A Bayesian approach to an elliptic inverse problem

1. The problem

e Consider (Darcy’s law + incompressibilty condition):

v (exp(u)vp) —0, zeDCR. d=23 (1)
p=¢, x €D

e Find u, Given noisy observations of p at a set of points
X1,...,Tx1n D:

yr = plxy) +mr, k=1,..., K. (2)

2. Bayesian approach to inverse problems

e Unknown function v € X (X Banach space),
e Prior yo(du) = P(du) on u with po(X) =1

e y|u noisy observations y € Y
y=6(u)+n

G: observational operator
n: observational noise distributed according to A/(0, ")
e Posterior p¥(du) = P(duly) on u:
dp?
duo
O X XY —R.

(u) o< P(y|u) o< exp(—P(u, y)), (3)

2.1. Prior measure

Let {4;}°, be a basis for L*(D). Define random function u
as

u(a) = S 17T (Lo gy (a). @)
(=1

with1l <p < o00,s >0, and kK > 0 fixed and
{&}72, i..d real-valued random variables with probability
distribution function

me(x) = cpexp(—|[’)

e When {¢;};°, is a Fourier basis, p = 2 and x =
1

5» u 1s distributed according to the Gaussian measure
N (0, (—A)~%) with A the Laplacian operator.
In this case ||ul| gt < oo a.s. fort < s —d/2.

elet D = T% When {¢;}°, in (4) is an r-regular
wavelet basis for L*(T?), then u is distributed accord-
ing to a Besov (k, B;,) measure (formally po(du) o

exp(—rull )
In this case ||ul[p; < coa.s. fort <s—d/p.

2.2. Wellposedness of the posterior measure

Assumption 1. Function ® : X x Y — R satisfies

(1) There is an oy > 0 and for every » > 0, an M € R, such
that for all v € X and for all y € Y such that ||y||ly < r

D(u,y) > M — aulull%.

(ii) For every r > 0 there exists K = K(r) > 0 such that for

allu € B),y € Y with max{||ul|x,||y|ly} <r

d(u,y) < K.

(iii) For any » > O an L = L(r) > 0 exists such that uy, us €

B!, and v € Y with max{||u1||x, [[uz]|x,||ylly} <7

|P(ur,y) — Plug, y)| < Lijur — usgl|x.
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(iv) There is an as > 0 and for every r > 0 a C' € R such
that for all 31, y» € R with max{||y1||y, ||y2||y} < r and
forevery u € X

[ (u, y1) — P(u, )| < explaalfully + C)llyr — val|

Assumption 2. The prior measure (i is either

a Gaussian H° measure with s large enough so that

HtCXforsomet<s—g,or

a Besov (k, B,,) measure with s large enough so that

B]ZpCXforsomet<s—‘—i.

p

Theorem 1. Let Assumption 1.(i)—(iii) and Assumption 2
with k > «aq hold. Then 1Y given by (3) is a well-defined
probability measure.

One can also show continuity of the posterior in the
Hellinger metric with respect to the data y. The Hellinger
metric 1s defined as follows:

e (1, 1) = \ %/ (\/g = \/@)2@-

Theorem 2. Let Assumption 1 and Assumption 2 with k >
2009 hold. Then

dien (s 17') < C'ly — /|

where C' = C(r) with max{|y|, |y'|} <.

2.3. Approximation of the posterior

Let " be an approximation of .

Define ;1Y by
dpsN 1 N
= —d 5
where

7Ny = /X exp (=0 (u)) djao(u).

Theorem 3. Suppose that ® and OV satisfy Assumption
1.(i)—(iii) uniformly in N. Let Assumption 2 hold. If

[@(u) — 2V (u)] < CY(N)

where (N) — 0 as N — oo, then there exists a constant
independent of N such that

dren(p, 1) < CY(N).

3. Application to the elliptic inverse problem

e In (1) for any u € L*°(D) we assume that
Au) = essinfyep e®) > 0
A(u) = esssup,ep e < oo.
e We do not assume that the upper and lower bounds on
A/A hold uniformly across the probability space.
Observations: given as in (2), and we assume that:

the noise 1s Gaussian and
{ne} is an i.i.d sequence with 1y ~ N(0,7°1) .

Concatenating the data, we have

y=G(u) +n

where

y=(y1,"yx)";
N = <7717°"777K>TNN<0772I>
G(u) = (p(z1), - ,p(zk))",

the observation operator.

Estimates:

o If u € L*(D) there exists C' = C(D, ||¢||1=(9p)) such
that

G(u)| < C ellullzoo

oIf uj,uy € CYD) for some t > 0 then there exists
C' = C(D,t) such that

|G (u1) = G(uz)

< C exp (max{[jur]|er, [uallc}) [ur — gl e

Therefore by Theorems 1 and 2, we have:

Wellposedness: If 1 satisfies Assumption 2 with k > 2
and s > 2d/p, then the posterior measure pY is absolutely
continuous with Radon-Nikodym derivative

dp?

() o exp (5l — G(wP)

and
dHeu(,uy,My/) < Cly—1v|

for any y, vy’ € R%.

Approximations:

Fourier basis:

Let {1, };cz be the Fourier basis for L?(T%),

N
Py =u" = E u; Y.
=1

and GV () = G(PV.).

Theorem 4. If the prior g is a Gaussian H?® measure with
s > d+t, then

dyen (11, ) < C N~ (log N

Wavelet basis:

Let {1;}52, be an r-regular wavelet basis for L*(T“) and
define

PYu=u"(2) = Zul i(x)
=1

and GV () = G(P".).

Theorem S. If the prior i is a Besov (k, B,)) measure with
s >2d/p+tand k > 2, then

dHell(,uy7 M%N) S C N_t/d°



