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1. Polymer model
Our microscopic polymer
model is the chain-like
bead-spring Rouse
model. Here, the state of
a polymer macromolecule
is described completely by
its centre of mass and its
N connector vectors qi.
The force
the i-th spring exerts
on its neighbouring beads
is, up to a change of sign,

U ′(1
2
|qi|2)qi =

(
1−
|qi|2

b

)−b/2
qi,

where U is called the FENE potential. This force law is isotropic and nonlinear and, as it
blows up when |qi|2→ b−, each spring has a maximal extension

√
b; hence, the

ensemble of connector vectors q = (q1, · · · , qN) has to live in the Cartesian-product
configuration space DN = D × · · · ×D, where D = B(0,

√
b) ⊂ Rd, d = 2 or 3.

2. Fokker–Planck equation
The Fokker–Planck equation we concern ourselves with appears when approximating the
more complicated full Fokker–Planck equation which, in turn, arises from the polymer
model described through statistical mechanics. It is defined on the configuration space
DN 3 (q1, . . . , qN) = q and has the form

−
1

4Wi

N∑
i=1

N∑
j=1

∇qi ·
[
Aij

(
U ′(1

2
|qj|2)qjψ +∇qjψ

)]
+

1

∆t
ψ = f̂ ,

where ψ = ψ(q) is the dependent variable, Wi is a positive parameter and (Aij)
N
i,j=1 a

symmetric and positive definite matrix.
On introducing the (full) Maxwellian M : DN → R and the partial Maxwellian
M : D → R via

M(q) := exp

[
−

N∑
i=1

U(1
2
|qi|2)

]
=

N∏
i=1

M(qi)

we can write

M∇qj

(
ψ

M

)
= U ′(1

2
|qj|2)qjψ +∇qjψ.

Using this identity and testing the Fokker–Planck equation with ϕ/M we obtain the
variational problem

(P) a(ψ,ϕ) =
N∑

i,j=1

Aij

4Wi

∫
DN

∇qj

(ψ
M

)
·∇qi

(ϕ
M

)
M dq +

1

∆t

∫
DN

ψϕ

M
dq = f(ϕ)

and find that it is naturally associated with the functional space H(DN ;M). This is an
elliptic equation with degenerate coefficients defined on a dN -dimensional space.

The function space associated to (P) is

H(DN ;M) =
{
ϕ ∈ L2

1/M(DN) :

∇qi
(ϕ/M) ∈ [L2

M(DN)]d, 1 ≤ i ≤ N
}
.

The space H(DN ;M), although exotic-looking, is isometrically iso-
morphic to the weighted Sobolev space H1

M(DN) via the relation
ϕ ∈ H1

M(DN) → Mϕ ∈ H(DN ;M). It is, then, a separable
Hilbert space. We also need the space

H(D;M) =
{
ϕ ∈ L2

1/M(D) : ∇(ϕ/M) ∈ [L2
M(D)]d

}
which is simply H(DN ;M) in the special case N = 1 and is thus
isometrically isomorphic to the weighted Sobolev space H1

M(D).
Basic results concerning H(DN ;M)—namely, the compact embed-
ding of H(DN ;M) into L2

1/M(DN) and the density of C∞0 (DN) in

H(DN ;M)—are attainable by exploiting the Cartesian-product struc-
ture of DN and the tensor-product structure of M. In general DN

is merely a Lipschitz domain which precludes the use of standard tech-
niques.

The asymptotic distribution of the eigenvalues of the problem

(EV) 〈e, ϕ〉H(DN ;M) = λ〈e, ϕ〉L2
1/M(DN)

over H(DN ;M) is important because, if shown to be proportional
to m2/d, a characterisation of the space of fast convergence of the
algorithm in terms of mixed regularity the solution ψ of (P) will exist.
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The plot to the right shows
(a linear rescaling) of the
computed first 99 eigenval-
ues of (EV) when b =
3.1416 (continuous line
with dots) and the func-
tion m2 in logarithmic
scale. This suggests that
in the (non-physical) case
d = 1, the asymptotic
distribution of eigenvalues
is proportional to m2/d.

The full Fokker–Planck is defined on time, physical space and configura-
tion space. It has the form

0 =
∂ψ

∂t︸︷︷︸
discretised

+∇x · (uψ)−
(N+1)−1

4Wi
ε∆xψ︸ ︷︷ ︸

split away

+
N∑
i=1

∇qi
·
[
(∇xu)qiψ︸ ︷︷ ︸
treated explicitly

−
N∑
j=1

Aij

4Wi

(
U ′(1

2
|qj|2)qjψ +∇qj

ψ
) ]

where ε is a positive parameter and the text under each brace explains
how this equation reduces to our time- and physical space-independent
Fokker Planck equation.
When coupled with the Navier–Stokes and Kramers equations, the full
Fokker–Planck equation gives a multiscale description of the flow of
a dilute polymeric solution in an incompressible solvent. In particu-
lar, ψ = ψ(t, x, q) is, at each time and at each point of physical
space, a probability density function for the configuration of a chain and
u = u(x) is the macroscopic velocity of the solvent.

3. Separated representation
The symmetry of the problem (P) allows for the characterisation

ψ = arg min

{
1

2
a(ϕ,ϕ)− f(ϕ) : ϕ ∈ H(DN ;M)

}
which can be approximated using a standard Galerkin method; i.e., replacing H(DN ;M)
by some finite dimensional subspace of itself. The problem with this is that the high
dimensionality of DN makes standard discretisations prohibitively expensive.
The separated representation strategy is based on replacing H(DN ;M) by its subset

N⊗
i=1

H(D;M) :=

{
N⊗
i=1

r(i) : r(i) ∈ H(D;M)

}
where we denote by

⊗N
i=1 r

(i) that function defined on DN which maps q to∏N
i=1 r

(i)(qi)—thus, for example, M =
⊗N

i=1M .

It is important to distinguish between the set
⊗N

i=1 H(D;M) from the
H(DN ;M)-closure of its span as the notation we use for the former is often used for the
latter.

4. A greedy algorithm
We can’t expect

ψ1 = arg min

{
1

2
a(ϕ,ϕ)− f(ϕ) : ϕ ∈

N⊗
i=1

H(D;M)

}
to be a good approximation to ψ in general. Thus, we define

ψ̂2 = arg min

{
1

2
a(ϕ,ϕ)− f(ϕ)− a(ψ1, ϕ) : ϕ ∈

N⊗
i=1

H(D;M)

}
whence ψ1 + ψ̂2 approximates ψ better. Then we define ψ2 as the Galerkin projection of
the problem (P) on the finite-dimensional space span{ψ1, ψ̂2}. We encode the iteration
of this procedure in the

Orthogonal Greedy Algorithm
0. Let f0 := f ∈ H(DN ;M)′.
1. For n ≥ 1 do:

1.1 Let ψ̂n := arg min

{
1

2
a(ϕ,ϕ)− fn−1(ϕ) : ϕ ∈

N⊗
i=1

H(D;M)

}
.

1.2 Let ψn := arg min

{
1

2
a(ϕ,ϕ)− f(ϕ) : ϕ ∈ span{ψ̂1, . . . , ψ̂n}

}
.

1.3 Let fn := f − a (ψn, ·).
1.4 If ‖fn‖H(DN ;M)′ ≥ TOL, then proceed to iteration n+ 1; else,

stop.

The algorithm generates approximations to ψ in the SVD-resembling form

ψ ≈ ψn =
n∑
k=1

α
(n)
k ψ̂k =

n∑
k=1

α
(n)
k

N⊗
i=1

r
(i)
k .

The attractiveness of this algorithm is that the enrichment step (step 1.1) lends itself
naturally to an alternating direction procedure where the factors r(i)

n that make up ψ̂n are
optimised one at a time, assuming the others constant. If the right-hand side functional f
has tensor-product structure (which is often the case) the tensor-product structure of the
Maxwellian ensures that the resulting subiterations are equivalent to a d-dimensional PDE.

5. Theorem
1. The algorithm is well-defined. This means, essentially, that there exists a minimiser in

the enrichment step (step 1.1) of the algorithm.

2. The method converges. Given that at each iterate we get true solutions to both
minimisation problems, this method is guaranteed to converge.

3. If the solution ψ of (P) lives in

Hd+1,mix(DN ;M) =
{
ϕ ∈ L2

1/M(DN) :

∂α(ϕ/M) ∈ L2
M(DN), max

1≤i≤N
|αi| ≤ d+ 1

}
and if the (ordered) eigenvalues λm of the problem (EV) distribute asymptotically like
m2/d there holds

‖ψ − ψn‖H(D;M) ≤ Cn
−1/2.

Here, the multi-index α is assumed to be the concatenation of N d-dimensional
multi-indices αi.
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