

Intro •00000000000	<i>hp</i> -FEM 000000000000000000000000000000000000	nonstandard FEM	BIEs 000000000000000000000000000000000000	Intro 0000000000000000	<i>hp</i> -FEM 000000000000000000000000000000000000	nonstandard FEM	BIEs 00000000
	Helmholtzu	model problem			Discret	ization	
(radia	$-\Delta u - k^2 u = b.c.$	f in Ω , on $\partial \Omega$, at ∞)		 doma integr the discret fin how to ch 	in-based discretizations ral equation based discretizations have the abstr izations have the abstr d $u_N \in V_N$ s.t. $a_k(u)$ noose V_N , W_N , a_k for	$ \begin{array}{l} \leftrightarrow FEM \\ retizations \leftrightarrow BEM \\ act form: \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
Č. se		,		fundamen	tal issues		
 e acous e electro goals: efficie 	tic scattering problem omagnetic scattering ent and reliable numer	ns problems rical methods also for large k >	> 0.	 appro s n stabilities 	ximability: approximate tandard (polynomial base constandard approximatio ity: ideally: (asymptotic $\ u - u_N\ \le$	$\leq u$ from V_N well: d) approximation n (e.g., info from asymptotics) c) quasi-optimality, i.e., $\leq C \inf_{v \in V_N} u - v $	
				with s	some C independent of	k in a norm $\ \cdot\ $ of interest	
Helmholtz problems at lar	rge k		5 J.M. Melenk	Helmholtz problems at la	rge k		6 J.M. Melenk
Intro 00000000000	hp-FEM 000000000000000000000000000000000000	nonstandard FEM oooooooooooooooooooooooooooooooooooo	BIEs 000000000000000000000000000000000000	Intro 000●00000000	hp-FEM ooocoocoocoocoocoocoocoo hn_FEM	nonstandard FEM 000000000000000000000000000000000000	BIEs
	model	problem		abstract F	EM discretization	spaces v_N	
Lu := Bu	$= -\Delta u - k^2 u = f$ $:= \partial_n u - \mathbf{i}ku = 0$	in Ω , $\Omega \subset \mathbb{R}^d$ bounded, on $\partial \Omega$.		given V_N ($\subset H^1(\Omega)$ find $u_N \in V_N$ $a(u_N,v) = l(v)$) $\forall v \in V_N.$	
weak form find $u \in H$ where a(fulation $I^1(\Omega)$ s.t. $a(u, v) = l(u, v) = l(u, v)$ $(u, v) := \int \nabla u \cdot \nabla u \cdot \nabla v$	(v) $\forall v \in H^1(\Omega)$ $7\overline{v} - k^2 \int u\overline{v} - \mathbf{i}k \int u\overline{v},$		\widehat{K}			
	$l(v) := \int_{\Omega}^{J_{\Omega}} f\overline{v}.$	J_{Ω} $J_{\partial\Omega}$	7	 <i>T</i> = 1 diam <i>V_N</i> := <i>N</i> := 	triangulation of $\Omega \subset \mathbb{R}$ $K \sim h$ for all $K \in \mathcal{T}$ $= S^p(\mathcal{T}) := \{u \in H^1(\Omega) \mid dim V_N \sim h^{-d} p^d$	u^{d} with element maps F_{K} $) u \circ F_{K} \in \mathcal{P}_{p} \}$	8
Helmholtz problems at lar	rge k		J.M. Melenk	Helmholtz problems at la	rge k		J.M. Melenk

is an important condition

J.M. Melenk

Helmholtz problems at large k

11 J.M. Melenk

Intro 00000000000	<i>hp</i> -FEM 000000000000000000000000000000000000	nonstandard FEM	BIEs	Intro 000000000000	<i>hp</i> -FEM ●000000000	nonstand	ard FEM	BIEs 000000000
					stability	analysis of hp -	FEM	
1 Introduc	tion			goals:				
2 classical	hp-FEM			show	that the scale r	resolution conditions	i	
• convei • regula	rgence of <i>hp</i> -FEM				$\frac{\kappa n}{p}$ small	together with	$p \ge C \log k$	
 3 some no 4 boundary • introd • hp-BE • regula • numer • examp 	nstandard FEM y integral equation uction to BIEs M rity through decom rical examples (class ole of a non-standa	s (BIEs) positions sical <i>hp</i> -BEM) rd BEM		is suf no un use c assumptic geom solut suita techniques view	fficient to guaran niform meshes (- only stability of to ons: netry is (piecewis ion operator $f \vdash$ ble norm) :: Helmholtz probler	ntee quasi-optimality ightarrow no discrete Green the continuous problese) analytic ightarrow u grows only poly ms as " H^1 -elliptic plus	y of the hp -FEM a's function) em momially in k (in a s compact perturbation	on"
			17	study	regularity of suit	able adjoint problems		18
Helmholtz problems at larg	e k		J.M. Melenk	Helmholtz problems at I	large k			J.M. Melenk
Intro	hp-FEM $\circ \bullet \circ \circ$	$\begin{array}{l} \text{continuous problem} \\ = f & \text{in } \Omega \\ = g & \text{on } \partial\Omega \end{array}$	BIEs	Intro 00000000000000000 rema	hp-FEM ∞●●○○○○○○○	ity of the contin	ard FEM	BIEs
TheoremLet $\Omega \subset \mathbb{R}^d$	l , $d\in\{1,2,3\}$ be .	a bounded Lipschitz domain. Ther	1	• one o funct	option to get <i>a µ</i> tions.	<i>priori</i> estimates is th	e use of judicious t	est
where	$\ u\ _{1,k} \le Ck^{5/2}$	$\left[\ f\ _{L^{2}(\Omega)} + \ g\ _{L^{2}(\partial\Omega)} \right]$		 For s and t here: 	star shaped doma then clever integ use estimates fo	ains, an interesting gration by parts (Rel or layer potentials	test fct is $v = x \cdot \nabla$ lich identities)	7u
	$\ v\ _{1,k} := v $	$ H^1(\Omega) = \kappa U L^2(\Omega)$						
remark	chanad with races	rt to a hall then						
II 12 IS STAF-	snaped with respe							
	$\ u\ _{1,k} \le C\left[\ \right.$	$f\ _{L^2(\Omega)} + \ g\ _{L^2(\partial\Omega)} \rfloor$						20
Helmholtz problems at larg	e k		19 I.M. Melenk	Helmholtz problems at I	large k			∠u IM Melenk

proof the decomposition result

properties of the Newton potential \mathcal{N}_k

$$\begin{split} u &= \mathcal{N}_{k}(f) := G_{k} \star f \\ u \text{ solves } -\Delta u - k^{2}u = f \quad \text{ in } \mathbb{R}^{d} \\ G_{k}(z) &:= \begin{cases} -\frac{e^{\mathbf{i}k|z|}}{2\mathbf{i}k} & d = 1, \\ \frac{\mathbf{i}}{4}H_{0}^{(1)}(k \, \|z\|) & d = 2, \\ \frac{e^{\mathbf{i}k||z\|}}{4\pi \|z\|} & d = 3. \end{cases} \\ \widehat{G}_{k}(\xi) &= c_{d} \frac{1}{|\xi|^{2} - k^{2}}, \qquad c_{d} \in \mathbb{R} \end{split}$$

key ingredient of analysis: study the symbol of \mathcal{N}_k , i.e., $\widehat{G}_k(\xi)$

- analyze the Newton potential, i.e., the full space problem
- analyze the bounded domain case by a fixed point argument

hp-FEM

estimating u_A

key ingredient of the proof:

Trefftz type ansatz functions

reasons:

- improved approximation properties (error vs. DOF)
- greater potential for adaptivity (directionality)
- hope of reduction of pollution

stability analysis

- not clear that approach "coercive + compact perturbation" can be made to work for interesting cases
- ullet ightarrow often, different, stable numerical formulations used such as
 - least squares
 - DG

Approximation properties of systems of plane waves for the approximation of u satisfying $-\Delta u - k^2 u = 0$ on $\Omega \subset \mathbb{R}^2$ $W(p) := \operatorname{span}\{e^{ik\omega_n \cdot (x,y)} \mid n = 1, \dots, p\}, \quad \omega_n = (\cos \frac{2\pi n}{p}, \sin \frac{2\pi n}{p})$ Theorem (*h*-version: Moiola, Cessenat & Després) Let K be a shape regular element with diameter h. Let $p = 2\mu + 1$. Then there exists $v \in W(2\mu + 1)$ s.t. $\|u - v\|_{j,k,K} \leq C_p h^{\mu - j + 1} \|u\|_{\mu + 1,k,K}, \quad 0 \leq j \leq \mu + 1$ where $\|v\|_{j,k,K}^2 = \sum_{m=0}^j k^{2(j-m)} |v|_{H^m(K)}^2$.

Remarks:

- Extension to 3D possible
- analogous results for cylindrical waves

J.M. Melenk

Helmholtz problems at large k

interelement continuity by penalty (Least Squares)

 $\partial_n u - \mathbf{i}ku = g$ on Γ , notation: $\mathcal{T} = \mathsf{mesh}, \quad \mathcal{E} = \mathsf{internal edges}, \quad \mathcal{E}^{\Gamma} = \mathsf{edges on } \Gamma,$ approximation space:

$$V_N \subset \{ v \in L^2(\Omega) \mid \left(-\Delta v - k^2 v \right) \mid_K = 0 \quad \forall K \in \mathcal{T} \}$$

Cost functional
$$J(u) := \sum_{e \in \mathcal{E}^I} k^2 \| [u] \|_{L^2(e)}^2 + \| [\nabla u] \|_{L^2(e)}^2 + \sum_{e \in \mathcal{E}^\Gamma} \| \partial_n u - \mathbf{i} k u - g \|_{L^2(e)}^2$$

numerical method: minimize J over V_N .

() existence and uniqueness of minimizer $u_N \in V_N$ is guaranteed 2 consistency: if exact solution u is sufficiently smooth, then J(u) = 0.

	53
Helmholtz problems at large k	J.M. Melen

Lagrange multiplier technique for interelement continuity

original problem:

interelement continuity by penalty: error estimates

• \rightarrow can get bounds for $J(u_N)$ from a elementwise approximation properties of V_N given above for plane waves:

$$J(u_N) \leq \inf_{v \in V_N} J(v) = \inf_{v \in V_N} \sum_{e \in \mathcal{E}^I} k^2 ||[u - v]||^2_{L^2(e)} + ||[\nabla_h(u - v)]||^2_{L^2(e)} + \sum_{e \in \mathcal{E}^\Gamma} ||\partial_n(u - v) - \mathbf{i}k(u - v)||^2_{L^2(e)}$$

• extract L^2 -error estimates from $J(u_N)$:

Theorem (Monk & Wang)

Let Ω be convex. Let \mathcal{T} be a quasi-uniform mesh with mesh size h. Let $u - u_N$ satisfy the homogeneous Helmholtz equation elementwise. Then:

$$||u - u_N||^2_{L^2(\Omega)} \le C_{\Omega,k} h^{-1} J(u_N)$$

proof: duality argument (later)

numerics 54

J.M. Melenk

Helmholtz problems at large k

"Discontinuous enrichement method" of Farhat et al. (IJNME '06)

nonstandard FEM

Ansatz space for solution u:

$$X_N := \prod_{K \in \mathcal{T}} W_K,$$

$$W_K := \operatorname{span}\{e^{\mathbf{i}k\mathbf{d}_n \cdot \mathbf{x}} \mid n = 1, \dots, N_n\}$$

Ansatz space for Lagrange multiplier

$$M_N := \prod_{E \in \mathcal{E}} \widetilde{W}_E,$$

$$\widetilde{W}_E := \operatorname{span} \{ e^{\mathbf{i}kc_n \omega_n \cdot \mathbf{t}} \mid n = 1, \dots, N_\lambda \}$$

where the parameters c_n are between 0.4 and 0.8 and are obtained from a numerical study of a test problem

Figure 1. 3D DGMH elements: directions of the Lagrange multipliers (left), directions of the element basis functions (right): (a) DGMH-26-4; (b) DGMH-56-8; and (c) DGMH-98-12.

•
$$H^1(K) o V_N(K)$$
, $u o u_N$ (elementwise)

- $H(\operatorname{div}, K) \to \Sigma_N(K)$
 - $\sigma \rightarrow \sigma_N$ (elementwise)
- (multivalued) traces u and σ on the skeleton are replaced with (single-valued) numerical fluxes \hat{u}_N , $\hat{\sigma}_N$

elimination of the variable σ_N by • requiring $\nabla V_N(K) \subset \Sigma_N(K)$ for all $K \in \mathcal{T}$ **2** selecting test fct $\tau = \nabla v$ and integrating by parts gives $\int_{V} \nabla u_N \nabla \overline{v} - k^2 u_N \overline{v} - \int_{\partial V} (u_N - \widehat{u}_N) \partial_n \overline{v} - \mathbf{i} k \widehat{\boldsymbol{\sigma}}_N \cdot \mathbf{n} = 0$ $\forall K \in \mathcal{T}$

Since V_N consists of discontinuous functions, this is equivalent to:

DG formulation Find $u_N \in V_N$ s.t. for all $v \in V_N$ $\sum_{K \in \mathcal{T}} \int_{K} \nabla u_N \cdot \nabla \overline{v} - k^2 u_N \overline{v} + \int_{\partial K} (\widehat{u}_N - u_N) \nabla \overline{v} \cdot \mathbf{n} - \int_{\partial K} \mathbf{i} k \widehat{\boldsymbol{\sigma}}_N \cdot \mathbf{n} \overline{v} = 0$

DG: special choices of fluxes

• for interior edges

$$\widehat{\boldsymbol{\sigma}}_{N} = \frac{1}{\mathbf{i}k} \{\!\!\{ \nabla_{h} u \}\!\!\} - \alpha [\!\![u_{N}]\!\!]$$
$$\widehat{u}_{N} = \{\!\!\{ u_{N} \}\!\!\} - \beta \frac{1}{\mathbf{i}k} [\!\![\nabla_{h} u_{N}]\!\!]$$

• for boundary edges

$$\hat{\boldsymbol{\sigma}}_{N} = \frac{1}{\mathbf{i}k} \nabla_{h} u_{N} - \frac{1-\delta}{\mathbf{i}k} \left(\nabla_{h} u_{N} + \mathbf{i}k u_{N} \mathbf{n} - g \mathbf{n} \right)$$
$$\hat{u}_{N} = u_{N} - \frac{\delta}{\mathbf{i}k} \left(\nabla_{h} u \cdot \mathbf{n} + \mathbf{i}k u_{N} - g \right)$$

• if $V_N(K) =$ space of elementwise solutions of homogeneous Helmholtz eqn \rightarrow volume contribution can be made to vanish by further integration by parts

$$\begin{split} A_{N}(u,v) &= \int_{\mathcal{E}^{I}} \{\!\!\{u\}\!\} [\!\![\nabla_{h}\overline{v}]\!] + \mathbf{i} \frac{1}{k} \int_{\mathcal{E}^{I}} \beta [\!\![\nabla_{h}u]\!] [\!\![\nabla_{h}\overline{v}]\!] \\ &- \int_{\mathcal{E}^{I}} \{\!\!\{\nabla_{h}u\}\!\} [\!\![\overline{v}]\!] + \mathbf{i}k \int_{\mathcal{E}^{I}} \alpha [\!\![u]\!] [\!\![\overline{v}]\!] \\ &+ \int_{\Gamma} (1-\delta)u\partial_{n}\overline{v} + \mathbf{i} \frac{1}{k} \int_{\Gamma} \delta\partial_{n}u\partial_{n}\overline{v} \\ &- \int_{\Gamma} \delta\partial_{n}u\overline{v} + \mathbf{i}k \int_{\Gamma} (1-\delta)u\overline{v} \end{split}$$

coercivity				
$\alpha,\beta,\delta>0$	\implies	$\operatorname{Im} A(u,u) > 0$	$\forall 0 \neq u \in V_N$	

```
Helmholtz problems at large \boldsymbol{k}
```

62 J.M. Melenk

Intro hp-FEM nonstandard	FEM BIEs 000000000000000000000000000000000000	Intro hp-FEM nonstandard FEM BIEs 0000000000 000000000000000000000000000000000000
$\begin{aligned} & \text{convergence theory: coercivity p} \\ & \ u\ _{DG}^2 & := \frac{1}{k} \ \beta^{1/2} [\![\nabla_h u]\!]\ _{L^2(\mathcal{E}^I)}^2 + \ \alpha^{1/2} \\ & + \frac{1}{k} \ \delta^{1/2} \partial_n u\ _{L^2(\Gamma)}^2 + k\ (1) \\ & \ u\ _{DG,+}^2 & := \ u\ _{DG}^2 + k\ \beta^{-1/2} [\!\{u\}\!\}\ _{L^2(\mathcal{E}^I)}^2 + \\ & + k^{-1} \ \alpha^{-1/2} [\!\{u\}\!\}\ _{L^2(\mathcal{E}^I)}^2 + \end{aligned}$	roperties I $L^{2}[[u]]\ _{L^{2}(\mathcal{E}^{I})}^{2}$ $-\delta)u\ _{L^{2}(\Gamma)}^{2}$ $k\ \delta^{-1/2}u\ _{L^{2}(\Gamma)}^{2}$	$\begin{aligned} & \text{convergence theory: } L^2 - \text{estimates} \\ \ e\ _{L^2(\Omega)} &= \sup_{\varphi \in L^2(\Omega)} \frac{(e, \varphi)_{L^2(\Omega)}}{\ \varphi\ _{L^2(\Omega)}} (\text{adj. problem } -\Delta v - k^2 v = \varphi) \\ &= \sup_{\varphi} \frac{\sum_{K \in \mathcal{T}} (e, -\Delta v - k^2 v)_{L^2(K)}}{\ \varphi\ _{L^2}} \\ &\leq \sup_{\varphi} \frac{\ e\ _{DG}}{\ \varphi\ _{L^2}} \left(\sum_{K \in \mathcal{T}} k \ \beta^{-1/2} v\ _{L^2(\partial K)}^2 + k^{-1} \ \alpha^{-1/2} \nabla v\ _{L^2(\partial K)}^2 \right)^{1/2} \\ &\lesssim C \left(\frac{1}{\sqrt{kh}} + \sqrt{kh}\right) \ e\ _{DG} \end{aligned}$
Theorem (Buffa/Monk, Hiptmair/Moiola/Pe $Im A(u, u) = u _{DG}^2 \forall u \in V_N$ $ A(u, v) \leq C u _{DG} v _{DG,+}$	$\forall u, v \in V_N$	 -Δu - k²e = 0 elementwise trace estimates (elementwise) and quasi-uniformity of mesh α, β, δ = chosen constants ≠ 0 (independent of h, k, p) Ω convex, in order to use a priori estimates k v _{L²} + v _{H¹} + k⁻¹ v _{H²} ≤ C φ _{L²}

In particular, therefore, the DG method is quasi-optimal in
$$\|\cdot\|_{DG}$$

single layer
$$V_k$$
:
double layer K_k :
adjoint double layer K_k :
hypersingular op. D_k :
 $I = (n \cdot \nabla u)|_{\Gamma}$
 $V_k \varphi := \gamma_0^{ext} \widetilde{K}_k \varphi$
 $(-\frac{1}{2} + K'_k) \varphi := \gamma_1^{ext} \widetilde{V}_k \varphi$
 $D_k \varphi := -\gamma_1^{ext} \widetilde{K}_k \varphi$
jump relations:
 $[\widetilde{V}_k \varphi] = 0, \quad [\partial_n \widetilde{V}_k \varphi] = -\varphi$
 $[\widetilde{K}_k \varphi] = \varphi, \quad [\partial_n \widetilde{K}_k \varphi] = 0.$

Helmholtz pr

71 .M. Melenk

Helmholtz problems at large k

Calderón identities

 $\gamma_0^{ext} u = \left(\frac{1}{2} \operatorname{Id} + K_k\right) \gamma_0^{ext} u \qquad - V_k \gamma_1^{ext} u$

 $\gamma_1^{ext} u = -D_k \gamma_0^{ext} u \qquad \qquad + \left(\frac{1}{2} \operatorname{Id} - K'_k\right) \gamma_1^{ext} u$

Brakhage-Werner

indirect methods

Ansatz: the solution of the Dirichlet problem is sought as a potential

• (first attempt): $u = \widetilde{V}_k \varphi$ for an unknown density $\varphi_{\cdot} \to \mathsf{BIE}$

$$V_k \varphi = g$$
 on Γ

However: V_k not injective for some k

- (second attempt) $u = \widetilde{K}_k \varphi$. Again no good solvability theory for all k
- (combined field ansatz) $u = (i\eta \widetilde{V}_k + \widetilde{K}_k)\varphi$ for some parameter $\eta \in \mathbb{R} \setminus \{0\}$. \rightarrow

$$g = \gamma_0^{ext} u = \mathbf{i}\eta V_k \varphi + \left(\frac{1}{2} + K_k\right) \varphi =: A\varphi$$

direct methods

starting point: Calderón projector:

$$\gamma_0^{ext} u = \left(\frac{1}{2} \operatorname{Id} + K_k\right) \gamma_0^{ext} u - V_k \gamma_1^{ext} u \qquad |\cdot(-\mathbf{i}\eta)$$

$$\gamma_1^{ext} u = -D_k \gamma_0^{ext} u + \left(\frac{1}{2} \operatorname{Id} - K'_k\right) \gamma_1^{ext} u$$

linear combination yields

$$\left[\mathbf{i}\eta(\frac{1}{2} - K_k) - D_k\right]\gamma_0^{ext}u = \left[\mathbf{i}\eta V_k + (\frac{1}{2} + K'_k)\right]\gamma_1^{ext}u =: A'\gamma_1^{ext}u.$$

Dirichlet problem: given $\gamma_0^{ext}u=g,$ solve for $\gamma_1^{ext}u.$ Representation formula gives u:

$$u = -\widetilde{V}_k \gamma_1^{ext} u + \widetilde{K}_k \gamma_0^{ext} u.$$

$$A: L^{2}(\Gamma) \rightarrow L^{2}(\Gamma) \text{ is boundedly invertible for every } \eta \in \mathbb{R} \setminus \{0\}$$

$$A: L^{2}(\Gamma) \rightarrow L^{2}(\Gamma) \text{ is boundedly invertible for every } \eta \in \mathbb{R} \setminus \{0\}$$

$$A: L^{2}(\Gamma) \rightarrow L^{2}(\Gamma) \text{ is boundedly invertible for every } \eta \in \mathbb{R} \setminus \{0\}$$

$$A: L^{2}(\Gamma) \rightarrow L^{2}(\Gamma) \text{ is boundedly invertible for every } \eta \in \mathbb{R} \setminus \{0\}$$

$$A: L^{2} \rightarrow L^{2} + L^{2}$$

Helmholtz problems at large \boldsymbol{k}

tro 000000000000000000000000000000000000	<i>hp</i> -FEM	nonstandard FEM	BIEs	Intro 000000 0000000000	<i>hp</i> -FEM 000000000000000000000000000000000000	nonstandard FEM	BI
				ren	marks on assum	otion of well-posednes	S
Theore	em (Quasi-optimality of	hp-BEM)				p	
Assumption:				Assumptio	on of well-posednes	S	
• (adjoint) well-posedness: $ (A')^{-1} _{L^2 \leftarrow L^2} \le Ck^{\alpha}$				for some α	$e \in \mathbb{R}$ there holds		
Then: :	$\exists c_1, c_2 = c_2(\alpha)$ independ	dent of k s.t. the			$\ (A')^{-1}\ $	$L^{2} \leftarrow L^{2} \le C k^{\alpha}$	
• <i>SC</i>	ale resolution condition	$\frac{kn}{p} \le c_1$ and $p \ge c_2 \log k$;		11 X 7 1		
implies	;			• $\alpha = 0$	for star shaped don	nains (Chandler-Wilde & Mo	onk)
	$\ \varphi - \varphi_N\ _{L^2(\Gamma)} < 2$	inf $\ \varphi - v\ _{L^2(\Gamma)}$		• often	observed in practice		
	$v \in v$	$ES^{p,0}(\mathcal{T}_h)$ " D (1)		• $\ (A')^-$ $k_m \rightarrow$	$\ e^{-1}\ _{L^2\leftarrow L^2}\geq Ce^{j\kappa_m}$: $e^{-\infty}$ (Betcke/Chandler	for certain trapping domain -Wilde/Graham/Langdon/Lind	ns and dner)
Corolla	ary			possible to	show:		
Selecti	ng $p = O(\log k)$ and $h \sim$	$\frac{p}{k}$ leads to quasi-optimality for	r an	$\ arphi$	$\varphi - \varphi_N \ _{L^2(\Gamma)} \le (1 + \varepsilon)$	$\varepsilon_{h,p}$) $\inf_{v \in S^{p,0}(\mathcal{T}_h)} \ \varphi - v\ _{L^2(\Gamma)}$)
hp-BEI	M space of dimension N	$\sim k^{d-1}$.		where $arepsilon_{h,p}$	$\rightarrow 0$ if $\frac{kh}{p} \rightarrow 0$ (and	$p \gtrsim \log k$)	
nholtz problems	s at large k		77 J.M. Melenk	Helmholtz problems at lar	rge k		78 J.M. Meler
D	hp-FEM	nonstandard FEM	BIEs	Intro	hp-FEM	nonstandard FEM	BII
500000000	regularity throu	igh decomposition			decomp	osition of V_k	
• ide	ea: decompose operators	into a					
 part with k-independent bounds 				I hearem			
 part with smoothing properties and k-explicit bounds 			Let I' be a	Let Γ be analytic and choose $q \in (0, 1)$. Then:			
• ex	A^{-1}	$T = A_1 + \mathcal{A}_1$			$V_k = V_k$	$S_0 + S_V + \mathcal{A}_V$	
				where			
	• A ₁ order zero operator;	<i>k</i> -independent bounds for $ A_1 $		(i) S_V : .	$L^2(\Gamma) o H^3(\Gamma)$ and	1	
• ex	ample:			$\ S_V$	$\ _{L^2\leftarrow L^2}\lesssim qk^{-1}, \ $	$S_V\ _{H^1 \leftarrow L^2} \lesssim q, \ S_V\ _{H^3 \leftarrow q}$	$_{-L^2} \lesssim k^2$
	1			(ii) \mathcal{A}_{V} :	$L^2(\Gamma) \rightarrow$ space of a	nalvtic functions and	
	$A = \frac{1}{2} + K_k + \mathbf{i}\eta V$	$V_k = \frac{1}{2} + K_0 + \frac{1}{K} + A$		() v			
				$\ abla^n\mathcal{A}$	$\ A_V \varphi \ _{L^2(\Gamma)} \lesssim k^{3/2}$	$2 \max\{k, n\}^n \gamma^n \ \varphi\ _{H^{-3/2}(\Gamma)}$	$\forall n \in \mathbb{N}_0$

• R: "small", order -1, k-explicit bounds

 ${\sf Helmholtz} \ {\sf problems} \ {\sf at} \ {\sf large} \ k$

nonstandard FEM

DIES INTO

BIEs

BIEs

Theorem (analytic data)

Let $\partial\Omega$ be analytic. Let f be the jump of a piecewise analytic function. Let $\varphi \in L^2(\Gamma)$ solve

$$(\frac{1}{2} + K_k + \mathbf{i}\eta V_k)\varphi = A\varphi = f$$

Then $\varphi = [u]$ for a piecewise analytic function u.

ideas of the proof:

- define $u = \widetilde{K}_k \varphi + \mathbf{i} \eta \widetilde{V}_k \varphi$.
- 2 jump conditions: $\varphi = [u]$
- $\ \, \mathbf{9} \ \, \gamma_0^{ext} u = (\frac{1}{2} + K_k + \mathbf{i}\eta V_k) \varphi = f \rightarrow \text{get bounds for } u \text{ on } B_R \setminus \overline{\Omega}$
- $\ \, {\bf 0} \ \, [u]=\varphi \ \, {\rm and} \ \, [\partial_n u]={\bf i}\eta\varphi \ \, {\rm implies} \ \, [\partial_n u]+{\bf i}\eta[u]=0.$
- **6** once $u|_{\mathbb{R}^d\setminus\Omega}$ is known, we have an elliptic equation in Ω with Robin boundary data \rightarrow estimates for $u|_{\Omega}$.

Â₀ : L²(Γ) → L²(Γ) is boundedly invertible
A maps into a space of analytic functions

• Then

$$A^{-1} = \hat{A}_0^{-1} - A^{-1}\mathcal{A}\hat{A}_0^{-1} =: A_1 + \mathcal{A}_2$$

sketch of the proof, II

 $A = \widehat{A}_0 + A$

is the desired decomposition of A^{-1} if we can show that A^{-1} maps analytic functions to analytic functions

- more specifically:
 - structure of \mathcal{A} : \mathcal{A} is constructed by taking traces of potentials $\rightarrow \mathcal{A}\varphi = [z]$ for a piecewise analytic function (depending on φ)
 - \rightarrow will need that A^{-1} maps traces of jumps of piecewise analytic functions to jumps of piecewise analytic functions

- *k*-robust exponential convergence (absolute error)
- cost of quadrature formula independent of k

- corner singularities
- approximation properties are only weakly dependent on k
- possible to design (in 2D) exponentially convergent quadrature rule to set up BEM stiffness matrix with work depending only weakly on k