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I . Kummer theory on abelian varieties
e K = number field, K = algebraic closure.

e A = an abelian variety over K, dimA = g.
Set End(A/K) = End(A/K) := O.

e yc A(K). Assume that y generates A, i.e.
Z.y is Zariski closed in A < Annp(y) = 0.

Following the elliptic work of Bashmakov and
Tate-Coates (~ 1970), we have :

Theorem K : there exists c = c(A,K,y) >0
such that for all n > 0, [K(Ly) : K] > en?9.

Refs.: K. Ribet : Duke math. J. 46, 1979,
745-761;

D.B.: Proc. Durham Conference 1986, “New
advances in transcendence theory”, ed. A.
Baker, CUP 1988, 37-55.



o Ator = UnAln], Koo = K(Ator)

o Loo = UnKoo(Gy), Ly = UmKoo(my)-

o Too(A) :=proj.limn Aln] = NyepTy(A)

We will actually prove that Gal(Loo/Kx) IS
isomorphic to an open subgroup of Teo(A),

or equivalently (Nakayama) :

i) for all primes /, Gal(L(@/Koo) iS an open
subgroup of Ty(A) ~ Z?g;

i) for almost all ¢, Gal(Koo(3y)/Koo) =~ A[].

K

|

| }N — Aln] >~ (Z/nZ)%9
Koo P

| P o= GL(Tx(A))
K

&y(0) =o0(iy) — py,  &y(ror™1) = 7(&y(a)).
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Proof (in the mod ¢ case)

1. Galois theoretic step .
(Of necessity, base extension to Ko ~~ A
becomes “Kso-large” for the morphism [£] 4.)

Im(&) ~ N is a J-submodule of A[f]. As-
sume N #= A[f]. Then Ja € O,a & O s.t.
a.y is divisible by £ in A(Ko).

2. QGalois descent

There exists ¢g(A, K) such that V¢ > ¢y , if

a point ¢’ € A(K) is divisible by ¢ in A(Ko),

then, ¢’ is already divisible by ¢ in A(K), i.e.
A(K) L AK) — A(Koso) /L. A(Kxo)

3. (Diophantine) geometric step

There exists 1 (A, K,y) such that a.y € £.A(K)
with £ > ¢1 implies a € £.0.



Proof of 1.

- Al[f] is a semi-simple J-module (Faltings),
so there exists ay € Endj(A[f]) Killing N.

- Endj(A[f]) ~ End(A) ® F, (Faltings), so ay
yields a € O, a & O Killing N.

- €ay = afy, SO, ya.y is fixed by N.

Proof of 2.
7 — A(K)/LAK) — A(Kso)/l.A(Kxo)
| | |

HY(J,Ale]) — HY g, Al])) — HY (Mg, Al])’
Serre’s result on homotheties and Sah’s lemma
imply H1(J, A[¢]) = 0 for large ¢.

Proof of 3.

Mordell-Weil (or a trick of Cassels’'s), both
based on heights.

[Similar arguments in the ¢-adic case.]



Some diophantine applications

C. Khare, D. Prasad : Reduction of homo-
morphisms mod p and algebraicity, JNT 105,
2004, 322-332.

A/K simple, v,y € A(K) s.t. for almost all
places v, the order of y mod v divides the
order of ¥ mod v. Then, Ja € O,y = a.y.
(This sharpens a result of M. Larsen.)

U. Zannier : On the Hilbert Irreducibility
Theorem, Pisa preprint, 2008.

Let 7: Y — A be a dominant K-morphism of
finite degree, with Y irreducible and A = E™.
Let y € A(K) generate A. Suppose that for
any isogeny ¢ : A — A, the pull-back ¢*(Y)
is irreducible. Then there is an arithmetic
progression V in Z such that each v € V, the
fiber 7—1(v.y) is K-irreducible.

Also, work of M. Gavrilovich (K-Theory, 38,
2008, 135-152) on Ext(E(K),Z?); of C. Sal-
gado (PhD. Paris 7, 2009) on ranks of elliptic
surfaces, ...



II.a . Logarithms on abelian schemes

o K = C(S) or C(8)%9, S/C = smooth affine
curve, & = a derivation on K with K9 = C,

.

K = diff. closure, U4 = univ. domain.

e A/K, coming from an abelian scheme A —
S. Ag = its K/C-trace. Its universal exten-
sion A has dimension 2g :
0—-Wy —-A-TA—-0
Exponential sequence :
0 — TgA — LA %P fan _, (

o yc A(K), generating A, iie. : VH C Ay ¢
H + Ay(C). Chose ¢n(y) € exp~1(y). Then :

Theorem L (André, 1992)
tr.dg.(K(Un(y))/K) = 2g.



A has a structure of algebraic D-group, with
(‘%n;‘ . A — LA
Gauss-Manin connection :
Or g =0nzoexp: LA — LA

So /n(y) ~ z € LA(K) solution of the inho-
mogeneous LDE : 9; z(xz) = 9fn zy.

e K; x = K(Tp(A)) = Picard-Vessiot exten-
sion for 6LA~(—) — 0, with solution space
(LA)? = Tg(4A) @ C ~ C29.

We will actually prove that
Gala(KLg(ﬁn(y))/KLg) = (LA)a-

K
|
K; 7(Un(y)) &y
| IN — (LA)?
Ky 1 P
| VJ — GL((LA)?9)
K

&y(o) = o(n(y)) — In(y), &(ror™ 1) = 7(&y(0)).
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Proof (in a ‘'generic’ case)

By Deligne, LA is a semi-simple D-module.
For simplicity, suppose that it is irreducible.

1. Galois theoretic step .
(Of necessity, base extension to Ky 3 ~ LA
becomes “K; z-large” for the morphism [exp] z.)

Im(&y) ~ N is a J-submodule of (LA)?. As-
sume N # (LA)?. Then N =0,z € LA(K; z)
and

8£nA~y = 61“4(33) c 8[“4 (LA(KLA'")).

2. QGalois descent

If a point z € LA(K) lies in aLA(LA(KLA))'
then, z already lies in 9; s(LA(K)), i.e.

Coker(9; z, LA(K)) — Coker(9; z, LA(KLA))
Indeed, J is reductive, so H(J, (LA)?) = 0.
3. Geometric step

Manin’'s theorem : if 0¢nzy = 0; 5(x) for
some z € LA(K), theny € W+ Ag(C)+ Az
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A diophantine application

Theorem L plays a (minor, but not empty)
role in

D. Masser, U. Zannier : Torsion anomalous
points and families of elliptic curves; CRAS
Paris 346, 2008, 491-494,

i.e the following special case of the Zilber-
Pink conjecture. Consider the sections v,/
with abscissae 2, 3 of the Legendre elliptic
scheme E/S,S = A—line. There are finitely
many \'s such that both y()\) and ¢/()\) are
torsion points on FE,. In other words, the
curve C = (y,y’) on the abelian scheme A/S,
A = E x E, has finite intersection with Al>1l
where Al>1] = the union of all 2-codim’l al-
gebraic subgroups of all the fibers of A/S.

Uses a result of J. Pila (Quart.J.M 55, 2004,
207-223) on the rational points of a subana-
lytic surface away from the union of its non-
punctual semi-algebraic subsets. The alge-
braic independence of /n(y),4n(y’) over K; z
(plus some knowledge of the size of J as well)
shows that there is nothing to withdraw.
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II b . Exponentials on abelian schemes

As in II.a,
K =C(9), 0, A/K, Ay/C, A.
0 — TgA — LA %P fan _, (

e r ¢ LA(K), generating LA, i.e. : VH C
A,x ¢ LH+ LAg(C). Then :

Theorem E (Be-Pillay, JAMS, 2017)
tr.dg.(K(exp(z)/K) = 2g.

As in Il.a, we have
8€TLA~ . A—>LA
8LA=8€nAoea:p:Lﬁ—>Lﬁ.

So exp(z) ~ y € A(K) solution of the inho-
mogeneous NLDE : d¢n 3(y) = 0; zz.

Let K ; be the differential extension of K gen-
erated by all points in

A9 = {z ¢ A(K),0tn z(z) = 0.}
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Using

e Pillay’'s Galois theory
. e |+ a Galois descent ,
we will actually prove that

Galg(K z(exp(z))/K 7) ~ A9

A~

K
K z(exp(x)) §x 3
N — A9
K x p
W o  Aut(A9)
K

(o) = o(exp(x)) — exp(x).

In generic cases (e.g. when the Kodaira-
Spencer rank of A/S is maximal, e.g. when
LA is irreducible),

K:=K:

the D-group A is K-large, and no descent is
required ! We then merely need :
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1. Galois theoretic step

Im(&:) ~ N = HP for some algebraic D-
subgroup H of A. Assume H # A. Then
there is a non trivial D-quotient 7 : A — A
sending = to ¥ € LA(K), with

0;#(T) = dn(7) for some j € A(K).

3. Geometric step

If A~ B for some abelian variety quotient B
of A, just apply Manin’'s theorem:
T € LW+ LBg(C), so z cannot generate LA.

The general case requires Chai’'s sharpening
of Manin’'s theorem.

That A ~ B happens automatically when Wy
contains no non trivial D-subgroup. When
Ag = 0, this is equivalent to A being K-large.
In general,
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2. Galois descent in Pillay’s theory

Write K for K, and let U be the maximal
D-subgroup of A (equivalently D-submodule
of LA) contained in Wy.

O—-U A— A 0.

e Hrushovski-Sokolovic, Marker-Pillay = A is

K-large : A2(R) = A%(K).

e Manin-Chai = A%(K) = Ao, + Ag(C).

e 0—UYR)— AYR) - A%(R) — 0.

T herefore

K7 = Ky is a P-V extension of K
and J = Galg(K 3/K) :=Jy is a

factor of the reductive group J = Galsg(K; 7/K).
Actually (Deligne), J, hence Jy, is semi-simple.

By Step 1 over K z, and rigidity of D-subgroups
of A, we have :

0;7(T) = dn(7) for some 57 € A(Ky).
and it remains to show that
LA(K)/0tn5(A(K)) — LA(Ky)/0tnz(A(Ky)),
i.e. that we may take § € A(K).
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The cocycle gg C Jp — A% o+— oy — 1y IS a
group homomorphism. Since Jy = [Jy, Jyl,
while 49 is abelian, & vanishes, so that in-
deed 7y is defined over K.

Conclusion

e No diophantine application (yet) of Theo-
rem E.

e But the method works in other contexts,
e.g., considering the differential equation

MWn(y) = X.0¢n(x)
on Gy, with A e C, A ¢ Q :

if 1, ..., zn € Gy (K) are multiplicatively inde-
pendent modulo G, (C), then, z7,...,z; are
algebraically independent over K = C(z).

For more general (Schanuel-type) results on
z?, see:

- M. Bayes, J. Kirby, A. Wilkie, (2008) arXiv:
0810.4457.

- P. Kowalski, Ann. PAL, 156, 2008, 96-109.
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