wave discontinuous Galerkin methods for the 2D Helmholtz
applic
discontinuous Galerkin method, SAM Report 2009-06, ETH Zürich
- Melenk
- M. Löhndorf, J.M. Melenk: wavenumber-explicit hp-BEM for high frequency scattering, ASC Rep. $02 / 2010$
M. Lohndorf, J.M. Melenk: wavenumber-explicit hp-BEM for high frequency scattering, ASC Rep. 02/2010
S. Chandler-Wilde, P. Monk: wave-number-explicit bounds in time-harmonic scattering. SIMA 39 (2008),

1428-1455

- S. Chandler-Wilde, I. Graham: Boundary integral methods in high frequency scattering in: highly oscillatory
problems, Cambridge University Press, B. Engquist, A. Fokas, E. Hairer, A. Iserles eds., 2009
T. Betcke, S. Chandler-Wilde, I. Graham, S. Langdon, M. Lindner: condition number estimates for combined potential integral operators in acoustics and their boundary element discretization, to appear in combined potential intIntroduction
(2) classical $h p$-FEM
- convergence of $h p$-FEM
- regularitysome nonstandard FEM
(4) boundary integral equations (BIEs)
- introduction to BIEs
- hp-BEM
- regularity through decompositions
- numerical examples (classical $h p$-BEM)
- example of a non-standard BEM

Helmholtz model problem

$$
\begin{aligned}
&-\Delta u-k^{2} u=f \\
& \text { in } \Omega, \\
& \text { b.c. } \text { on } \partial \Omega, \\
& \text { on condition }\text { at } \infty)
\end{aligned}
$$

Examples:

- acoustic scattering problems
- electromagnetic scattering problems

goals:

- efficient and reliable numerical methods also for large $k>0$

$00 \bullet 000000000$

hp-FEM $\begin{aligned} & \text { nonstandard FEM } \\ & 00\end{aligned}$

model problem

$$
\begin{aligned}
L u:=-\Delta u-k^{2} u & =f \quad \text { in } \Omega, \quad \Omega \subset \mathbb{R}^{d} \text { bounded, } \\
B u:=\partial_{n} u-\mathbf{i} k u & =0 \quad \text { on } \partial \Omega .
\end{aligned}
$$

weak formulation

$$
\text { find } u \in H^{1}(\Omega) \text { s.t. } a(u, v)=l(v) \quad \forall v \in H^{1}(\Omega)
$$

where

$$
\begin{aligned}
a(u, v) & :=\int_{\Omega} \nabla u \cdot \nabla \bar{v}-k^{2} \int_{\Omega} u \bar{v}-\mathbf{i} k \int_{\partial \Omega} u \bar{v} \\
l(v) & :=\int_{\Omega} f \bar{v}
\end{aligned}
$$

Discretization

- domain-based discretizations \rightsquigarrow FEM
- integral equation based discretizations \rightsquigarrow BEM
the discretizations have the abstract form:

$$
\text { find } u_{N} \in V_{N} \text { s.t. } \quad a_{k}\left(u_{N}, v\right)=l(v) \quad \forall v \in W_{N}
$$

how to choose V_{N}, W_{N}, a_{k} for large k ?

fundamental issues

- approximability: approximate u from V_{N} well:
- standard (polynomial based) approximation
- nonstandard approximation (e.g., info from asymptotics)
- stability: ideally: (asymptotic) quasi-optimality, i.e.,

$$
\left\|u-u_{N}\right\| \leq C \inf _{v \in V_{N}}\|u-v\|
$$

with some C independent of k in a norm $\|\cdot\|$ of interest Helmholtz problems at large k

$$
h p-F E M \text { spaces } V_{N}
$$

abstract FEM discretization

given $V_{N} \subset H^{1}(\Omega)$ find $u_{N} \in V_{N}$ s.t.

$$
a\left(u_{N}, v\right)=l(v) \quad \forall v \in V_{N}
$$

- $\mathcal{T}=$ triangulation of $\Omega \subset \mathbb{R}^{d}$ with element maps F_{K}
- $\operatorname{diam} K \sim h$ for all $K \in \mathcal{T}$
- $V_{N}:=S^{p}(\mathcal{T}):=\left\{u \in H^{1}(\Omega) \mid u \circ F_{K} \in \mathcal{P}_{p}\right\}$
- $N:=\operatorname{dim} V_{N} \sim h^{-d} p^{d}$

$$
\begin{aligned}
& -u^{\prime \prime}-k^{2} u=1 \quad \text { in }(0,1) \\
& u(0)=0, \quad u^{\prime}(1)-\mathbf{i} k u(1)=0
\end{aligned}
$$

Helmholtz problems at large k
J.M. Melenk

Intro 000000000000

dispersion analysis: p.w. linears, uniform mesh

$$
-u^{\prime \prime}-k^{2} u=f, \quad u(0)=0, \quad u^{\prime}(1)-\mathbf{i} k u(1)=0
$$

cont. Green's fct:

$$
G(x, y)=k^{-1} \begin{cases}\sin k x e^{\mathbf{i} k y} & 0<x<y \\ \sin k y e^{\mathbf{i} k x} & y<x<1\end{cases}
$$

disc. Green's fct:

$$
G_{h}(x, y)=\frac{1}{h \sin k^{\prime} h} \begin{cases}\sin k^{\prime} x\left(A \sin k^{\prime} y+\cos k^{\prime} y\right) & 0<x<y \\ \sin k^{\prime} y\left(A \sin k^{\prime} x+\cos k^{\prime} x\right) & y<x<1\end{cases}
$$ where

- $A=A\left(k, k^{\prime}, h\right) \in \mathbb{C}$ is a constant
- $k^{\prime}=$ discrete wave number
- dispersion relation $\cos k^{\prime} h=\cos \frac{6-2 k^{2} h^{2}}{6+k^{2} h^{2}}$

For $k h$ small, we get $k^{\prime} h=k h-\frac{1}{24}(k h)^{3}+\cdots$ and therefore

$$
k^{\prime}=k-\frac{1}{24} k^{3} h^{2}+\cdots
$$

stability/onset of asymptotic quasioptimality

- $k h=$ constant is not sufficient to obtain given (relative) accuracy
("pollution")
mathematical analysis:
- Babuška \& Ihlenburg: 1D, uniform meshes, arbitrary, fixed p
- Ainsworth: $d>1$, infinite tensor product mesh, p-explicit

discrete dispersion analysis, I

Theorem (Babuska \& Ihlenburg)

For the 1D model problem and piecewise polynomial approximation of degree $p \geq l$ on a uniform mesh, there holds for $k h<\pi$ and solution $u \in H^{l+1}(0,1)$:

$$
\left\|u-u_{N}\right\|_{H^{1}(0,1)} \leq C_{p, l}[1+\underbrace{k\left(\frac{k h}{2 p}\right)^{p}}_{\text {pollution }}] \underbrace{\left(\frac{h}{2 p}\right)^{l}|u|_{H^{l+1}(0,1)}}_{\text {best approximation error }}
$$

conclusion

- the phase error ("pollution") is not as pronounced for higher order elements as for lower order elements.
- suggests that

$$
k\left(\frac{k h}{\sigma p}\right)^{p} \quad \text { small }
$$

is an important condition

13
M. Melenk

Helmholtz problems at large k

Introduction
(2) classical $h p$-FEM

- convergence of $h p$-FEM
- regularitysome nonstandard FEMboundary integral equations (BIEs)
- introduction to BIEs
- $h p$-BEM
- regularity through decompositions
- numerical examples (classical $h p$-BEM)
- example of a non-standard BEM

Helmholtz problems at large k
$\stackrel{17}{\text { J.M. Melenk }}$

goals:

- show that the scale resolution conditions

$$
\frac{k h}{p} \text { small } \quad \text { together with } \quad p \geq C \log k
$$

is sufficient to guarantee quasi-optimality of the $h p$-FEM

- no uniform meshes (\rightarrow no discrete Green's function)
- use only stability of the continuous problem

assumptions:

- geometry is (piecewise) analytic
- solution operator $f \mapsto u$ grows only polynomially in k (in a suitable norm)
techniques:
- view Helmholtz problems as " H^{1}-elliptic plus compact perturbation"
- study regularity of suitable adjoint problems
stability of the continuous problem

$$
\begin{array}{rll}
-\Delta u-k^{2} u & =f & \text { in } \Omega \\
\partial_{n} u-\mathbf{i} k u & =g & \\
\text { on } \partial \Omega
\end{array}
$$

$\begin{array}{ll}\text { Intro } & h p \text {-FEM } \\ 000000000000 & 000000\end{array}$
remarks on stability of the continuous problem

Theorem

Let $\Omega \subset \mathbb{R}^{d}, d \in\{1,2,3\}$ be a bounded Lipschitz domain. Then

$$
\|u\|_{1, k} \leq C k^{5 / 2}\left[\|f\|_{L^{2}(\Omega)}+\|g\|_{L^{2}(\partial \Omega)}\right]
$$

where

$$
\|v\|_{1, k}^{2}:=|v|_{H^{1}(\Omega)}^{2}+k^{2}\|v\|_{L^{2}(\Omega)}^{2}
$$

- one option to get a priori estimates is the use of judicious test functions.
- For star shaped domains, an interesting test fct is $v=x \cdot \nabla u$ and then clever integration by parts (Rellich identities)
- here: use estimates for layer potentials

remark

If Ω is star-shaped with respect to a ball, then

$$
\|u\|_{1, k} \leq C\left[\|f\|_{L^{2}(\Omega)}+\|g\|_{L^{2}(\partial \Omega)}\right]
$$

Theorem (quasioptimality of $h p$-FEM)

Let $\partial \Omega$ be analytic. Then there exist $c_{1}, c_{2}, C>0$ independent of h, p, k s.t. for

$$
\frac{k h}{p} \leq c_{1} \quad \text { and } \quad p \geq c_{2} \log k
$$

there holds:

$$
\left\|u-u_{N}\right\|_{1, k} \leq C \inf _{v \in V_{N}}\|u-v\|_{1, k}
$$

where $\quad\|v\|_{1, k}^{2}=|v|_{H^{1}(\Omega)}^{2}+k^{2}\|v\|_{L^{2}(\Omega)}^{2}$.

Remark

- if $p=O(\log k)$ then there is no "pollution"
- choice $p \sim \log k$ and $h \sim p / k$ leads to quasioptimality for a fixed number of points per wavelength
- generalization to polygonal Ω possible (see below)

notation

adjoint solution operator S_{k}^{*} :

$$
u^{*}=S_{k}^{*}(f) \text { solves } \quad a\left(v, u^{*}\right)=\int_{\Omega} v \bar{f} \quad \forall v \in H^{1}(\Omega)
$$

notation

- k-dependent norm: $\|v\|_{1, k}^{2}:=\|\nabla v\|_{L^{2}(\Omega)}^{2}+k^{2}\|v\|_{L^{2}(\Omega)}^{2}$
- continuity: $|a(u, v)| \leq C_{c}\|u\|_{1, k}\|v\|_{1, k}$
(C_{c} indep. of k)
- adjoint approximation property:

$$
\eta_{N}:=\sup _{f \in L^{2}(\Omega)} \inf _{v \in V_{N}} \frac{\left\|S_{k}^{*} f-v\right\|_{1, k}}{\|f\|_{L^{2}(\Omega)}}
$$

the adjoint problem

$$
a(u, v):=\int_{\Omega} \nabla u \cdot \nabla \bar{v}-k^{2} \int_{\Omega} u \bar{v}-\mathbf{i} k \int_{\partial \Omega} u \bar{v} .
$$

adjoint solution operator S_{k}^{*} :

$$
u^{*}=S_{k}^{*}(f) \text { solves } \quad a\left(v, u^{*}\right)=\int_{\Omega} v \bar{f} \quad \forall v \in H^{1}(\Omega)
$$

strong formulation:

$$
\begin{array}{rll}
-\Delta u^{*}-k^{2} u^{*} & =f & \text { in } \Omega \\
\partial_{n} u^{*}+\mathbf{i} k u^{*} & =0 & \text { on } \partial \Omega
\end{array}
$$

$$
\eta_{N}=\sup _{f \in L^{2}(\Omega)} \inf _{v \in V_{N}} \frac{\left\|S_{k}^{*} f-v\right\|_{1, k}}{\|f\|_{L^{2}(\Omega)}}, \quad\|v\|_{1, k}^{2}=\|\nabla v\|_{L^{2}(\Omega)}^{2}+k^{2}\|v\|_{L^{2}(\Omega)}^{2}
$$

Theorem (quasioptimality)

If

$$
2 C_{c} k \eta_{N} \leq 1
$$

then the Galerkin-FEM is quasi-optimal and $e:=u-u_{N}$ satisfies

$$
\begin{aligned}
\|e\|_{1, k} & \leq 2 C_{c} \inf _{v \in V_{N}}\|u-v\|_{1, k}, \\
\|e\|_{L^{2}(\Omega)} & \leq C_{c} \eta_{N}\|e\|_{1, k}
\end{aligned}
$$

- \rightarrow study adjoint approximation property η_{N}
- \rightarrow need regularity for S_{k}^{*}
quasioptimality: proof
- $a(u, v)=(\nabla u, \nabla v)_{L^{2}(\Omega)}-k^{2}(u, v)_{L^{2}(\Omega)}-\mathbf{i} k(u, v)_{L^{2}(\partial \Omega)}$
- $\|v\|_{1, k}^{2}=\|\nabla v\|_{L^{2}}^{2}+k^{2}\|v\|_{L^{2}}^{2}=\operatorname{Re} a(v, v)+2 k^{2}\|v\|_{L^{2}}^{2} \quad$ Garding ineq
- $\eta_{N}=\sup _{f \in L^{2}} \inf _{v \in V_{N}} \frac{\left\|S_{k}^{*} f-v\right\|_{1, k}}{\|f\|_{L^{2}}}$
- assumption: $C_{c} k \eta_{N} \leq 1 / 2$
- define ψ by $a(\cdot, \psi)=(\cdot, e)_{L^{2}}$, i.e. $\psi=S_{k}^{*} e$
- $\|e\|_{L^{2}}^{2}=a(e, \psi)=a\left(e, \psi-\psi_{N}\right) \leq C_{c}\|e\|_{1, k}\left\|\psi-\psi_{N}\right\|_{1, k}$
$\bullet \Longrightarrow\|e\|_{L^{2}}^{2} \leq C_{c}\|e\|_{1, k} \eta_{N}\|e\|_{L^{2}} \Longrightarrow\|e\|_{L^{2}} \leq C_{c} \eta_{N}\|e\|_{1, k}$

$$
\begin{aligned}
\|e\|_{1, k}^{2} & =\operatorname{Re} a(e, e)+2 k^{2}\|e\|_{L^{2}}^{2} \\
& \leq \operatorname{Re} a\left(e, u-v_{N}\right)+2 k^{2}\left(C_{c} \eta_{N}\right)^{2}\|e\|_{1, k}^{2} \\
& \leq C_{c}\|e\|_{1, k}\left\|u-v_{N}\right\|_{1, k}+\frac{1}{2}\|e\|_{1, k}^{2}
\end{aligned}
$$

$\Longrightarrow\|e\|_{1, k} \leq 2 C_{c} \inf _{v \in V_{N}}\|u-v\|_{1, k}$.

Theorem (k-explicit regularity by decomposition)

Let $\partial \Omega$ be analytic. Then $u=S_{k}^{\star}(f)$ can be written as

$$
u=u_{H^{2}}+u_{\mathcal{A}}
$$

where for $C, \gamma>0$ independent of k :

$$
\begin{aligned}
\left\|u_{H^{2}}\right\|_{H^{2}(\Omega)} & \leq C\|f\|_{L^{2}(\Omega)}, \\
\left\|\nabla^{n} u_{\mathcal{A}}\right\|_{L^{2}(\Omega)} & \leq C k^{3 / 2} \gamma^{n} \max \{n, k\}^{n}\|f\|_{L^{2}(\Omega)} \quad \forall n \in \mathbb{N}_{0}
\end{aligned}
$$

implication for adjoint approximation η_{N} :

$$
\begin{aligned}
\inf _{v \in S^{p}\left(\mathcal{T}_{h}\right)} k\left\|u_{H^{2}}-v\right\|_{1, k} & \lesssim\left(\frac{k h}{p}+\frac{k^{2} h^{2}}{p^{2}}\right)\|f\|_{L^{2}(\Omega)} \\
\inf _{v \in S^{p}\left(\mathcal{T}_{h}\right)} k\left\|u_{\mathcal{A}}-v\right\|_{1, k} & \lesssim\left[k^{7 / 2}\left(\frac{k h}{\sigma p}\right)^{p}+\cdots\right]\|f\|_{L^{2}(\Omega)} \\
\Longrightarrow & k \eta_{N} \text { small, if } \frac{k h}{p}+k^{7 / 2}\left(\frac{k h}{\sigma p}\right)^{p} \text { small }
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Helmholtz problems at large } k & \text { J.M. Melenk }
\end{array}
$$

$h p$-FEM

proof the decomposition result

Helmholtz problems at large k
26
M. Melenk

$h p$-FEM

properties of the Newton potential \mathcal{N}_{k}
(1) analyze the Newton potential, i.e., the full space problem (2) analyze the bounded domain case by a fixed point argument

$$
u=\mathcal{N}_{k}(f):=G_{k} \star f
$$

$$
u \text { solves }-\Delta u-k^{2} u=f \quad \text { in } \mathbb{R}^{d}
$$

key ingredient of analysis: study the symbol of \mathcal{N}_{k}, i.e., $\widehat{G}_{k}(\xi)$

$$
\begin{aligned}
& G_{k}(z):= \begin{cases}-\frac{e^{i k|z|}}{2 i k} & d=1, \\
\frac{i}{4} H_{0}^{(1)}(k\|z\|) & d=2, \\
\frac{e^{i k\| \| \|}}{4 \pi\|z\|} & d=3 .\end{cases} \\
& \widehat{G}_{k}(\xi)=c_{d} \frac{1}{|\xi|^{2}-k^{2}}, \quad \quad{ }_{c_{d} \in \mathbb{R}}
\end{aligned}
$$

properties of the Newton potential, I

Theorem

Let $u=\mathcal{N}_{k}(f)$ and $\operatorname{supp} f \subset B_{R}$. Then:

$$
k^{-1}\|u\|_{H^{2}\left(B_{R}\right)}+\|u\|_{H^{1}\left(B_{R}\right)}+k\|u\|_{L^{2}\left(B_{R}\right)} \leq C\|f\|_{L^{2}\left(B_{R}\right)}
$$

proof: localize the represen. $u=G_{k} \star f$ and analyze the symbol

- for $\chi \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ with $\chi \equiv 1$ on $B_{2 R}$ set

$$
u_{R}(x):=\int_{\mathbb{R}^{d}} G(x-y) \chi(x-y) f(y) d y=\left(G_{k} \chi\right) \star f .
$$

- Then: $u_{R}=u$ on B_{R}
- analyze symbol $\widehat{G_{k} \chi}$.
- Parseval gives estimates for $\left\|u_{R}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)},\left|u_{R}\right|_{H^{1}\left(\mathbb{R}^{d}\right)},\left|u_{R}\right|_{H^{2}}$
M. Melenk

$h p$-FEM

proof

- key idea: decomposition $u=u_{H^{2}}+u_{\mathcal{A}}$ follows from decomposition of f in Fourier space (recall: $u=\mathcal{N}_{k}(f)$)
- select $\eta>1$.
- write $f=L_{\eta k} f+H_{\eta k} f$, where the
low pass filter $L_{\eta k}$ and the
high pass filter $H_{\eta k}$ are

$$
\mathcal{F}\left(L_{\eta k} f\right)=\chi_{B_{\eta k}} \widehat{f}, \quad \mathcal{F}\left(H_{\eta k} f\right)=\chi_{\mathbb{R}^{d} \backslash B_{\eta k}} \widehat{f}
$$

- define $u_{H^{2}}:=\mathcal{N}_{k}\left(H_{\eta k} f\right)$.
- define $u_{\mathcal{A}}:=\mathcal{N}_{k}\left(L_{\eta k} f\right)$.
properties of the Newton potential \mathcal{N}_{k}, II

Theorem (decomposition lemma)

Let $\operatorname{supp} f \subset B_{R}$ and $u=\mathcal{N}_{k}(f)=G_{k} \star f$. Then, for every $\eta>1$ the function $\left.u\right|_{B_{R}}$ can be written as $u=u_{H^{2}}+u_{\mathcal{A}}$ where

$$
\begin{aligned}
\left\|\nabla^{s} u_{H^{2}}\right\|_{L^{2}\left(B_{R}\right)} & \leq C\left(1+\frac{1}{\eta^{2}-1}\right)(\eta k)^{s-2}\|f\|_{L^{2}}, \quad s \in\{0,1,2\} \\
\left\|\nabla^{s} u_{\mathcal{A}}\right\|_{L^{2}\left(B_{R}\right)} & \leq C \eta(\sqrt{d} \eta k)^{s-1}\|f\|_{L^{2}} \quad \forall s \in \mathbb{N}_{0}
\end{aligned}
$$

Corollary

For every $q \in(0,1)$, one can decompose $\left.u\right|_{B_{R}}=u_{H^{2}}+u_{\mathcal{A}}$ s.t.

$$
\begin{aligned}
k\left\|u_{H^{2}}\right\|_{L^{2}\left(B_{R}\right)}+\left|u_{H^{2}}\right|_{H^{1}\left(B_{R}\right)} & \leq q k^{-1}\|f\|_{L^{2}} \\
\left\|u_{H^{2}}\right\|_{H^{2}\left(B_{R}\right)} & \leq C\|f\|_{L^{2}} \\
u_{\mathcal{A}} & \text { analytic }
\end{aligned}
$$

$h p$-FEM

bounds for $u_{H^{2}}$

- $u_{H^{2}}=\mathcal{N}_{k}\left(H_{\eta k} f\right) \Longrightarrow$

$$
\widehat{u}_{H^{2}}=\widehat{G}_{k} \cdot\left(\chi_{\mathbb{R}^{d} \backslash B_{\eta k}} \widehat{f}\right)=c_{d} \frac{\chi_{\mathbb{R}^{d}} \backslash B_{\eta k}}{|\xi|^{2}-k^{2}} \widehat{f}
$$

- observe that for $|\xi| \geq \eta k$ (recall: $\eta>1$)

$$
\begin{aligned}
& \frac{1}{|\xi|^{2}-k^{2}} \leq \frac{\eta^{2}}{\eta^{2}-1} \frac{1}{(\eta k)^{2}}, \quad \frac{|\xi|}{|\xi|^{2}-k^{2}} \leq \frac{\eta^{2}}{\eta^{2}-1} \frac{1}{(\eta k)^{1}} \\
& \frac{|\xi|^{2}}{|\xi|^{2}-k^{2}} \leq \frac{\eta^{2}}{\eta^{2}-1} \frac{1}{(\eta k)^{0}}
\end{aligned}
$$

- hence, for $s \in\{0,1,2\}$:

$$
\left|u_{H^{2}}\right|_{H^{s}\left(\mathbb{R}^{d}\right)}=\left\||\xi|^{s} \widehat{u}_{H^{2}}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq C(\eta k)^{s-2}\|\widehat{f}\|_{L^{2}\left(\mathbb{R}^{d}\right)}
$$

- $u_{\mathcal{A}}:=\mathcal{N}_{k}\left(L_{\eta k} f\right)$. Hence, $u_{\mathcal{A}}$ solves

$$
-\Delta u_{\mathcal{A}}-k^{2} u_{\mathcal{A}}=L_{\eta k} f \quad \text { on } \mathbb{R}^{d}
$$

- Paley-Wiener: $L_{\eta k} f$ is analytic and, since $\operatorname{supp} \chi_{B_{\eta k}} \widehat{f} \subset B_{\eta k}$,

$$
\left\|\nabla^{s} L_{\eta k} f\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq C(\sqrt{d} \eta k)^{s}\|f\|_{L^{2}\left(\mathbb{R}^{d}\right)} \quad \forall s \in \mathbb{N}_{0}
$$

- recall a priori estimate:

$$
\left\|u_{\mathcal{A}}\right\|_{H^{1}\left(B_{2 R}\right)}+k\left\|u_{\mathcal{A}}\right\|_{L^{2}\left(B_{2 R}\right)} \leq C\left\|L_{\eta k} f\right\|_{L^{2}} \leq C\|f\|_{L^{2}}
$$

- use elliptic regularity (induction argument) to get

$$
\left\|\nabla^{s} u_{\mathcal{A}}\right\|_{L^{2}\left(B_{R}\right)} \leq C(\gamma \eta k)^{s-1}\|f\|_{L^{2}}
$$

(for suitable $\gamma>0$)
Helmholtz problems at large k
J.M. Melenk

key ingredient of the proof:

Lemma (frequency splitting)

The decomposition $f=H_{\eta k} f+L_{\eta k} f$ has the following properties:
(i) $L_{\eta k}$ is analytic
(ii) $H_{\eta k} f$ satisfies

$$
\begin{aligned}
\left\|H_{\eta k} f\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} & \leq\|f\|_{L^{2}\left(\mathbb{R}^{d}\right)} \\
\left\|H_{\eta k} f\right\|_{H^{-1}\left(\mathbb{R}^{d}\right)} & \leq C(\eta k)^{-1}\|f\|_{L^{2}\left(\mathbb{R}^{d}\right)} \\
\left\|H_{\eta k} f\right\|_{H^{s^{\prime}}\left(\mathbb{R}^{d}\right)} & \leq C_{s, s^{\prime}}(\eta k)^{-\left(s-s^{\prime}\right)}\|f\|_{H^{s}\left(\mathbb{R}^{d}\right)}
\end{aligned}
$$

for $s^{\prime} \leq s$.
note: analogous splittings possible on manifolds (e.g., $\partial \Omega$)

$h p$-FEM

key steps of the decomposition (general case)

$$
\begin{aligned}
-\Delta u-k^{2} u & =f \in L^{2}(\Omega) & & \text { in } \Omega \\
\partial_{n} u-\mathbf{i} k u & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

goal: write $u=u_{H^{2}}^{I}+u_{\mathcal{A}}^{I}+\delta$, where

- $\left\|u_{H^{2}}^{I}\right\|_{H^{2}(\Omega)} \leq C\|f\|_{L^{2}(\Omega)}$
- $u_{\mathcal{A}}^{I}$ is analytic with

$$
\left\|\nabla^{s} u_{\mathcal{A}}^{I}\right\|_{L^{2}(\Omega)} \leq C k^{3 / 2} \max \{s, k\}^{s}\|f\|_{L^{2}(\Omega)} \quad \forall s \in \mathbb{N}_{0}
$$

- δ solves

$$
\begin{aligned}
-\Delta \delta-k^{2} \delta & =f_{\delta} \in L^{2}(\Omega) & & \text { in } \Omega \\
\partial_{n} \delta-\mathbf{i} k \delta & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

where, for a $q \in(0,1),\left\|f_{\delta}\right\|_{L^{2}(\Omega)} \leq q\|f\|_{L^{2}(\Omega)}$ then: obtain decomposition of u by a geometric series argument
key steps of the decomposition

$$
\begin{aligned}
-\Delta u-k^{2} u & =f \in L^{2}(\Omega) \\
\partial_{n} u-\mathbf{i} k u & =0
\end{aligned}
$$

$$
\text { in } \Omega
$$

$$
\text { on } \partial \Omega
$$

Let S_{k} denote the solution operator for this problem.
(1) decompose $f=L_{\eta k} f+H_{\eta k} f$. Set

- $u_{\mathcal{A}, 1}:=S_{k}\left(L_{\eta k} f\right)$.

Then, $\left\|u_{\mathcal{A}, 1}\right\|_{1, k} \leq C k^{5 / 2}\left\|L_{\eta k} f\right\|_{L^{2}}$. Furthermore, $u_{\mathcal{A}, 1}$ is analytic and satisfies the desired bounds (elliptic regularity)

- $u_{H^{2}, 1}:=\mathcal{N}_{k}\left(H_{\eta k} f\right)$.
$\left\|u_{H^{2}, 1}\right\|_{H^{2}(\Omega)} \leq C\left\|H_{\eta k} f\right\|_{L^{2}(\Omega)} \leq C\|f\|_{L^{2}(\Omega)}$.
$\left\|u_{H^{2}, 1}\right\|_{H^{1}(\Omega)} \leq C k^{-1}\left\|H_{\eta k} f\right\|_{L^{2}(\Omega)} \leq C k^{-1}\|f\|_{L^{2}(\Omega)}$.
(2) the remainder $\delta^{\prime}:=u-\left(u_{H^{2}, 1}+u_{\mathcal{A}, 1}\right)$ solves

$$
\begin{aligned}
-\Delta \delta^{\prime}-k^{2} \delta^{\prime} & =0 \\
\partial_{n} \delta^{\prime}-\mathbf{i} k \delta^{\prime} & =\partial_{n} u_{H^{2}, 1}-\mathbf{i} k u_{H^{2}, 1}=: g
\end{aligned}
$$

together with $\quad\|g\|_{H^{1 / 2}(\partial \Omega)} \leq C\left\|u_{H^{2}, 1}\right\|_{H^{2}(\Omega)} \leq C\|f\|_{L^{2}(\Omega)}$

$h p$-FEM

key steps of the decomposition
key steps of the decomposition

$-\Delta u_{\mathcal{A}, 2}-k^{2} u_{\mathcal{A}, 2}$	$=$	0			
$\partial_{n} u_{\mathcal{A}, 2}-\mathbf{i} k u_{\mathcal{A}, 2}$	$=L_{\eta k}^{\partial \Omega} g$			$-\Delta u_{H^{2}, 2}+k^{2} u_{H^{2}, 2}$	$=$
---:	:---				
$\partial_{n} u_{H^{2}, 2}-\mathbf{i} k u_{H^{2}, 2}$	$=$				
$H_{\eta k}^{\partial \Omega} g$					

(6) $L_{\eta k}^{\partial \Omega}$ is analytic $\Longrightarrow u_{\mathcal{A}, 2}$ is analytic with appropriate bounds
(6) standard a priori bounds for $u_{H^{2}, 2}$ ("positive definite Helmholtz problem"):

$$
\begin{aligned}
\left\|u_{H^{2}, 2}\right\|_{1, k} & \leq C\left\|H_{\eta k}^{\partial \Omega} g\right\|_{H^{-1 / 2}(\partial \Omega)} \leq C \frac{1}{\eta k}\|f\|_{L^{2}(\Omega)}, \\
\left\|u_{H^{2}, 2}\right\|_{H^{2}} & \leq C\left\|H_{\eta k}^{\partial \Omega} g\right\|_{H^{1 / 2}(\partial \Omega)} \leq C\|f\|_{L^{2}(\Omega)} .
\end{aligned}
$$

(1) $\delta:=u-\left(u_{\mathcal{A}, 1}+u_{\mathcal{A}, 2}+u_{H^{2}, 1}+u_{H^{2}, 2}\right)=\delta^{\prime}-\left(u_{\mathcal{A}, 2}+u_{H^{2}, 2}\right)$ solves

$$
\begin{aligned}
-\Delta \delta-k^{2} \delta & =-2 k^{2} u_{H^{2}, 2}=: f_{\delta} \\
\partial_{n} \delta-\mathbf{i} k \delta & =0
\end{aligned}
$$

and $\left\|f_{\delta}\right\|_{L^{2}}=2 k^{2}\left\|u_{H^{2}, 2}\right\|_{L^{2}} \leq C \frac{1}{\eta}\|f\|_{L^{2}}$.
\Longrightarrow selecting η sufficiently large concludes the argument.

Intro 000000000000	$h p$-FEM nonstandard FEM $000000000000000000000 \bullet 00000000000000000000000000$	BIEs 00000000000000000000

key steps of the decomposition
δ^{\prime} solves

$$
\begin{aligned}
-\Delta \delta^{\prime}-k^{2} \delta^{\prime} & =0 \\
\partial_{n} \delta^{\prime}-\mathbf{i} k \delta^{\prime} & =g,
\end{aligned} \quad\|g\|_{H^{1 / 2}(\partial \Omega)} \leq C\|f\|_{L^{2}(\Omega)}
$$

(3) Decompose g as $g=L_{\eta k}^{\partial \Omega} g+H_{\eta k}^{\partial \Omega} g$ with

$$
\begin{aligned}
& L_{\eta k}^{\partial \Omega} g \quad \text { analytic } \\
& \left\|H_{\eta k}^{\partial \Omega} g\right\|_{H^{-1 / 2}(\partial \Omega)} \leq C \frac{1}{\eta k}\|g\|_{H^{1 / 2}(\partial \Omega)} \leq C \frac{1}{\eta k}\|f\|_{L^{2}(\Omega)}
\end{aligned}
$$

(9) define $u_{\mathcal{A}, 2}$ and $u_{H^{2}, 2}$ as solutions of

$$
\begin{aligned}
-\Delta u_{\mathcal{A}, 2}-k^{2} u_{\mathcal{A}, 2} & =0 \\
\partial_{n} u_{\mathcal{A}, 2}-\mathbf{i} k u_{\mathcal{A}, 2} & =L_{\eta k}^{\partial \Omega} g
\end{aligned} \quad \begin{aligned}
-\Delta u_{H^{2}, 2}+k^{2} u_{H^{2}, 2} & =0 \\
\partial_{n} u_{H^{2}, 2}-\mathbf{i} k u_{H^{2}, 2} & =H_{\eta k}^{\partial \Omega} g
\end{aligned}
$$

Intro
000000000000

$h p$-FEM

Theorem (decomposition for convex polygons)

Let $\Omega \subset \mathbb{R}^{2}$ be a convex polygon. Then the solution u of

$$
-\Delta u-k^{2} u=f \quad \text { in } \Omega, \quad \partial_{n} u-\mathbf{i} k u=0 \quad \text { on } \partial \Omega
$$

can be written as $u=u_{H^{2}}+u_{\mathcal{A}}$, where

$$
\begin{aligned}
\left\|u_{H^{2}}\right\|_{H^{2}(\Omega)} & \leq C\|f\|_{L^{2}(\Omega)} \\
\left\|\Phi_{\beta, n} \nabla^{n+2} u_{\mathcal{A}}\right\|_{L^{2}(\Omega)} & \leq C \gamma^{n} \max \{n, k\}^{n+1}\|f\|_{L^{2}(\Omega)} \quad \forall n \in \mathbb{N}_{0}
\end{aligned}
$$

for some $C, \gamma>0$ and $\beta \in[0,1)$.
$r(x) \quad:=\quad$ min. distance to vertices

$$
\begin{aligned}
r_{c} & :=\min \left\{1, \frac{n+1}{k}\right\} \\
\Phi_{\beta, n} & = \begin{cases}1 & \text { if } r_{c} \geq 1 \\
\left(\frac{r}{\min \left\{1, \frac{n+1}{k}\right\}}\right)^{n+\beta} & \text { if } r_{c}<1\end{cases}
\end{aligned}
$$

Theorem (quasi-optimality of $h p$-FEM, polygons)

Let $\Omega \subset \mathbb{R}^{2}$ be a convex polygon. Let \mathcal{T}_{h}^{L} be a mesh s.t.

- the restriction of \mathcal{T}_{h}^{L} to $\Omega \backslash \cup_{j=1}^{J} B_{c h}\left(A_{j}\right)$ is quasi-uniform
- \mathcal{T}_{h}^{L} restricted to $B_{c h}\left(A_{j}\right)$ is a geometric mesh with L layers.

Then: the hp-FEM is quasi-optimal under the condition
sufficiently small and $\quad p \sim L \geq c \log k$.

$$
\begin{aligned}
-\Delta u-k^{2} u & =f \quad \text { in } \mathbb{R}^{d} \backslash \Omega, \\
u & =0 \quad \text { on } \partial \Omega \\
\partial_{r} u-\mathbf{i} k u & =o\left(r^{(1-d) / 2}\right)
\end{aligned}
$$

Assume additionally supp $f \subset B_{R}$.

quasi-optimality of $h p$-FEM

$h p$-FEM is quasi-optimal under the scale resolution condition, if the DtN -operator on ∂B_{R} is realized exactly.

Intro
000000000000

$h p$-FEM

summary

- basic mechanisms:
(1) operator has the form "elliptic + compact perturbation": $-\Delta u-k^{2} u=\left(-\Delta u+k^{2} u\right)-2 k^{2} u$ (Gårding inequality)
(2) \rightarrow asymptotic quasi-optimality
(3) k-explicit regularity for the (adjoint) problem in the form of an additive splitting permits to be explicit about k-dependence of onset of quasi-optimality
- pollution free methods by changing the discretization and/or ansatz functions?
- 1D is possible: one can devise nodally exact methods (\rightarrow pollution-free). This is due to the fact that the space of homogeneous solutions is finite dimensional (dim: 2)
- pollution unavoidable for $d>1$ for methods with fixed stencil (Babuska \& Sauter)
(1) Introduction
(2) classical $h p$-FEM
- convergence of $h p$-FEM
- regularitysome nonstandard FEM
(4) boundary integral equations (BIEs)
- introduction to BIEs
- $h p$-BEM
- regularity through decompositions
- numerical examples (classical hp-BEM)
- example of a non-standard BEM

Intro 00000000000	honstandard FEM hpen $0000000000000000000000000000 \bullet 000000000000000000$	BIEs 0000000000000000000

Trefftz type ansatz functions

reasons:

- improved approximation properties (error vs. DOF)
- greater potential for adaptivity (directionality)
- hope of reduction of pollution
stability analysis
- not clear that approach "coercive + compact perturbation" can be made to work for interesting cases
- \rightarrow often, different, stable numerical formulations used such as
- least squares
- DG

Trefftz type ansatz functions
idea: approximate solutions of $-\Delta u-k^{2} u=0$ with functions that solve the equation as well.
examples (2D):

- plane waves:

$$
W(p):=\operatorname{span}\left\{e^{\mathrm{i} k \omega_{n} \cdot(x, y)} \mid n=1, \ldots, p\right\}, \quad \omega_{n}=\left(\cos \frac{2 \pi n}{p}, \sin \frac{2 \pi n}{p}\right)
$$

- cylindrical waves:
$V(p):=\operatorname{span}\left\{J_{n}(k r) \sin (n \varphi), J_{n}(k r) \cos (n \varphi) \mid n=0, \ldots, p\right\}$
- fractional Bessel functions (near corners of polygons): $\operatorname{span}\left\{J_{n \alpha}(k r) \sin (n \alpha \varphi) \mid n=1, \ldots, N\right\}$,
- fundamental solutions:

$$
\operatorname{span}\left\{G_{k}\left(\left|x-x_{i}\right|\right) i=1, \ldots, N\right\}
$$

- more generally: "discretized" potentials

[^1]J.M. Melenk

Approximation properties of systems of plane waves for the approximation of u satisfying $-\Delta u-k^{2} u=0$ on $\Omega \subset \mathbb{R}^{2}$

$$
W(p):=\operatorname{span}\left\{e^{\mathbf{i} k \omega_{n} \cdot(x, y)} \mid n=1, \ldots, p\right\}, \quad \omega_{n}=\left(\cos \frac{2 \pi n}{p}, \sin \frac{2 \pi n}{p}\right)
$$

Theorem (h-version: Moiola, Cessenat \& Després)

Let K be a shape regular element with diameter h. Let $p=2 \mu+1$. Then there exists $v \in W(2 \mu+1)$ s.t.

$$
\|u-v\|_{j, k, K} \leq C_{p} h^{\mu-j+1}\|u\|_{\mu+1, k, K}, \quad 0 \leq j \leq \mu+1
$$

where $\|v\|_{j, k, K}^{2}=\sum_{m=0}^{j} k^{2(j-m)}|v|_{H^{m}(K)}^{2}$.
Remarks:

- Extension to 3D possible
- analogous results for cylindrical waves

Approximation properties of systems of plane waves II

Theorem (p-version, exponential convergence)

Let $\Omega \subset \mathbb{R}^{2}, \Omega^{\prime} \subset \subset \Omega$. Then:

$$
\inf _{v \in W(p)}\|u-v\|_{H^{1}\left(\Omega^{\prime}\right)} \leq C e^{-b p / \log p}
$$

Theorem (p-version, algebraic conv.)

Let Ω be star shaped with respect to a ball and satisfy an exterior cone condition with angle $\lambda \pi$. Let $u \in H^{k}(\Omega), k \geq 1$. Then:

$$
\inf _{v \in W(p)}\|u-v\|_{H^{1}(\Omega)} \leq C\left(\frac{\log ^{2}(p+2)}{p+2}\right)^{\lambda(k-1)}
$$

Remarks:

- simultaneously h and p-explicit bounds possible (2D, Moiola)
- extension to 3D possible (Moiola)

Intro 000000000000	hp-FEM nonstandard FEM 000	BIEs 00000000000000000000

```
Intro hp-FEM nonstandard FEM
```

performance of PUM: scattering by a sphere

- scattering by a sphere B_{1} (radius 1) of an incident plane wave
- sound hard b.c. on $\Gamma=\partial B_{1}$ (i.e., Neumann b.c.)
- computational domain: ball of diameter $1+4 \lambda(\lambda=2 \pi / k)$
- b.c. $\partial_{n} u^{s}+\left(\frac{1}{r}-\mathbf{i} \kappa\right) u^{s}=0$ on outer boundary
- mesh: 4 layers in rad. dir., 8×5 elem./layers; $\rightarrow 160$ elem.; 170 nodes

$$
\text { numerical method: minimize } J \text { over } V_{N} \text {. }
$$

(1) existence and uniqueness of minimizer $u_{N} \in V_{N}$ is guaranteed
consistency: if exact solution u is sufficiently smooth, then $J(u)=0$.

Helmholtz problems at large k
$\stackrel{53}{ }$

Intro 000000000000		BIEs 000000000000000000000

Lagrange multiplier technique for interelement continuity

$$
\begin{aligned}
& \text { original problem: } \\
& \text { find } u \in H^{1}(\Omega) \text { s.t. } a(u, v)=l(v) \quad \forall v \in H^{1}(\Omega) \\
& \text { notation: } \quad \mathcal{T}=\text { mesh, } \quad \mathcal{E}=\text { set of internal edges } / \text { faces } \\
& \text { spaces: } \quad X=\left\{u \in L^{2}(\Omega)|u|_{K} \in H^{1}(K) \quad \forall K \in \mathcal{T}\right\} \text {, } \\
& M=\prod_{E \in \mathcal{E}}\left(H^{1 / 2}(E)\right)^{\prime}, \\
& \text { define } \quad b(u, \mu)=\sum_{E \in \mathcal{E}}\langle[u], \mu\rangle \\
& \text { define } \quad a_{\mathcal{T}}(u, \mu)=\sum_{K \in \mathcal{T}} a_{K}(u, v), \quad a_{K}(u, v)=\int_{K} \nabla u \cdot \nabla \bar{v}-k^{2} u \bar{v} \pm \mathbf{i} k \int_{\partial K \cap \partial \Omega} u \bar{v} \\
& \text { Let } X_{N} \subset X, M_{N} \subset M: \quad \text { Find }\left(u_{N}, \lambda_{N}\right) \in X_{N} \times M_{N} \text { s.t. } \\
& a_{\mathcal{T}}\left(u_{N}, v\right)+b\left(v, \lambda_{N}\right) \quad=\quad l(v) \quad \forall v \in X_{N} \\
& b\left(u_{N}, \mu\right)=0 \quad \forall \mu \in M_{N}
\end{aligned}
$$

interelement continuity by penalty: error estimates

- \rightarrow can get bounds for $J\left(u_{N}\right)$ from a elementwise
approximation properties of V_{N} given above for plane waves:

$$
\begin{aligned}
J\left(u_{N}\right) \leq \inf _{v \in V_{N}} J(v)=\inf _{v \in V_{N}} & \sum_{e \in \mathcal{E}^{I}} k^{2}\|[u-v]\|_{L^{2}(e)}^{2}+\left\|\left[\nabla_{h}(u-v)\right]\right\|_{L^{2}(e)}^{2} \\
& +\sum_{e \in \mathcal{E}^{\Gamma}}\left\|\partial_{n}(u-v)-\mathbf{i} k(u-v)\right\|_{L^{2}(e)}^{2}
\end{aligned}
$$

- extract L^{2}-error estimates from $J\left(u_{N}\right)$:

Theorem (Monk \& Wang)

Let Ω be convex. Let \mathcal{T} be a quasi-uniform mesh with mesh size h. Let $u-u_{N}$ satisfy the homogeneous Helmholtz equation elementwise. Then:

$$
\left\|u-u_{N}\right\|_{L^{2}(\Omega)}^{2} \leq C_{\Omega, k} h^{-1} J\left(u_{N}\right)
$$

proof: duality argument (later)

Intro
000000000000

nonstandard FEM

"Discontinuous enrichement method" of Farhat et al. (IJNME '06)

Ansatz space for solution u :

$$
\begin{aligned}
X_{N} & :=\prod_{K \in \mathcal{T}} W_{K} \\
W_{K} & :=\operatorname{span}\left\{e^{\mathbf{i} k \mathbf{d}_{n} \cdot \mathbf{x}} \mid n=1, \ldots, N_{u}\right\}
\end{aligned}
$$

Ansatz space for Lagrange multiplier

$$
\begin{aligned}
M_{N} & :=\prod_{E \in \mathcal{E}} \widetilde{W}_{E} \\
\widetilde{W}_{E} & :=\operatorname{span}\left\{e^{\mathbf{i} k c_{n} \omega_{n} \cdot \mathbf{t}} \mid n=1, \ldots, N_{\lambda}\right\}
\end{aligned}
$$

where the parameters c_{n} are between 0.4 and 0.8 and are obtained from a numerical study of a test problem

performance of DEM: scattering by a sphere

- scattering by a sphere B_{1} (radius 1) of an incident plane wave
- sound hard b.c. on $\Gamma=\hat{\partial} B_{1}$ (i.e., Neumann b.c.)
- computational domain: ball of diameter 2
- b.c. $\partial_{n} u^{s}-\mathbf{i} \kappa u^{s}=0$ on outer boundary

Figure 6. Convergence of the Galerkin and DGM elements for the problem of sound-hard scattering by a sphere: $R_{1}=1, R_{2}=2, k R_{1}=12$ (left) and $k R_{1}=24$ (right).
legend: dashed lines $=$ standard Q_{2}, Q_{3}, Q_{4} elements; solid lines = new elements; taken from Tezaur \& Farhat, Helmholdevartblefns at large k

nonstandard FEM

000000000000000000000

DG: discrete flux formulation

discretization:

- $H^{1}(K) \rightarrow V_{N}(K), \quad u \rightarrow u_{N}$ (elementwise)
$\begin{array}{lc}\text { - } H^{1}(K) \rightarrow V_{N}(K), & u \rightarrow u_{N} \text { (elementwise) } \\ \text { - } H \text { (div, } K) \rightarrow \boldsymbol{\Sigma}_{N}(K) & \boldsymbol{\sigma} \rightarrow \boldsymbol{\sigma}_{N} \text { (elementwise) } \\ \text { - (multivalued) traces } u \text { and } \boldsymbol{\sigma} \text { on the skeleton are replaced }\end{array}$
- (multivalued) traces u and σ on the skeleton are replaced with (single-valued) numerical fluxes $\widehat{u}_{N}, \widehat{\sigma}_{N}$

discrete formulation (flux formulation)

$$
\begin{gathered}
\int_{K} \mathbf{i} k \boldsymbol{\sigma}_{N} \cdot \overline{\boldsymbol{\tau}}+\int_{K} u_{N} \nabla \cdot \overline{\boldsymbol{\tau}}-\int_{\partial K} \widehat{u}_{N} \overline{\boldsymbol{\tau}} \cdot \mathbf{n}=0 \quad \forall \boldsymbol{\tau} \in \boldsymbol{\Sigma}_{N}(K) \\
\int_{K} \mathbf{i} k u_{N} \bar{v}+\int_{K} \boldsymbol{\sigma}_{N} \cdot \nabla \bar{v}-\int_{\partial K} \widehat{\boldsymbol{\sigma}}_{N} \cdot \mathbf{n} \bar{v}=0 \quad \forall v \in V_{N}(K)
\end{gathered}
$$

Intro 000000000000	hp-FEM nonstandard FEM O००००००००००	BIEs 00000000000000000000

DG approach: continuous flux formulation
model problem:
reformulation as a first order system by setting $\sigma:=\nabla u /(\mathbf{i} k)$:

$$
\begin{array}{rlrl}
\mathbf{i} k \boldsymbol{\sigma} & =\nabla u \quad \text { on } \Omega \\
\mathbf{i} k u-\nabla \cdot \boldsymbol{\sigma} & =0 & & \text { on } \Omega \\
\mathbf{i} k \boldsymbol{\sigma} \cdot \mathbf{n}+\mathbf{i} k u & =g & & \text { on } \partial \Omega
\end{array}
$$

weak elementwise formulation: for every $K \in \mathcal{T}$ there holds

$$
\begin{aligned}
\int_{K} \mathbf{i} k \boldsymbol{\sigma} \cdot \overline{\boldsymbol{\tau}}+\int_{K} u \nabla \cdot \overline{\boldsymbol{\tau}}-\int_{\partial K} u \overline{\boldsymbol{\tau}} \cdot \mathbf{n}=0 & \forall \boldsymbol{\tau} \in H(\mathrm{div}, K) \\
\int_{K} \mathbf{i} k u \bar{v}+\int_{K} \boldsymbol{\sigma} \cdot \nabla \bar{v}-\int_{\partial K} \boldsymbol{\sigma} \cdot \mathbf{n} \bar{v}=0 & \forall v \in H^{1}(K)
\end{aligned}
$$

-

DG: from the flux formulation back to the primal formulation
elimination of the variable σ_{N} by
(1) requiring $\nabla V_{N}(K) \subset \boldsymbol{\Sigma}_{N}(K)$ for all $K \in \mathcal{T}$
© selecting test fct $\tau=\nabla v$ and integrating by parts gives
$\int_{K} \nabla u_{N} \nabla \bar{v}-k^{2} u_{N} \bar{v}-\int_{\partial K}\left(u_{N}-\widehat{u}_{N}\right) \partial_{n} \bar{v}-\mathbf{i} k \widehat{\boldsymbol{\sigma}}_{N} \cdot \mathbf{n}=0 \quad \forall K \in \mathcal{T}$
Since V_{N} consists of discontinuous functions, this is equivalent to:

DG formulation

Find $u_{N} \in V_{N}$ s.t. for all $v \in V_{N}$
$\sum_{K \in \mathcal{T}} \int_{K} \nabla u_{N} \cdot \nabla \bar{v}-k^{2} u_{N} \bar{v}+\int_{\partial K}\left(\widehat{u}_{N}-u_{N}\right) \nabla \bar{v} \cdot \mathbf{n}-\int_{\partial K} \mathbf{i} k \widehat{\sigma}_{N} \cdot \mathbf{n} \bar{v}=0$

DG: special choices of fluxes

- for interior edges

$$
\begin{aligned}
\widehat{\boldsymbol{\sigma}}_{N} & =\frac{1}{\mathbf{i} k}\left\{\left\{\nabla_{h} u\right\}-\alpha \llbracket u_{N} \rrbracket\right. \\
\widehat{u}_{N} & =\left\{u_{N}\right\}-\beta \frac{1}{\mathbf{i} k} \llbracket \nabla_{h} u_{N} \rrbracket
\end{aligned}
$$

- for boundary edges

$$
\begin{aligned}
\widehat{\boldsymbol{\sigma}}_{N} & =\frac{1}{\mathbf{i} k} \nabla_{h} u_{N}-\frac{1-\delta}{\mathbf{i} k}\left(\nabla_{h} u_{N}+\mathbf{i} k u_{N} \mathbf{n}-g \mathbf{n}\right) \\
\widehat{u}_{N} & =u_{N}-\frac{\delta}{\mathbf{i} k}\left(\nabla_{h} u \cdot \mathbf{n}+\mathbf{i} k u_{N}-g\right)
\end{aligned}
$$

(1) $\alpha=\beta=\delta=1 / 2$: UWVF (Cessenat/Després, Monk et al.)
(2) $\alpha=O(p /(k h \log p)), \quad \beta=O((k h \log p) / p)$, $\delta=O((k h \log p) / p)$: Hiptmair/Moiola/Perugia

- if $V_{N}(K)=$ space of elementwise solutions of homogeneous Helmholtz eqn \rightarrow volume contribution can be made to vanish by further integration by parts

DG formulation

find $u_{N} \in V_{N}$ s.t. $A_{N}\left(u_{N}, v\right)=\mathbf{i} \frac{1}{k} \int_{\Gamma} \delta g \partial_{n} \bar{v}+\int_{\Gamma}(1-\delta) g \bar{v} \quad \forall v \in V_{N}$

$$
\left.\begin{array}{rl}
A_{N}(u, v)= & \int_{\mathcal{E}^{I}}\{u\} \llbracket \nabla_{h} \bar{v} \rrbracket
\end{array}+\mathbf{i} \frac{1}{k} \int_{\mathcal{E}^{I}} \beta \llbracket \nabla_{h} u \rrbracket \llbracket \nabla_{h} \bar{v} \rrbracket\right] .
$$

coercivity

$$
\alpha, \beta, \delta>0 \quad \Longrightarrow \quad \operatorname{Im} A(u, u)>0 \quad \forall 0 \neq u \in V_{N}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Intro } \\
000000000000
\end{array} \\
& \text { nonstandard FEM } \\
& \text { convergence theory: } L^{2} \text {-estimates } \\
& \|e\|_{L^{2}(\Omega)}=\sup _{\varphi \in L^{2}(\Omega)} \frac{(e, \varphi)_{L^{2}(\Omega)}}{\|\varphi\|_{L^{2}(\Omega)}} \quad \text { (adj. problem }-\Delta v-k^{2} v=\varphi \text {) } \\
& =\sup _{\varphi} \frac{\sum_{K \in \mathcal{T}}\left(e,-\Delta v-k^{2} v\right)_{L^{2}(K)}}{\|\varphi\|_{L^{2}}} \\
& \leq \sup _{\varphi} \frac{\|e\|_{D G}}{\|\varphi\|_{L^{2}}}\left(\sum_{K \in \mathcal{T}} k\left\|\beta^{-1 / 2} v\right\|_{L^{2}(\partial K)}^{2}+k^{-1}\left\|\alpha^{-1 / 2} \nabla v\right\|_{L^{2}(\partial K)}^{2}\right)^{1 / 2} \\
& \lesssim C\left(\frac{1}{\sqrt{k h}}+\sqrt{k h}\right)\|e\|_{D G}
\end{aligned}
$$

- $-\Delta u-k^{2} e=0$ elementwise
- trace estimates (elementwise) and quasi-uniformity of mesh
- $\alpha, \beta, \delta=$ chosen constants $\neq 0$ (independent of h, k, p)
- Ω convex, in order to use a priori estimates

$$
k\|v\|_{L^{2}}+|v|_{H^{1}}+k^{-1}|v|_{H^{2}} \leq C\|\varphi\|_{L^{2}}
$$

Theorem (Monk/Buffa, Hiptmair/Moiola/Perugia)

- use p plane waves elementwise, $p \geq 2 s+1$
- Let $k h$ be bounded
- for the L^{2}-estimate: \mathcal{T}_{N} quasi-uniform and $\Omega \subset \mathbb{R}^{2}$ convex

Then, for α, β, δ constant (independent of h, k, p):

$$
\begin{aligned}
\left\|u-u_{N}\right\|_{D G} & \leq C k^{-1 / 2} h^{s-1 / 2}\left(\frac{\log p}{p}\right)^{s-1 / 2}\|u\|_{s+1, k, \Omega} \\
k\left\|u-u_{N}\right\|_{L^{2}(\Omega)} & \leq C h^{s-1}\left(\frac{\log p}{p}\right)^{s-1 / 2}\|u\|_{s+1, k, \Omega}
\end{aligned}
$$

$$
\text { where }\|u\|_{s, k, \Omega}^{2}=\sum_{j=0}^{s} k^{2(s-j)}|u|_{H^{j}(\Omega)}^{2}
$$

remark: for Hiptmair/Moiola/Perugia choice of α, β, δ : optimal rates in $\|\cdot\|_{D G}$ but same convergence result in L^{2}.

h-version performance (smooth sol.): left: $k=4$, right: $k=64$
geometry: $\Omega=(0,1)^{2}$, exact solution: $H_{0}^{(1)}\left(k\left|x-x_{0}\right|\right), x_{0}=(-1 / 4,0)^{\top}$
5 plane waves per element
source: Gittelson/Hiptmair/Perugia '08
${ }^{65}$
J. Melenk
summary for volume-based methods

- standard $h p$-FEM:
- quasi-optimality can be achieved with a fixed number of a DOF per wavelength, if high order methods are used
- proof relies on the fact that one has a Gårding and k-explicit regularity estimates for the adjoint problem
- nonstandard approximation spaces:
- significant progress has been made to understand the approximation properties of these spaces
- stability: available (so far) only for discretizations for which coericivity can be shown
(1) Introduction
(2) classical $h p$-FEM
- convergence of $h p$-FEM
- regularity
(3) some nonstandard FEM

4 boundary integral equations (BIEs)

- introduction to BIEs
- $h p$-BEM
- regularity through decompositions
- numerical examples (classical $h p$-BEM)
- example of a non-standard BEM
exterior Dirichlet problem (sound soft scattering)

$$
\begin{aligned}
-\Delta u-k^{2} u & =0 \quad \text { in } \mathbb{R}^{d} \backslash \bar{\Omega} \\
u & =g \quad \text { on } \Gamma:=\partial \Omega
\end{aligned}
$$

Sommerfeld radiation condition at ∞

- $d \in\{2,3\}$
- Γ analytic

reformulations as 2nd kind BIEs

(1) "Brakhage-Werner":
find φ s.t. $A \varphi=g$
(2) "Burton-Miller": $\partial_{n} u$ solves $A^{\prime} \partial_{n} u=f(f$ given in terms of $g)$ fact: A and $A^{\prime}: L^{2}(\Gamma) \rightarrow L^{2}(\Gamma)$
boundedly invertible

potential operators

$G_{k}(z):= \begin{cases}-\frac{e^{\mathbf{i} k|z|}}{2 \mathbf{i} k} & d=1, \\ \frac{\mathbf{i}}{4} H_{0}^{(1)} \\ \frac{i^{i k\| \|}}{4 \pi\|z\|} & d=3 .\end{cases}$

Newton potential $\mathcal{N}_{k}(f):=\int_{\mathbb{R}^{d}} G_{k}(x-y) f(y) d y$ single layer potential $\widetilde{V}_{k}(f):=\int_{\Gamma} G_{k}(x-y) f(y) d s_{y}$ double layer potential $\widetilde{K}_{k}(f):=\int_{\Gamma} \mathbf{n}(y) \cdot \nabla_{y} G_{k}(x-y) f(y) d s_{y}$.
facts: $\widetilde{V}_{k} f$ and $\widetilde{K}_{k} f$ satisfy

- the (homogeneous) Helmholtz equation piecewise
- the Sommerfeld radiation condition at ∞

representation formula and Calderón identities

representation formula/Green's identity

Let u solve the homogeneous Helmholtz eqn in $\mathbb{R}^{d} \backslash \bar{\Omega}$ (and Sommerfeld radiation condition). Then:

$$
u(x)=\left(\widetilde{K}_{k} \gamma_{0}^{e x t} u\right)(x)-\left(\widetilde{V}_{k} \gamma_{1}^{e x t} u\right)(x) \quad x \in \mathbb{R}^{d} \backslash \bar{\Omega}
$$

taking the trace $\gamma_{0}^{e x t}$ and the conormal trace $\gamma_{1}^{e x t}$ on Γ leads to

Calderón identities

$$
\begin{array}{lr}
\gamma_{0}^{e x t} u=\left(\frac{1}{2} \mathrm{Id}+K_{k}\right) \gamma_{0}^{e x t} u & -V_{k} \gamma_{1}^{e x t} u \\
\gamma_{1}^{e x t} u=-D_{k} \gamma_{0}^{e x t} u & +\left(\frac{1}{2} \mathrm{Id}-K_{k}^{\prime}\right) \gamma_{1}^{e x t} u
\end{array}
$$

$$
\gamma_{1}^{e x t} u:=\left.(n \cdot \nabla u)\right|_{\Gamma}
$$

000000000000
indirect methods
Ansatz: the solution of the Dirichlet problem is sought as a potential

- (first attempt): $u=\widetilde{V}_{k} \varphi$ for an unknown density $\varphi . \rightarrow$ BIE

$$
V_{k} \varphi=g \quad \text { on } \Gamma
$$

However: V_{k} not injective for some k

- (second attempt) $u=\widetilde{K}_{k} \varphi$. Again no good solvability theory for all k
- (combined field ansatz) $u=\left(\mathbf{i} \eta \widetilde{V}_{k}+\widetilde{K}_{k}\right) \varphi$ for some parameter $\eta \in \mathbb{R} \backslash\{0\} . \rightarrow$

$$
g=\gamma_{0}^{e x t} u=\mathbf{i} \eta V_{k} \varphi+\left(\frac{1}{2}+K_{k}\right) \varphi=: A \varphi
$$

Brakhage-Werner

$A: L^{2}(\Gamma) \rightarrow L^{2}(\Gamma)$ is boundedly invertible for every $\eta \in \mathbb{R} \backslash\{0\}$
direct methods
starting point: Calderón projector:

$$
\begin{aligned}
\gamma_{0}^{e x t} u & \left.=\left(\frac{1}{2} \mathrm{Id}+K_{k}\right) \gamma_{0}^{e x t} u-V_{k} \gamma_{1}^{e x t} u \quad \right\rvert\, \cdot(-\mathbf{i} \eta) \\
\gamma_{1}^{e x t} u & =-D_{k} \gamma_{0}^{e x t} u+\left(\frac{1}{2} \mathrm{Id}-K_{k}^{\prime}\right) \gamma_{1}^{e x t} u
\end{aligned}
$$

linear combination yields
$\left[\mathbf{i} \eta\left(\frac{1}{2}-K_{k}\right)-D_{k}\right] \gamma_{0}^{e x t} u=\left[\mathbf{i} \eta V_{k}+\left(\frac{1}{2}+K_{k}^{\prime}\right)\right] \gamma_{1}^{e x t} u=: A^{\prime} \gamma_{1}^{e x t} u$.
Dirichlet problem: given $\gamma_{0}^{e x t} u=g$, solve for $\gamma_{1}^{e x t} u$.
Representation formula gives u :

$$
u=-\widetilde{V}_{k} \gamma_{1}^{e x t} u+\widetilde{K}_{k} \gamma_{0}^{e x t} u
$$

Helmholtz problems at large k

- $A=\frac{1}{2}+K_{k}+\mathbf{i} \eta V_{k}, \quad A^{\prime}=\frac{1}{2}+K_{k}^{\prime}+\mathbf{i} \eta V_{k}$
- coupling parameter η with $|\eta| \sim k$.
- Γ smooth $\Longrightarrow A$ and A^{\prime} are compact perturbations of $\frac{1}{2} \mathrm{Id} \rightarrow$ Fredholm theory available

question

how does k enter the mapping properties of A, A^{\prime} and their inverses $A^{-1},\left(A^{\prime}\right)^{-1}$?

Galerkin discretizations

- given $\left(V_{N}\right)_{N \in \mathbb{N}} \subset L^{2}(\Gamma)$

$$
\text { find } \varphi_{N} \in V_{N} \text { s.t. } \quad\left\langle A \varphi_{N}, v\right\rangle_{L^{2}(\Gamma)}=\langle f, v\rangle_{L^{2}(\Gamma)} \quad \forall v \in V_{N}
$$

- asymptotic quasioptimality: $\exists N_{0}$ s.t. $\forall N \geq N_{0}$

$$
\left\|\varphi-\varphi_{N}\right\|_{L^{2}(\Gamma)} \leq 2 \inf _{v \in V_{N}}\|\varphi-v\|_{L^{2}(\Gamma)}
$$

- question: how does N_{0} depend on k ?

$h p$-BEM spaces $S^{p, 0}\left(\mathcal{T}_{h}\right)$

- $\mathcal{T}_{h}=$ mesh on Γ, mesh width h
- element maps analytic (+ suitable scaling properties)
- $S^{p, 0}\left(\mathcal{T}_{h}\right) \subset L^{2}(\Gamma)$
- $S^{p, 0}\left(\mathcal{T}_{h}\right)=$ piecewise (mapped) polynomials of degree p

Theorem (Quasi-optimality of $h p$-BEM)

Assumption:

- (adjoint) well-posedness: $\left\|\left(A^{\prime}\right)^{-1}\right\|_{L^{2} \leftarrow L^{2}} \leq C k^{\alpha}$

Then: $\exists c_{1}, c_{2}=c_{2}(\alpha)$ independent of k s.t. the

- scale resolution condition $\frac{k h}{p} \leq c_{1} \quad$ and $\quad p \geq c_{2} \log k$ implies

$$
\left\|\varphi-\varphi_{N}\right\|_{L^{2}(\Gamma)} \leq 2 \inf _{v \in S^{p, 0}\left(\mathcal{T}_{h}\right)}\|\varphi-v\|_{L^{2}(\Gamma)}
$$

Corollary

Selecting $p=O(\log k)$ and $h \sim \frac{p}{k}$ leads to quasi-optimality for an $h p-B E M$ space of dimension $N \sim k^{d-1}$.
remarks on assumption of well-posedness

Assumption of well-posedness

for some $\alpha \in \mathbb{R}$ there holds

$$
\left\|\left(A^{\prime}\right)^{-1}\right\|_{L^{2} \leftarrow L^{2}} \leq C k^{\alpha}
$$

- $\alpha=0$ for star shaped domains (Chandler-Wilde \& Monk)
- often observed in practice
- $\left\|\left(A^{\prime}\right)^{-1}\right\|_{L^{2} \leftarrow L^{2}} \geq C e^{\gamma k_{m}}$: for certain trapping domains and $k_{m} \rightarrow \infty$ (Betcke/Chandler-Wilde/Graham/Langdon/Lindner)
possible to show:

$$
\left\|\varphi-\varphi_{N}\right\|_{L^{2}(\Gamma)} \leq\left(1+\varepsilon_{h, p}\right) \inf _{v \in S^{p, 0}\left(\mathcal{T}_{h}\right)}\|\varphi-v\|_{L^{2}(\Gamma)}
$$

where $\varepsilon_{h, p} \rightarrow 0$ if $\frac{k h}{p} \rightarrow 0$ (and $p \gtrsim \log k$)

Helmholtz problems at large k
$\stackrel{78}{8}$
regularity through decomposition

- idea: decompose operators into a
- part with k-independent bounds
- part with smoothing properties and k-explicit bounds
- example:

$$
A^{-1}=A_{1}+\mathcal{A}_{1}
$$

- A_{1} order zero operator; k-independent bounds for $\left\|A_{1}\right\|$
- \mathcal{A}_{1} maps into space of analytic functions
- example:

$$
A=\frac{1}{2}+K_{k}+\mathbf{i} \eta V_{k}=\frac{1}{2}+K_{0}+\quad R \quad+\mathcal{A}
$$

- \mathcal{A} : maps into space of analytic functions; k-explicit bounds
- R : "small", order-1, k-explicit bounds
-•0000000000

```
Intro
```

$$
\begin{aligned}
& h p \text {-FEM } \\
& \text { Oooooooo }
\end{aligned}
$$

decomposition of V_{k}

Theorem

Let Γ be analytic and choose $q \in(0,1)$. Then:

$$
V_{k}=V_{0}+S_{V}+\mathcal{A}_{V}
$$

where
(i) $S_{V}: L^{2}(\Gamma) \rightarrow H^{3}(\Gamma)$ and

$$
\left\|S_{V}\right\|_{L^{2} \leftarrow L^{2}} \lesssim q k^{-1}, \quad\left\|S_{V}\right\|_{H^{1} \leftarrow L^{2}} \lesssim q, \quad\left\|S_{V}\right\|_{H^{3} \leftarrow L^{2}} \lesssim k^{2}
$$

(ii) $\mathcal{A}_{V}: L^{2}(\Gamma) \rightarrow$ space of analytic functions and

$$
\left\|\nabla^{n} \mathcal{A}_{V} \varphi\right\|_{L^{2}(\Gamma)} \lesssim k^{3 / 2} \max \{k, n\}^{n} \gamma^{n}\|\varphi\|_{H^{-3 / 2}(\Gamma)} \quad \forall n \in \mathbb{N}
$$

analogous result for K_{k}

decomposition of \widetilde{V}_{k}

- study: $\widetilde{V}_{k}-\chi \widetilde{V}_{0} \quad(\chi=$ smooth cut-off fct, $\chi \equiv 1$ near $\Gamma)$
- given $\varphi \in H^{-1 / 2}(\Gamma)$ set $u:=\widetilde{V}_{k} \varphi$ and $u_{0}:=\widetilde{V}_{0} \varphi \in H^{1}\left(B_{R}\right)$.
- Then $\delta:=u-\chi u_{0}=\widetilde{V}_{k} \varphi-\chi \widetilde{V}_{0} \varphi$ solves

$$
\begin{aligned}
-\Delta \delta-k^{2} \delta= & k^{2} u_{0} \chi+2 \nabla \chi \cdot \nabla u_{0}+u_{0} \Delta \chi=: f \\
{[\delta]=0 } & {\left[\partial_{n} \delta\right]=0 \quad \text { on } \Gamma, \quad \delta \text { satisfies radiation condition } }
\end{aligned}
$$

- $\rightarrow \delta=\mathcal{N}_{k}(f)=\mathcal{N}_{k}\left(H_{\eta k} f\right)+\mathcal{N}_{k}\left(L_{\eta k} f\right)$, where $H_{\eta k}$ and $L_{\eta k}$ are the high and low pass filters, $\eta>1$.
- $L_{\eta k} f$ analytic $\Longrightarrow \mathcal{N}_{k}\left(L_{\eta k} f\right)$ analytic
- $\mathcal{N}_{k}\left(H_{\eta k} f\right)$ is
- an element of $H^{3}\left(B_{R}\right)$
(since $f \in H^{1}\left(B_{R}\right)$)
- small in $H^{1}\left(B_{R}\right)$ for large $\eta>1$:
$\left|\mathcal{N}_{k}\left(H_{\eta k} f\right)\right|_{H^{1}\left(\mathbb{R}^{d}\right)} \leq C k^{-1}\left\|H_{\eta k} f\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq C \frac{1}{\eta k^{2}}\|f\|_{H^{1}\left(\mathbb{R}^{d}\right)}$

$$
\leq C \frac{1}{\eta}\|\varphi\|_{H^{-1 / 2}(\Gamma)} .
$$

Theorem (decomposition of \widetilde{V}_{k})

Let Γ be analytic, $s \geq-1$, and choose $q \in(0,1)$. Then:

$$
\widetilde{V}_{k}=\chi \widetilde{V}_{0}+\widetilde{S}_{V}+\widetilde{\mathcal{A}}_{V}
$$

where
(i) $\widetilde{S}_{V}: H^{-1 / 2+s}(\Gamma) \rightarrow H^{2}\left(B_{R}\right) \cap H^{3+s}\left(B_{R} \backslash \Gamma\right)$ and

$$
\left\|\widetilde{S}_{V} \varphi\right\|_{H^{s^{\prime}}\left(B_{R} \backslash \Gamma\right)} \lesssim q^{2}(q / k)^{1+s-s^{\prime}}\|\varphi\|_{H^{-1 / 2+s}(\Gamma)}
$$

$$
0 \leq s^{\prime} \leq 3+s
$$

(ii) $\widetilde{\mathcal{A}}_{V}: H^{-1 / 2+s}(\Gamma) \rightarrow$ space of p.w. analytic functions and

$$
\left\|\nabla^{n} \widetilde{\mathcal{A}}_{V} \varphi\right\|_{L^{2}\left(B_{R} \backslash \Gamma\right)} \lesssim \gamma^{n} k \max \{k, n\}^{n}\|\varphi\|_{H^{-3 / 2}(\Gamma)} \forall n \in \mathbb{N}_{0}
$$

decomposition of A^{-1}

Theorem

Let Γ be analytic.

$$
\begin{array}{rlr}
\text { Assume: } & \left\|A^{-1}\right\|_{L^{2} \leftarrow L^{2}} \leq C k^{\alpha} \quad \text { for some } \alpha \geq 0 \\
\text { Then: } & A^{-1}=A_{1}+\mathcal{A}_{1}
\end{array}
$$

where
(i) $A_{1}: L^{2}(\Gamma) \rightarrow L^{2}(\Gamma)$ with $\left\|A_{1}\right\|_{L^{2} \leftarrow L^{2}} \leq C$ independent of k
(ii) $\mathcal{A}_{1}: L^{2}(\Gamma) \rightarrow$ space of analytic functions with

$$
\left\|\nabla^{n} \mathcal{A}_{1} \varphi\right\|_{L^{2}(\Gamma)} \leq C k^{\beta} \max \{k, n\}^{n}\|\varphi\|_{L^{2}(\Gamma)} \quad \forall n \in \mathbb{N}_{0}
$$

for suitable $\beta \geq 0$.
Remark: Analogous decomposition for $\left(A^{\prime}\right)^{-1}$
\square

hp-FEM 000

sketch of the proof

- the operators V_{k} and K_{k} can be decomposed as $V_{k}=V_{0}+R_{V}+\mathcal{A}_{V}$ and $K_{k}=K_{0}+R_{K}+\mathcal{A}_{K}$, where

$$
\left\|R_{V}\right\|_{L^{2} \leftarrow L^{2}} \leq q k^{-1}, \quad\left\|R_{K}\right\|_{L^{2} \leftarrow L^{2}} \leq q .
$$

- hence, decompose $A=\frac{1}{2}+K_{k}+\mathbf{i} \eta V_{k}$ as (use $\eta=O(k)$)

$$
\begin{aligned}
A & =\frac{1}{2}+K_{k}+\mathbf{i} \eta V_{k}=\left(\frac{1}{2}+K_{0}+\mathbf{i} V_{0}\right)+R+\mathcal{A} \\
& =:\left(A_{0}+R\right)+\mathcal{A}=: \widehat{A}_{0}+\mathcal{A}
\end{aligned}
$$

where
(1) $A_{0}: L^{2}(\Gamma) \rightarrow L^{2}(\Gamma)$ is boundedly invertible
(2) $\|R\|_{L^{2} \leftarrow L^{2}} \leq q$ with arbitrary $q \in(0,1)$
(3) \mathcal{A} maps into a space of analytic functions
(9) $\widehat{A}_{0}: L^{2}(\Gamma) \rightarrow L^{2}(\Gamma)$ is boundedly invertible (with norm independent of k)
sketch of the proof, II

$$
A=\widehat{A}_{0}+\mathcal{A}
$$

- $\widehat{A}_{0}: L^{2}(\Gamma) \rightarrow L^{2}(\Gamma)$ is boundedly invertible
- \mathcal{A} maps into a space of analytic functions
- Then

$$
A^{-1}=\widehat{A}_{0}^{-1}-A^{-1} \mathcal{A} \widehat{A}_{0}^{-1}=: A_{1}+\mathcal{A}_{1}
$$

is the desired decomposition of A^{-1} if we can show that A^{-1} maps analytic functions to analytic functions

- more specifically:
- structure of $\mathcal{A}: \mathcal{A}$ is constructed by taking traces of potentials
$\rightarrow \mathcal{A} \varphi=[z]$ for a piecewise analytic function (depending on φ)
- \rightarrow will need that A^{-1} maps traces of jumps of piecewise
analytic functions to jumps of piecewise analytic functions

Theorem (analytic data)

Let $\partial \Omega$ be analytic. Let f be the jump of a piecewise analytic function. Let $\varphi \in L^{2}(\Gamma)$ solve

$$
\left(\frac{1}{2}+K_{k}+\mathbf{i} \eta V_{k}\right) \varphi=A \varphi=f
$$

Then $\varphi=[u]$ for a piecewise analytic function u.
ideas of the proof:
(1) define $u=\widetilde{K}_{k} \varphi+\mathbf{i} \eta \widetilde{V}_{k} \varphi$.
(2) jump conditions: $\varphi=[u]$.
(3) $\gamma_{0}^{e x t} u=\left(\frac{1}{2}+K_{k}+\mathbf{i} \eta V_{k}\right) \varphi=f \rightarrow$ get bounds for u on $B_{R} \backslash \bar{\Omega}$
(9) $[u]=\varphi$ and $\left[\partial_{n} u\right]=\mathbf{i} \eta \varphi$ implies $\left[\partial_{n} u\right]+\mathbf{i} \eta[u]=0$.
(3) once $\left.u\right|_{\mathbb{R}^{d} \backslash \Omega}$ is known, we have an elliptic equation in Ω with Robin boundary data \rightarrow estimates for $\left.u\right|_{\Omega}$.

- $A^{\prime}=\frac{1}{2}+K_{k}^{\prime}+\mathbf{i} k V_{k}$
- mesh \mathcal{T}_{h} is quasi-uniform and $h \sim 1 / k$
- for fixed mesh \mathcal{T}_{h}, degree p ranges from 1 to 14 .
- Galerkin projector $P_{h, p}: L^{2}(\Gamma) \rightarrow S^{p, 0}\left(\mathcal{T}_{h}\right)$
- approximate quasi-optimality constant

$$
\left\|\mathrm{Id}-P_{h, p}\right\|_{L^{2} \leftarrow L^{2}} \approx \sup _{v \in S^{20,0}\left(\mathcal{T}_{h}\right)} \frac{\left\|\left(\mathrm{Id}-P_{h, p}\right) v\right\|_{L^{2}}}{\|v\|_{L^{2}}}
$$

- indications for $\left\|A^{\prime}\right\|_{L^{2} \leftarrow L^{2}}$ and $\left\|\left(A^{\prime}\right)^{-1}\right\|_{L^{2} \leftarrow L^{2}}$
- usually $\eta=k$ (some computations: $\eta=1$)
- recall scale resolution condition:

$$
\frac{k h}{p} \text { small } \quad \text { and } \quad p \geq c \log k
$$

- Number of elements $N=k$
- Galerkin Error $=\sqrt{\left\|\operatorname{Id}-P_{h, p}\right\|^{2}-1}$

- quasioptimality constant:
$C_{\text {opt }}=\sqrt{1+\text { Galerkin Error }}{ }^{2}$
ellipse (semi-axes $1,1 / 4$)

- Number of elements $N=k$
- Galerkin Error $=\sqrt{\| \text { Id }-P_{h, p} \|^{2}-1}$

Helmholtz problems at large k
J.M. Melenk

circle in circle (radii: $1 / 2,1 / 4$)
circle in circle, $r 1=1 / 2, r 2=1 / 4, \eta=k$

- Number of elements $N=2 k$
- Galerkin Error $=\sqrt{\left\|I d-P_{h, p}\right\|^{2}-1}$

Helmholtz problems at large k
J.M. Melenk

$h p$-FEM
C-shaped domain ($\eta=1$)

circle in circle (radii $1 / 2,1 / 4, \eta=1$)

- Number of elements $N=2 k$
J.M. Melenk

[^2]Conclusions for classical $h p$-BEM

- decomposition of A and A^{-1} into
- parts with k-independent bounds
- parts with smoothing properties and k-explicit bounds
- $h p$-BEM quasi-optimal with k-independent constant if

$$
\frac{k h}{p} \text { is sufficiently small } \quad \text { and } p \geq c \log k
$$

- quasi-optimality for problem size $N=O\left(k^{d-1}\right)$ possible (select $p=O(\log k)$ and $h=O(p / k)$)
- often observe quasi-optimality already for " $\frac{k h}{p}$ small"
- caveat: the continuous problem needs to be well-posed, i.e., $\left\|A^{-1}\right\|$ grows only polynomially in k

Helmholtz problems at large k
$\stackrel{94}{9}$
J.M. Melenk

Intro	hp-FEM	
000000000000	nonstandard FEM	BIEs
00	000000000000000000000	

non-standard BEM: a sound soft scattering problem

$\Omega=$ polygonal obstacle

$u^{i}(\mathbf{x}):=\exp (\mathbf{i} k \mathbf{d} \cdot \mathbf{x})$,
$|\mathbf{d}|=1$
$-\Delta u-k^{2} u=0$
$u=0$
$u^{s} \quad:=u-u^{i}$
in $\mathbb{R}^{d} \backslash \bar{\Omega}$
on $\partial \Omega$
satisfies $\left(\partial_{r}-\mathbf{i} k\right) u^{s}=o\left(r^{-(d-1) / 2}\right)$,
goal: determine $\partial_{n} u$ on $\partial \Omega$
question: find space V_{N} from which $\partial_{n} u$ can be approximated well

Intro
000000000000

multiscale approximation spaces

$$
\partial_{n} u \text { for } k=10 \text { and } k=10240
$$

- sharp gradient at corners
- highly oscillatory
- piecewise smooth

P

geometric mesh \mathcal{T}_{L} with L layers

Theorem
$V_{N}^{+}:=\exp (\mathbf{i} k s) \times p . w$. polynomials of degree p on \mathcal{T}_{L},
$V_{N}^{-}:=\exp (-\mathbf{i} k s) \times p . w$. polynomials of degree p on \mathcal{T}_{L},
$p \sim L \gtrsim \log k$.
Then: $V_{N}:=V_{N}^{+}+V_{N}^{-}$satisfies

$$
\begin{aligned}
& \inf _{v \in V_{N}}\|\phi-v\|_{L^{2}(\partial \Omega)} \lesssim k^{-1 / 2} e^{-b p} \\
& \operatorname{dim} V_{N} \sim p^{2}
\end{aligned}
$$

Intro		
000000000000	hp-FEM 000	BIEs
000000000000000000000		

$$
\text { nonstandard BEM: } k=10 \text { and } k=10240
$$

composite Filon quadrature

- k-robust exponential convergence (absolute error)
- cost of quadrature formula independent of k
- possible to design special approximation spaces that incorporate both the oscillatory nature of the solution and the corner singularities
- approximation properties are only weakly dependent on k
- possible to design (in 2D) exponentially convergent quadrature rule to set up BEM stiffness matrix with work depending only weakly on k

[^0]: Helmholtz problems at large k

[^1]: Helmholtz problems at large k

[^2]: Helmholtz problems at large k

