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B Ghost force at atomistic/continuum interfaces (with A
Shapeev)

— Explaining ghost force using a periodic 1D example
— Quasi-nonlocal method and geometrically consistent reconstruction
— Finite element projection and comparison

E Quasicontinuum for complex lattice atomistic systems (with
A Abdulle and A Shapeev)

— Atomistic model with different species of atoms
— QC method for simple lattice system doesn’t work

— Error analysis based on a discrete homogenization theory



Ghost force &8

One-dimentional periodic atomistic model, providing that de- PUNDEE
formed configuration z;: xny = xg-+ 1 and fixed configuration
X; =ie in [0,1], Ne = 1.

............... e ..., " nodalaom
I i ir ... i I + non—nodal atom
periodic extension periodic extension
® ® ® * + & & s *» s e @ I ......... ® © O ©® & ® ® * + o s s s v = » I --------- o @ 0
io ivi... g e
Consider external force acting on each atom. Associated energies:
N i+n P | N
J _
Eint = Z Z W( ),  Eext = —¢ Z filz;—X;)
z—l ]=1—n 1=1 s

W
An equilibrium solution with no external force

x; = ei (choosing € = rq)

v




QC approximation Ry
QC _ QC &
Etot Eloca,l + B nonlocal DUN'DEE
where
3310
m——n 11 —10)€
and

1K i+n

oC [z — x|
Enonlocal Z Z 44 ( i )

7,—1,1 Jj=1—n

To explain the ghost force let us compute the force on the atom %2

assuming first and second nearest neighbor interaction, i.e. n =2

Cauchy-Born rule: Computing the energy contribution of a repre-
sentative atom (better to be near the center of the element) and
extending it over the whole element




+W(|$22_$22—2|)_l_W(lxlg_wzll)+W(|m22_m23|)+W(|x22_$%4|)

LW (|$z'3 : f%l) L (|x¢4 : »’Cazgl) e )

At the equilibrium position, the force acting on %2

aEg)tC — 1 (Wf (miz — x’il)
€

832‘@'2 2
r [ Lip T Lip—2 1 Lig T Lig 1 (i3 — Tip 1 Lig — i
+W +W —w - W

€ €

—W ($i3 - %) — W (% - 33"’2)) = —%W’(z) # 0

€ €

-- ghost force due to the QC approximation
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Quasi-nonlocal method (QNL) shimokawa et al'0gg
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>~ Tip— 2(jp—;
Replacing W(xl? ?2 2) by W( S xl))

€

That is, one side treated as local, the other side treated as nonlocal

Now at equilibrium

C
aEt%t . 1 (W, (a:iQ e xil)

€

dx;, 2
Lo (2(33@'2 — xil)) LW (a":@'z — SU'L'1> W (a:'@g — a:@) W (:ci4 — :1:7:2)
€

€ €

_w! (xiS - x’iz) —w’ (m’idr B 37%2)) —0
€ €

Only work for n =2

E, Lu and Yang 06, C Ortner Math Comp to appear
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Geometrically consistent reconstruction (GCR); -
E, Lu and Yang'06 DUNDEE

Reconstruct positions of certain atoms before interaction

For instance, in the interaction of atoms i2 and i2-2 of QNL,
the position of atom i2-2 is reconstructed as xi2 + 2(xil-xi2)

Reconstruction is sought in the form of a linear combination
of the nonlocal reconstruction and local reconstruction:

m}jeconstructed — Cij$j+(1_c?:j)(x’i_i_(j_?:)($i+89n(j_i)_mi))

Ci; is determined in advance to eliminate the ghost force

The reconstruction is not unique. For n=2 there is one construction
such that GCR=QNL. But unlike QNL, it works for n>2 as well
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Divide all atom pairs (i, j) into groups: The vectors connecting
the pairs within each group will have the same distance R, and
are parallel to the same direction 7,,, in equilibrium.

Geometrical consistency:

> san(r;(4) - Tm)

‘T’i(j)'anari(j)HTm

OR;(j) _
83%

0

R;(j) = zc;?econstmcted and r;(j) = X; — X; denotes the relative

position of atom 5 w.r.t. atom ¢ in the equilibrium state.



Reason: the force acting on atom k is (writing

OF.: OF; OE;0R;(7)
fe = 8;nt228$@:§:8 Z az
k i Ok g 95 YTk
| OE;
. 3 sgn(?"i(J)'Tm)ﬁ
I |1y (5)| = Roners () |7 !

The first term is independent of : and 5 due to
invariance of the energy under translation and
point inversion w.r.t. the equilibrium lattice
points.

Analysis: Ming and Yang SIAM MMS 2009

DUNDEE

: [sgn(n;(j) ‘ Tm)

OR;(j)
Oxy,
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One example for n<4:

’

1 (i,5) = (i1 — 1,41) or (ix + 1,ig),
1 (,5)=(@G1—1,i1+1) or (ig+1,i —1),
peen_ | 1 GN=(@- 142 or G+ 1 2)
o T ) 2/3 (4,7) = (i1 —2,i1+ 1) or (ig +2,ixg — 1),
1/3 (4,5) = (i1 + 1,41 —2) or (ig — 1,ig + 2),
\ C’ffc otherwise
(0 i< iy 0ri>ig
C.Q.C:< - Z:1<'_i<‘iK o
* 1 i€ {i1,ig}t and i; < j <ig
| 0 i€ {i1,ig} and (j <iy or j > ig)




Finite Element Projection (QCP)

-- Simply a finite element method to the atomistic model, having*
been used as a coarsening method in e.g. Rudd & Broughton’98,05,
Ortner & Suli‘08

We emphasize it as a ghost force removing method and a starting
point to develop ghost force free summation rule.

N i+n
Qcp € |z — ]
=5y Y w(m)

z—l J=i—n

The same as the exact energy formulation but in local region

i1 — i i — g
Ty = Tjy+ —— %
11 — 10 11 — 10

1

We can show that the method has no ghost force under a general
setting of any dimension
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Analytical comparison of QCP, QNL and GCRgz *

DUNDEE

NL P
aE’th _aE’SL? ~ E(DQQ’J )Ilr” 2(37@1 B xil_l) h -2
dr;, Oz, 20 1 e when h=

wnt int ~ =
m~/

8337;2 8:137;2 9

oEZ" B OES! 2W” (3(331'1 — 93@'1—1)
€

) O(eD?z;;)  when n=3

3(.’.133'1 _mil—l)
€

where %W”( ) is rather small (~ 0.003 if the
interatomic distance is approximately equal to e = rq).

Lin and Shapeev Preprint 2009
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It's always possible to find a set of GCR coefficients s.t. GCR=QCP

e.g. when n=3 the following will do

(ZJJ) — (7“1 - 1?i1) or (ZK _I_ ]-aiK)a
(,5) = (41 — 1,41+ 1) or (i + 1,ix — 1),
(4,5) = (11 — 2,41 + 1) or (ig +2,ix — 1),
Coctt=20 1 (4,5) = (ix — L1,i1 +2) or (ig +1,ig — 2),
2/3  (t,7) = (i1 — 3,41+ 1) or (ig + 3,ix),
1/3 (i,5) = (i1,i1 — 3) or (ig,ixg + 3),
OS-C otherwise

N

\
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Numerical comparison of QCP, QNL and GCRg

DUNDEE

O

—1 i=N/2
fi = 1 i=N/241
0 otherwise

1D Test with localized external force

@
O O O O
0.001 } =
<& <& & o
-5
10 "
—7
10 &
107 F @
||||||||||||||||||| @_ n,l
2 4 6 8 10

N = 10000 and error in Wh
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1D Test with localized external force  f = fir" 4 freg DUNDEE

where

| 10 i=N/2 1 -
JT=4 —-10 i=N/2+4+1 f;"egz—sin(1+—)
0 otherwise N N

crror

@
0.001F ~ Gy O QCE
S5x 1074 F 0O o =
® o 0O 0O o g o
o ONL
1x1074F ® =
5% 10~ & © ¢ 0 0o 9
. ]
5 + GCR
_ [<3]
1x10 > O QCP
S5x10°°F ®
®
' L T & DoF
10 50 100 500 1000



2D Test with a point defect (Screw dislocation)

DUNDEE

Error

0.050F & E g

0.020
0.010 -
0.005

0.002
0.001 -

500 1000

Inconsistency error at edges of finite elements: (Lin SINUMO07)

swp (o) =0 (5)

if elements are large in comparison with the atomistic scale.



OT\\ O
>4

Remark: DUNDEE

Further reduction of the summation cost (atom-based
summation and element-based summation):

1D: relatively easy

2D or higher dimension: difficult and may cause unphysical
force inside the local region (examples in E, Lu and Yang
2006). How to reduce the summation cost without
introducing unphysical force? Shapeev Preprint 2010 (2D)

Analysis: open
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Complex Crystalline Materials ;"
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Consider 1D periodic problem: reference configuration: X; = ei
Deformed atom position: Z: = Xi + ui where % is the displacement

Periodicity: “i+N =ui Vvt

Eip(uw) = > Y Wi,j(—J ):GZ > W@-,j(j—z'jt J )
i=1j=i+1 € i=1j=i+1 €
N n n
= €Y > Wiipr(r+rDru;) = ) (®r(Dru))
i=1r=1 r=1
Notations: (®,(2)); = W+, (r + r2;), Dpu; = 1 and

Diu; = Du; = e

€

N
Eegt(u) = —e Z fiui = —(f,u)
1=1
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Varjgonal formulation: S O
int (’LL —|- ’U) —I— e:.lct (u + t”U)|t:0 =0 DUNDEE

Equillbrlum equatlon.

E’gnt(U; v) + E(lzmt(v) =0 We joj\ér

where
Eip(v) = —(f,v)
E{nt(urv) — Z(q);'(DTu)aDTU)
r=1

(@1 = W]y (r +72)

Solvability requires (f) = 0; Uniqueness condition: {(u) =0

Nearest neighbor interaction:

(P (Du), Dv) = (f,v) YwveRD,



wihiy
Linearize at a given u;:

DUNDEE

(CD’ (Dru)); =~ TW'Z_l_T(r—I—?"DTu@)—I—T z—|—r(T+TD7"uZ)DT(uZ u;)

Upon defining ¢, = [r? ”_|_r(r—|—rDruz)] ', we have a lin-

earized model
T

Z <¢?‘DTuJDTU> — (Jc_n U)

r=1
Nearest neighbor interaction:
N
<¢1DUJDU> — € Z wliDuiaDU’i — <fav>
i=1

Next we will look at an example with linear nearest neighbor
interaction. For convenience we will denote ¥ = ¥4, ¢¥; =
Yy1;and f = f. The model becomes

(Y Du, Dv) = (f,v)
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Recap of QC
e
»d
periodic extensionI I periodic extension e nodal atom DUNDEE
s s @ e s 8 s 9 » s|® ¢« 3 &« 3 @ s & 8 s B s s & s P e s s s P s 8 s s|P e s e s P s o s G
+ non—nodal atom

i i ix .

1 — z 1 —1
uf o W = _k+1 —I— k_
Th41 — Zk T+1 — Uk
Taking a representative atom iy < i, < ix471 and denoting
Hk — E(ik+1 — Zk) we have

wipyq (g <@ <ipy1)

K te1—1 K
(@bDu Z Z szuHDv Z kl,b repDu repD’U Tep
’I,_’Lk k=1 k k
where
ug@p 1 ug@p uH — uH uH — uH

D H % -+ o V41 (2 S 7 " | L

U.rep — — . . -

'k € (7,k_|_1 — zk)(—: Hk

Cauchy-Born rule: Computing the energy contribution of a repre-
sentative atom (better to be near the center of the element) and
extending it over the whole element




A 1D complex lattice model )

DUNDEE

ki ko k, ki kp_1 kp

Complex lattices are defined as a union of a number of simple
lattices. A straightforward application of QC would fail. For
example, bonds oscillate 2-periodically, i.e. p = 2 in above
figure or o = (1,%2,91,v¥2,...,%1,9¥2)

Under nearest neighbor interaction, it is a spring-mass system
where masses are located at z; = X, +wu; connected with ideal
springs with spring constants k; = v, /e, i = 1, 2.

If we apply the QC straightforwardly the numerical tensor of

this two spring system is (for simplicity assuming the nodal
number 4, is even)

7P is odd

_ ) ¥ e
Vier = { Yo Fep is even

ke



Even if we calculate energy of each element accurately (not ...,

only at the repatom): E
Zk—'—]_—l INDEE
(yDu'?, Z SN ;Dul Dul?
1=1}
K tp+1—1 K "
1+ Yo
= Z € Z ’l/)z Du repD’U .Tep — Z Hk 5 DuiI;IepDU?ep
k=1 ik K k=1 K &
This time, numerical tensor is w —HWW—-wWwW-@
ki k

Consider a two-spring system (spring constants ki, ko
corresponding displacements dq, d>) exerted with a force
f. Let the unified spring constant be k each.

Then the total displacement d = d{ + d». Hooke's law gives:

f/(2k) = f/k1+ f/ko

—1
i.e. the unified spring constant: k = ((kl_l -+ kz_l)/Q) (harmonic
average), indicating that a naive application of the QC fails.



QC for complex lattices

ikt
Tadmor, Smith, Bernstein and Kaxiras 1999
(Also see E and Ming 2007, Dobson, Elliott, Luskin and Tadmor 2007) "“*"*

An improved Caughy-Born rule (Stakgold 1950): introducing shifts
between the simple comprising lattice sites.

iy 1 — 1 i — i 14 (—1) L
uff — k41 I;CI—|— ki I;€I+1_|_ (=1) Ak, U <1< 147
U+1 — U U1 — 2

(in the two-spring example dy, = %dl since kidqy = kod>. SO we can
write do = dy + g, where ¢ = (% —1)dq is the shift)

E() = min B(,q)
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Just like introducing an extra basis function fug = %‘1)@ (bubble)

in the element ¢y, <1 <14 1. SO we have an extra equation for g:

K
(WDu, Doly + 3 gm(y¥Dud,, Dvl) =0 (internal eqn)

m=1

(the summation is actually done only in element k£ and m = k)

S0 gp = ax(Dufly) = eZpytDully,  Dufl = Dully, Vi € (ir, ir41)
Now we can obtain

K

2
<¢D’UJ Z Hk wle Du repD’UI;‘“[ep
k—1 Y1 +2 *k
—1 -1
: _ 2¢1p _ [Pt i

So the numerical tensor ¢ = 1tvs — 5 IS accurate

by using the improved Cauchy-Born rule.
]



Discrete homogenization

Assume that micro atomistic interaction is periodic with pe- punpee
riod pe

Displacement v = u(X;, X;/e), where X, € eZ (macro or slow
variable) and Y; = X;/e € Z (micro or fast variable)
Periodicity: ’LL(X@, }/j-H?) _ u(XZ, Yj)and U(Xz—I—Nv Y}) = ’U,(XZ, Y})

Asymptotic (two-scale) expansion:

u=u (X, Y)) +eu (X3, Y)) + 2u? (X, V) + - ..
Note D = DxTy + ¢ 1Dy = Dy + ¢ 1DyTxand T-1 =77t
Consider linearised model with nearest neighbor interaction:
(¢ Du, Dv)x = (f,v)x or strong form: — D*¢°(Du) = f

where ¥°(X;) = ¢¥(X;, X;/e) = ¥(X;,Y;) (p-periodic in V)
Discrete integration by parts: (u, Dv) = —(T~1Du,v) gives
D*=-T"1D = -1, 1 (Tx'Dx + ¢ 1Dy)



- 00000_0____]
We have (assuming f is independent of Y and ¢ > ¢ > 0)

—(Tx'Dx 4 ¢ *Dy) (e DxTyu® + € 19Dyu’ + ep DxTyu' + ¢ Dyu’

+e2YpDxTyu? + epDyu” +...) =Ty f = f
Collecting O(e—2) terms:

— Dy (¥Dyu®) =0 w9 1 p— periodic in Y
= u9 is a function of X: i.e. u0(X;,Y;) = u0(X;)
Collecting O(e~ 1) terms:
ul (X5, Y;) = x (X4 V) Dxu® (X)),

where x satisfies

— Dy (¢pDyx) = Dy X . p— periodic in Y

Collecting O(e) terms leads to the homogenized equation:

—Dx(°Dxu®) =Txf, ¥°= (¢ (14 Dyx))y
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In the case of linear nearest neighbor interaction, we can
calculate 49 = (¢(1 4 Dy x))y explicitly.

The discrete homogenization gives the same correct tensor

WO = (C(X))yy = (W1t + o) 71)2

We can actually show that under this periodic setting the QC
for complex lattice and an appropriately processed discrete

homogenization are equivalent even for general nonlinear fi-
nite range interactions.

Abdulle, Lin and Shapeev, A review of multiscale computational methods for
complex crystals, Manuscript 2010



Error analysis of discrete homogenization
Abdulle, Lin and Shapeev Preprint arXiv.1006.0378 2010

DUNDEE

Assume 0 < ¢y, < 9(X;,Y)), 90 < Cy and [[Dx9|| oo,y < Oy
Write the asymptotic solution

uC(X;) = uP(X;) + ex(X;, X;/€) Dxud(X;)
Then

2
[u® —ulg1 < Cel[fll 2, [ux] < Celfll 12

and

[u® — |l 2 < C¢|| f]| ;2

in the case of linear nearest neighbor interaction.



JERSIP
= Yo

Homogenized quasicontinuum (HQC) ~gg*

Numerical methods to deal with continuum homogenization punpee
elliptic problems: (i) Multiscale finite element method (See
Babuska, Hou, Wu, Efendiev, etc.); (ii) Heterogeneous mul-
tiscale method (See E, Engquist, etc.).

Sampling domain (taken near the center of the element):
rep __ . rep rep
SEP = {X; 1 X[°P < X; < X[ + pe}.
Define the atomistic interaction energy of the HQC method

n
EHQC(uH) = Z H,, Z <¢$(DrRk(uH))>X.ESrep:
SkET r=1 ¢ k

where R, (uH) defined below, is the microfunction constrained
by ! in the sampling domain S;°P, and ®%(2)(X;) = W, (r +
rz(X;)).



The functional derivative of the above energy reads s
(EHQC)/(uH; ’UH)

mn
= 3 Hp Y (@) (DR(u)), DR 01)) | e
SreT r=1 Ay A
Microproblem: Given a function v € UlL., R} (uH) i< 3 func

tion defined on S,°P such that Ry (uH) — ot € UL.(eZ) and

DUNDEE

i <(CD7E)’ (DrRk (uH)) , DTS>X¢€S,ZGD =0 Vse U%(GZ)

r=1
Motivation: Ry(uf) = v +w is something like u¢. For example,
. . . _ H
linear nearest neighbor case: (¢ Dw, DS)XiGSI:ep = —(¢pDu ,DS)Xieszep

Changing variable to Y; = X /e, i.e. write w = &(X;/e) = @(Y;)

we have . .
e (YDyw, Dys)y = —Dxu" (¢, Dys)y

So w is something like eDyufx(-, X;/¢). Denote

e = periodically extended Rk(uH) in each element



]
Error analysis Abdulle, Lin and Shapeev Preprint arXiv.1006.0378 2@‘}’%
b

Consider the linear nearest neighbor case: DUNDEE
(ERRCY (' 0!

= SkZE:T Hy, rgl (DR, (u'), DRk(UH)>X¢ES;2eD = (f,0")

where ¢i(X;) 1= ¢(Xpe, X;/e), VX; € S, P, choosing Xie in a
distance of O(e) from the center of the element, and

<’I,DEDR]€(UH), DS)XiES;ep =0
Assume conditions for ¢ as before. Then

u? =\ 1 < CH||fll 12, Nl —u®| ;2 < CH?| |l 2+l fll -1)
[ufl —ull; 2 < C(H? 4+ &) fll 2

H H 2
u —ulgn < CH||fl 2, [lu™—ullp2 < CCHZ||fl o€l fll 1)

If b only depends on Y, then no ¢||f|| ;-1 in above estimates.
-]
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Numerical examples
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1D linear: p = 2 and number of interacting
neighbors n = 3. The potential is defined as

1 _
Wi iqr(2) = 5’%’,@'4-7«31 "(z—7r)? (1<r<n),

where

— 1 12 is even
it T ) 2 4 is odd

N = 214 = 16384, and the external force was
taken as

fi; = sin (1 -+ 27TXZ') .
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1D nonlinear: Lennard-Jones potential
. —6 . —12
P i4r(2) = =2 ( ) + ( ) (1<r<R)

Liidr Li igr
with the varying equilibrium distance

T 1 1 IS even
wiFr T ) 9/8 i is odd.
The external force was taken as

f,,; = 50sin (1 -+ 27TX?;) .
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Summary ¥
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B Ghost force 1s shown 1n the local/nonlocal interface in a simple
lattice case. No ghost force in the case of nearest neighbor
interaction.

B Under a 1D periodic setting QNL, GCR and QCP are introduced
and compared. QNL can remove ghost force for n=2. GCR and QCP
can do for all interacting range n. GCR 1s general but requires a
priori tabulated coefs of reconstruction and 1s problem-dependent.
QCP 1s specific, easy to implement, works as good as GCR in all
cases. Challenging of element summation in 2D and 3D.

E Complex lattice — equivalence to an appropriately processed
discrete homogenization, analysis may be done through the discrete
homogenization framework

E Ghost force removing strategies can be used to deal with
atomistic/continuum interface with complex lattice structures.



