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Conclusion
For the diffusion problem, the Q4 (with reduction Level 4) and the P4 estimators

are effective for (bi-)quadratic elements and the Q3 estimator is effective for

the Q2 − P1 and the Q2 − Q1 mixed approximations. These new estimators are

encoded in version 3.1 of the MATLAB package IFISS [3].

Estimators for Mixed Approximations, Stokes Problems
For the steady-state Stokes equations,

−∇2~u + ∇p = 0 in Ω,

∇ · ~u = 0 in Ω,

~u = ~g on ∂ΩD,

∂~u
∂n
− ~np = ~0 on ∂ΩN,

our local Poisson problem estimation is: compute η2
P,T = |~eP,T |

2
1,T + ‖∇ · ~uh‖

2
0,T ,

where ~eP,T ∈ QT satisfies,

(∇~eP,T ,∇~v )T = (~RT ,~v )T −
∑
E∈∂T

〈~RE,~v 〉E, ∀~v ∈ QT .

For the classical mixed Q2 − P1 element, an effective estimator is
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In addition, the Q3 estimator is also effective for the Q2 − Q1 (Taylor-Hood)

method. This Q3 estimator for mixed approximations is analyzed in [1].

“Perfect” Estimator for Bi-quadratic Elements
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In order to find the best estimator for the Q2 element, three levels of reduction of

the Q4 element have been tested. The Level 3 is the “perfect” choice: it is very

accurate and relatively cheap (only 12 degrees of freedom).

“Good” Estimators for (Bi-)quadratic Elements
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The P4 estimator can provide a tight bound for the P2 element, but the Q4 esti-

mator is still not effective.

“Stupid” Estimators for (Bi-)quadratic Elements
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These estimators are simply generalized from the estimators for linear elements.

With standard analysis techniques, they can mathematically be proven to be

equivalent to the exact error. However, in practical computing, they do provide

ineffective evaluation for the errors (see [2]).

Estimators for (Bi-)linear Elements
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The red circles imply these basis function nodes are removed. In other words,

zero boundary values are applied at these points.

The P2 and the Q2 estimators can provide very accurate estimation for the exact

error e and their full analysis can be found in many textbooks.

Error Estimation Based on Solving Local Problems
The error (e = u − uh) satisfies the following equation (from (2)),∫

Ω

∇e · ∇v =

∫
Ω

v f −
∫
Ω

∇uh · ∇v, ∀v ∈ H1
0. (3)

Integrate by parts for (3),∑
T∈Th

(∇e,∇v)T =
∑
T∈Th

( f + ∇2uh, v)T −
1
2

∑
E∈∂T

〈�
∂uh

∂n

�
, v
〉

E

 . (4)

Then the localized error equation is,

(∇eT ,∇v)T = (RT , v)T −
∑
E∈∂T

〈RE, v〉E , (5)

where RT = f + ∇2uh and RE = 1
2

�
∂uh
∂n

�
. Note that, eT in (5) is stronger than e in

(4).

The local problem error estimation strategy is: choose a suitable finite element

space QT , and then find eh ∈ QT , such that

(∇eh,∇vh)T = (RT , vh)T −
∑
E∈∂T

〈RE, vh〉E , ∀vh ∈ QT . (6)

Note that QT should satisfy two requirements:

• QT must be “larger” than the original approximation space;

• QT should make the problem (6) solvable—that is reasonable boundary con-

ditions are required.

The Model Diffusion Problem and Finite Elements
The governing Poisson equation is:

−∇2u = f in Ω,

u = g on ∂Ω,

where u is the unknown function. Its weak formulation is,∫
Ω

∇u · ∇v =

∫
Ω

v f , ∀v ∈ H1
0. (1)

The finite element discretization is to find uh ∈ Xh
E ⊂ H1

E, such that∫
Ω

∇uh · ∇vh =

∫
Ω

vh f , ∀vh ∈ Xh
0 ⊂ H1

0, (2)

where Xh
E and Xh

0 are finite dimensional spaces.

The (bi-)linear and (bi-)quadratic elements are:
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