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Some History
Long ago . . .

[Wiener, 1920–1923] Mathematical analysis of Brownian motion.
Wiener process, Wiener measure, Wiener integral.
[Kolmogorov, 1933] Formalization of probability as measure theory
[Wiener, 1938] “The Homogeneous Chaos”
Attempt at modeling nonlinear phenomena in statistical mechanics,
turbulence.

“homogeneous chaos”: stationary random measure
polynomial chaoses through repeated (Wiener) integration
general stochastic processes approximated by (nonlinear) functionals
of multidimensional Wiener process.

[Cameron & Martin, 1947] Wiener-Hermite orthogonal expansion of
2nd order random processes
[Itô, 1953] Connection between Itô Integral, polynomial chaos
expansion and expansions with multiple Wiener integrals. See also
[Kallianpur, 1980].
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Some History
More recently . . .

1980s: Uncertainty Quantification via Stochastic Finite Element
Methods
PDEs with random data, spatial part discretized via FE,
randomness treated by Monte Carlo method, perturbation
expansions, response surface methods
[Ghanem & Spanos, 1991] Spectral Stochastic Finite Element Method
Seek random field solution to PDE with random input in tensor
product space X ⊗Ξ

X : function space appropriate for deterministic version of PDE
Ξ := L2(Ω,A, P ), for probability space (Ω,A, P )

Discretization
finite dimensional noise assumption
L2-RV approximated by multivariate Hermite polynomials in finite
number of Gaussian RVs, inspired by PC expansions.
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Some History
. . . and finally

[Xiu & Karniadakis, 2002-03] Generalized Polynomial Chaos (GPC)

Observation: Multivariate polynomials in non-Gaussian basic random
variables sometimes have better approximation properties than PC
expansions.

Question: When can we expect GPC expansions to converge?
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Setting and Notation

(Ω,A, P ) : probability space
ξ : Ω→ R : random variable

〈ξ〉 : expectation
σ(S) : σ-algebra generated by set of RV S

L2(Ω,A, P ) : Hilbert space of real-valued RV w. finite second moments

‖ξ‖2L2 =
〈
ξ2
〉

: associated norm (mean-square convergence)

H : Gaussian linear (Hilbert) space: (complete) subspace of
consisting of centered Gaussian RV L2(Ω,A, P )

Note: H cannot contain all Gaussian RV in underlying space.
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The Cameron-Martin Theorem
Polynomial Spaces

For Gaussian linear space H and n ∈ N0, set

Pn(H ) :=
{
p(ξ1, . . . , ξM ) : p an M -variate polynomial of degree ≤ n,

ξj ∈H , j = 1, . . . ,M,M ∈ N
}
.

Pn(H ),Pn(H ) ⊂ L2(Ω,A, P ),
P0(H ) = P0(H ) a.s. constant RV,

P1(H ),P1(H ) Gaussian RV,
{Pn(H )}n∈N0 strictly increasing subspaces of L2(Ω,A, P ).
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The Cameron-Martin Theorem
Orthogonal Decomposition

Setting

H0 := P0(H ) = P0(H ), Hn := Pn(H )∩Pn−1(H )⊥, n ∈ N,

we have
Pn(H ) =

n⊕
k=0

Hk.

We also set
∞⊕
n=0

Hn :=
∞⋃
n=0

Pn(H ).
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The Cameron-Martin Theorem
Orthogonal Decomposition

Theorem (Cameron & Martin, 1947)

∞⊕
n=0

Hn = L2(Ω, σ(H ), P ).

In particular, if σ(H ) = A, then

L2(Ω,A, P ) =
∞⊕
n=0

Hn .

Note: Condition σ(H ) = A crucial.
Consider ξ ∼ N(0, 1), H = span{ξ}, and η ∈ L2(Ω,A, P ), 〈η〉 = 0, ξ, η
independent. Then all orthogonal projections of η on Hn vanish a.s., with
approximation error

〈
η2〉.
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Polynomial Chaos Expansions

H : Gaussian linear space,
Pk : L2(Ω,A, P )→Hk : orthogonal projection onto Hk

Polynomial chaos expansion of η ∈ L2(Ω, σ(H ), P ) given by

η =
∞∑
k=0

Pkη.

Expansion also (mean-square) convergent when A ) σ(H ), but to
orthogonal projection of η onto L2(Ω, σ(H ), P ).
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Polynomial Chaos Expansions
Computational Realization

In applications typically have

H = span{ξj : j ∈ N}, ξj ∼ N(0, 1) independent basic RV.

Orthonormal basis of H given by {ψα : |α|0 <∞}, where

α ∈ {(α1, α2, . . . ) : αj ∈ N0}, |α|0 := |{j : αj > 0}|,

ψα(ξ) =
∏
αj 6=0

ψαj (ξj)

where {ψk} denotes the sequence of normalized Hermite polynomials.

For finitely many basic RV ξ1, . . . , ξM and PM
n (ξ1, . . . , ξM ) the

M -variate polynomials in {ξj}Mj=1 of degree at most n, there holds

ηMn := PMn η
n,M→∞−−−−−→ η ∀η ∈ L2(Ω, σ({ξj}j∈N), P ).
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Polynomial Chaos Expansions
Example

Consider a smooth transformation

K = K(x , ω) = f(G(x , ω)), x ∈ D ⊂ Rd,

of a Gaussian random field G = G(x , ω) given by its Karhunen-Loève
expansion

G(x , ω) = 〈G(x )〉+
∞∑
m=1

√
λm gm(x ) ξm(ω), ξm ∼ N(0, 1) i.i.d.

The coefficients Kα(x ) of the polynomial chaos expansion

K(x , ω) =
∑
α

Kα(x )ψα(ξ(ω))

satisfy (cf. [Malliavin, 1997])

Kα(x ) = 〈K(x , ω)ψα(ξ(ω))〉 = 1√
α!
〈Dαf(G(x , ξ(ω))〉 .
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Polynomial Chaos Expansions
Example

Special case: lognormal random field K(x , ω) = eG(x ,ω).

Here we obtain

Kα(x ) = 〈K(x )〉√
α!

∞∏
m=1

(√
λm gm(x )

)αm
.
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Generalized Polynomial Chaos Expansions

If RV η “far from Gaussian”, expand it in polynomials of RV with
non-Gaussian distributions.

Many common probability distributions correspond to classical real
orthogonal polynomials, e.g.,

Distribution polynomials density
Gaussian Hermite ρ(ξ) = 1√

2πe
−ξ2/2

Gamma(α, λ) Laguerre ρ(ξ) = λ
ξ(α)(λξ)α−1e−λξ

Beta(α, β) Jacobi ρ(ξ) = (1−ξ)α(1+ξ)β
2α+β+1B(α+1,β+1)

Uniform(α, β) Legendre ρ(ξ) = 1
β−α

Arcsin Chebyshev ρ(ξ) = 1√
1−ξ2

[Xiu & Karniadakis, 2002–03] Askey family
[Ogura, 1972] Poisson chaos (Charlier polynomials)
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Generalized Polynomial Chaos Expansions
One Basic RV

Assumption: Basic RV ξ with finite moments
〈
|ξ|k

〉
of all orders and

continuous distribution function Fξ.

Then there exists sequence {ψk}k∈N0 of polynomials (degψk = k)
orthonormal with respect to the distribution of ξ, i.e., in
L2(R,B(R), Fξ(dx)).
For any η ∈ L2(Ω,A, P ) the coefficients ak of the expansion

η ∼
∞∑
k=0

akψk(ξ), ak = 〈ηψk(ξ)〉

are defined.
Question: does the expansion converge to η in quadratic mean?
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Generalized Polynomial Chaos Expansions
Density of Polynomials

Equality

η =
∞∑
k=0

akψk(ξ) for all η ∈ L2(Ω, σ(ξ), P )

equivalent with density of polynomials

p(ξ) in L2(Ω, σ(ξ), P ) or
p(x) in L2(R,B, Fξ(dx)), respectively.

Theorem (M. Riesz, 1923)
The polynomials span{ξk}k∈N0

are dense in L2(Ω, σ(ξ), P ) if and only if
the Hamburger moment problem is uniquely solvable for the distribution
of ξ.
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Generalized Polynomial Chaos Expansions
Hamburger Moment Problem

Definition
The moment problem is uniquely solvable for a probability distribution
on (R,B(R)) or the distribution is determinate in the Hamburger sense,
if the distribution function is uniquely defined by the sequence of its
moments

µk :=
〈
ξk
〉

=
∫
R
xkFξ(dx), k ∈ N0.

Thus: generalized polynomial chaos expansions in one basic RV ξ
converge if and only if the distribution of ξ is determinate.
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Generalized Polynomial Chaos Expansions
Some Determinate/Indeterminate Distributions

determinate distributions:
normal
uniform
beta
gamma
. . .

indeterminate distributions:
lognormal
certain powers of Gaussian RV, e.g.
ξ2k+1 for any k = 1, 2, . . . or
ξ2k for any k = 3, 4, . . . (ξ ∼ N(0, 1))
certain powers of exponentially distributed RV
. . .
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Generalized Polynomial Chaos Expansions
Countably many RV

Generalized Cameron-Martin Theorem
Let {ξk}k∈N be independent RV with continuous distributions and
possessing moments all orders.
Furthermore let {Hn}n≥0 be the polynomial subspaces as in the
Cameron-Martin theorem.
Then the spaces {Hn}n≥0 are mutually orthogonal closed subspaces of
L2(Ω,A, P ) and there holds

∞⊕
n=0

Hn = L2(Ω, σ({ξk}k∈N), P )

if and only if for each basic random variable ξk, k ∈ N, the moment
problem for its distribution is uniquely solvable.
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Generalized Polynomial Chaos Expansions
Countably many RV

Idea of proof:

For one basic random variable ξk orthonormal polynomials yield an
orthonormal basis in L2(R,B(R), Fξk(dxk)).
For finitely many independent basic random variables tensor
products of univariate orthonormal polynomials yield an
orthonormal basis in L2(RM ,B(RM ), Fξ1(dx1)× . . .×FξM (dxM ))
General case: approximation of random variables depending on
(ξ1, ξ2, . . .) by random variables depending on a finite number of
basic random variables

Note: For nonindependent basic RV the condition is sufficient.
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Examples
Lognormal Basic RV

Consider standard lognormal RV ξ = exp(γ), γ ∼ N(0, 1).

Probability density function given by

fξ(x) =

 1
x
√

2πe
− log2 x

2 , x ≥ 0,
0, otherwise.

This distribution is indeterminate in the Hamburger sense.
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Examples
“Lognormal Chaos”

Associated orthonormal polynomials

ψ0(x) ≡ 1,

ψk(x) = (−1)kek(k−1)/4√∏k
i=1(ei − 1)

k∑
j=0

(−1)j
[
k
j

]
e−j

2+j/2xj , k ≥ 1,

with [
k
j

]
= (1− e−k)(1− e−(k−1)) · . . . · (1− e−(k−j+1))

(1− e−j)(1− e−(j−1)) · . . . · (1− e−1)
.

Can be derived from Stieltjes-Wigert polynomials (cf. [Szegö, 1939])
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Examples
Nontrivial class of RV not approximable by polynomials

Consider lognormal RV ξ and

g : R→ R measurable, odd and 1-periodic for which〈
(g(log ξ))2

〉
<∞, e.g. g(x) = sin(2πx).

Then for all k ∈ N we have

ak = 〈ψk(ξ)g(log(ξ))〉 =
∫ ∞

0
ψk(ξ) g(log(ξ)) fξ(x) dx = 0,

and therefore, for η = g(log(ξ)) ∈ L2(Ω, σ(ξ), P ),

η 6=
∞∑
k=0

akψk(ξ).
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Examples
Reciprocal of a lognormal random variable

Consider RV η = 1
ξ , ξ lognormal.

Lognormal chaos coefficients of η given by

a0 =
√
e, ak = (−1)ke−(k2+3k−2)/4

 k∏
j=1

(ej − 1)

1/2

, k ≥ 1.

Partial sums of chaos expansion ηn :=
∑n
k=0 akψk(ξ) can be bounded by

‖ηn‖2L2 ≤
e2

e− 1 .

Since ‖η‖2L2 = e2 remainders of partial sums satisfy

‖η − ηn‖2L2 = ‖η‖2L2 − ‖ηn‖2L2 ≥ e2 − e2

e− 1 > 0.
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Examples
Reciprocal of a lognormal random variable

Therefore, for η = 1
ξ ∈ L

2(Ω, σ(ξ), P ), ξ lognormal, we again have

η 6=
∞∑
k=0

akψk(ξ).
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Examples
BVP with random inputs

Consider 1D diffusion problem on D = (0, 1)

−(Ku′)′ = f, u(0) = 0, (Ku′)(1) = F,

with f, F deterministic and K = K(x, ω) a random field, with solution

u(x, ω) =
∫ x

0

1
K(y, ω)

(
F +

∫ 1

y
f(z) dz

)
dy.

For K(x, ω) = ξ(ω), ξ lognormal, this becomes

u(x, ω) = 1
ξ(ω)

∫ x

0

(
F +

∫ 1

y
f(z) dz

)
dy︸ ︷︷ ︸

deterministic

,

a random field which cannot be expanded in lognormal chaos.
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Examples
BVP with random inputs

Same diffusion problem, now

K(x, ω) = exp(|ξ(ω)|x), ξ ∼ N(0, 1), x ∈ (0, 1),

with f ≡ 1, K = 1.

Distribution of |ξ| (“reflected Gaussian”) is determinate, therefore
associated chaos expansion converges to u in mean square.

We thus compare a stochastic Galerkin approximation to the solution of
the diffusion problem with spectral element discretization in space
combined with

standard (Hermite) PC approximation vs.
generalized PC approximation using expansion in orthogonal
polynomials associated with distribution of |ξ| (reflected Gaussian).
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Examples
BVP with random inputs
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Conclusion

Summary
Polynomial Chaos expansions are one of many representations for
random variables (and random fields) with finite variance.
PC central to stochastic Galerkin/stochastic collocation methods
for discretizing PDEs with random inputs.
Generalized PC expansions sometimes more efficient, but underlying
distribution must be determinate for polynomials to be dense.
Approximability vs. measurability issues.

Ongoing work:
Quantify convergence rates of different GPC expansions
Fewer basic random variables vs. more highly nonlinear
transformations.
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