LOCALISING SUBCATEGORIES OF THE STABLE MODULE CATEGORY OF A FINITE GROUP

Dave Benson (Joint work with Srikanth Iyengar and Henning Krause)

Durham, July 2009

BENSON, IYENGAR AND KRAUSE

DAVE BENSON LOCALISING SUBCATEGORIES

G finite group

G finite group *k* field of characteristic *p*

G finite group *k* field of characteristic *p* For simplicity I'll assume *G* is a *p*-group

G finite group *k* field of characteristic *p* For simplicity I'll assume *G* is a *p*-group so there's only one simple *kG*-module

G finite group *k* field of characteristic *p* For simplicity I'll assume *G* is a *p*-group so there's only one simple *kG*-module Slight modifications of statements are necessary for a more general finite group

G finite group *k* field of characteristic *p* For simplicity I'll assume *G* is a *p*-group so there's only one simple *kG*-module Slight modifications of statements are necessary for a more general finite group Mod(kG) objects: *kG*-modules, arrows: module homomorphisms

G finite group k field of characteristic pFor simplicity I'll assume G is a p-group so there's only one simple kG-module Slight modifications of statements are necessary for a more general finite group Mod(kG) objects: kG-modules, arrows: module homomorphisms — an abelian category

G finite group k field of characteristic pFor simplicity I'll assume G is a p-group so there's only one simple kG-module Slight modifications of statements are necessary for a more general finite group Mod(kG) objects: kG-modules, arrows: module homomorphisms — an abelian category

DEFINITION

G finite group k field of characteristic pFor simplicity I'll assume G is a p-group so there's only one simple kG-module Slight modifications of statements are necessary for a more general finite group Mod(kG) objects: kG-modules, arrows: module homomorphisms — an abelian category

DEFINITION

A localising subcategory of Mod(kG) is a full subcategory C satisfying:

G finite group k field of characteristic pFor simplicity I'll assume G is a p-group so there's only one simple kG-module Slight modifications of statements are necessary for a more general finite group Mod(kG) objects: kG-modules, arrows: module homomorphisms — an abelian category

DEFINITION

A localising subcategory of Mod(kG) is a full subcategory C satisfying:

• If $0 \to M_1 \to M_2 \to M_3 \to 0$ and two of M_1 , M_2 , M_3 are in C then so is the third

- 4 同 1 - 4 回 1 - 4 回 1

G finite group k field of characteristic pFor simplicity I'll assume G is a p-group so there's only one simple kG-module Slight modifications of statements are necessary for a more general finite group Mod(kG) objects: kG-modules, arrows: module homomorphisms — an abelian category

DEFINITION

A localising subcategory of Mod(kG) is a full subcategory C satisfying:

- If $0 \to M_1 \to M_2 \to M_3 \to 0$ and two of M_1 , M_2 , M_3 are in C then so is the third
- $\bullet~\ensuremath{\mathcal{C}}$ is closed under direct sums.

A E F A E F

THE MAIN THEOREM

THEOREM

There is a natural one to one correspondence between non-zero localising subcategories of Mod(kG) and subsets of

Proj $H^*(G, k) = \{$ non-maximal hgs prime ideals in $H^*(G, k)\}$

THEOREM

There is a natural one to one correspondence between non-zero localising subcategories of Mod(kG) and subsets of

Proj $H^*(G, k) = \{$ non-maximal hgs prime ideals in $H^*(G, k)\}$

Remark

This is analogous to Neeman's classification of localising subcategories of D(ModR) for a commutative ring R, but quite a bit harder.

 Thick subcategories of small objects D^b(proj R): Hopkins 1985

- Thick subcategories of small objects D^b(proj R): Hopkins 1985
- Localising subcategories of all objects D(ModR): Neeman 1990

- Thick subcategories of small objects D^b(proj R): Hopkins 1985
- Localising subcategories of all objects D(ModR): Neeman 1990
- Thick subcategories of small objects mod(kG)/stmod(kG): Benson, Carlson and Rickard 1995

- Thick subcategories of small objects D^b(proj R): Hopkins 1985
- Localising subcategories of all objects D(ModR): Neeman 1990
- Thick subcategories of small objects mod(kG)/stmod(kG): Benson, Carlson and Rickard 1995
- Localising subcategories of all objects Mod(kG)/StMod(kG): Benson, lyengar and Krause 2007

- Thick subcategories of small objects D^b(proj R): Hopkins 1985
- Localising subcategories of all objects D(ModR): Neeman 1990
- Thick subcategories of small objects mod(kG)/stmod(kG): Benson, Carlson and Rickard 1995
- Localising subcategories of all objects Mod(kG)/StMod(kG): Benson, lyengar and Krause 2007
- Colocalising subcategories of all objects D(ModR): Neeman 2008

- Thick subcategories of small objects D^b(proj R): Hopkins 1985
- Localising subcategories of all objects D(ModR): Neeman 1990
- Thick subcategories of small objects mod(kG)/stmod(kG): Benson, Carlson and Rickard 1995
- Localising subcategories of all objects Mod(kG)/StMod(kG): Benson, lyengar and Krause 2007
- Colocalising subcategories of all objects D(ModR): Neeman 2008
- Colocalising subcategories of all objects Mod(*kG*): Benson, lyengar and Krause 2009

イロト イポト イヨト イヨト

LOCALISING SUBCATEGORIES OF Mod(kG)

OBSERVATION

LOCALISING SUBCATEGORIES OF Mod(kG)

OBSERVATION

kG is filtered by copies of k

LOCALISING SUBCATEGORIES OF Mod(kG)

OBSERVATION

kG is filtered by copies of k so if M is in \mathcal{C} then $kG \otimes M$ is in \mathcal{C} ,

kG is filtered by copies of k so if M is in C then $kG \otimes M$ is in C, hence kG is in C,

kG is filtered by copies of k so if M is in C then $kG \otimes M$ is in C, hence kG is in C, so all projectives are in C.

kG is filtered by copies of k so if M is in C then $kG \otimes M$ is in C, hence kG is in C, so all projectives are in C.

DEFINITION

kG is filtered by copies of k so if M is in C then $kG \otimes M$ is in C, hence kG is in C, so all projectives are in C.

DEFINITION

The stable module category StMod(kG)

kG is filtered by copies of k so if M is in C then $kG \otimes M$ is in C, hence kG is in C, so all projectives are in C.

DEFINITION

The stable module category StMod(kG) objects: kG-modules, arrows:

kG is filtered by copies of k so if M is in C then $kG \otimes M$ is in C, hence kG is in C, so all projectives are in C.

DEFINITION

The stable module category StMod(kG) objects: kG-modules, arrows:

$$\underline{\operatorname{Hom}}_{kG}(M,N) = \frac{\operatorname{Hom}_{kG}(M,N)}{\operatorname{PHom}_{kG}(M,N)}$$

 $PHom_{kG}(M, N) =$ homs factoring through some projective

kG is filtered by copies of k so if M is in C then $kG \otimes M$ is in C, hence kG is in C, so all projectives are in C.

DEFINITION

The stable module category StMod(kG) objects: kG-modules, arrows:

$$\underline{\operatorname{Hom}}_{kG}(M,N) = \frac{\operatorname{Hom}_{kG}(M,N)}{\operatorname{PHom}_{kG}(M,N)}$$

 $PHom_{kG}(M, N) =$ homs factoring through some projective

This is a triangulated category with translation Ω^{-1} .

kG is filtered by copies of k so if M is in C then $kG \otimes M$ is in C, hence kG is in C, so all projectives are in C.

DEFINITION

```
The stable module category StMod(kG) objects: kG-modules, arrows:
```

$$\underline{\operatorname{Hom}}_{kG}(M,N) = \frac{\operatorname{Hom}_{kG}(M,N)}{\operatorname{PHom}_{kG}(M,N)}$$

 $PHom_{kG}(M, N) =$ homs factoring through some projective

This is a triangulated category with translation Ω^{-1} .

Now, a localising subcategory is a full triangulated subcategory closed under direct sums.

THE CATEGORY Klnj(kG)

Problem with StMod(kG):

Problem with StMod(kG): End^{*}_{kG}(k) = $\hat{H}^*(G, k)$ is usually not Noetherian.

The category Klnj(kG)

Problem with StMod(kG): End^{*}_{kG}(k) = $\hat{H}^*(G, k)$ is usually not Noetherian.

We enlarge StMod(kG) slightly to "put back the maximal ideal" of $H^*(G, k)$.

The category Klnj(kG)

Problem with StMod(kG): End^{*}_{kG}(k) = $\hat{H}^*(G, k)$ is usually not Noetherian.

We enlarge StMod(kG) slightly to "put back the maximal ideal" of $H^*(G, k)$.

DEFINITION

Problem with StMod(kG):

 $\operatorname{End}_{kG}^{*}(k) = \hat{H}^{*}(G, k)$ is usually not Noetherian.

We enlarge StMod(kG) slightly to "put back the maximal ideal" of $H^*(G, k)$.

DEFINITION

Klnj(kG) objects: complexes of injective = projective kG-modules

Problem with StMod(kG):

 $\operatorname{End}_{kG}^{*}(k) = \hat{H}^{*}(G, k)$ is usually not Noetherian.

We enlarge StMod(kG) slightly to "put back the maximal ideal" of $H^*(G, k)$.

DEFINITION

Klnj(kG) objects: complexes of injective = projective kG-modules arrows: homotopy classes of degree preserving chain maps

Problem with StMod(*kG*):

 $\operatorname{End}_{kG}^{*}(k) = \hat{H}^{*}(G, k)$ is usually not Noetherian.

We enlarge StMod(kG) slightly to "put back the maximal ideal" of $H^*(G, k)$.

DEFINITION

Klnj(kG) objects: complexes of injective = projective kG-modules arrows: homotopy classes of degree preserving chain maps

This is a triangulated category.

Problem with StMod(*kG*):

 $\operatorname{End}_{kG}^{*}(k) = \hat{H}^{*}(G, k)$ is usually not Noetherian.

We enlarge StMod(kG) slightly to "put back the maximal ideal" of $H^*(G, k)$.

DEFINITION

Klnj(kG) objects: complexes of injective = projective kG-modules arrows: homotopy classes of degree preserving chain maps

This is a triangulated category.

DEFINITION

Problem with StMod(*kG*):

 $\operatorname{End}_{kG}^{*}(k) = \hat{H}^{*}(G, k)$ is usually not Noetherian.

We enlarge StMod(kG) slightly to "put back the maximal ideal" of $H^*(G, k)$.

DEFINITION

Klnj(kG) objects: complexes of injective = projective kG-modules arrows: homotopy classes of degree preserving chain maps

This is a triangulated category.

DEFINITION

 $K_{ac}Inj(kG)$ is the full triangulated subcategory of acyclic complexes

Problem with StMod(*kG*):

 $\operatorname{End}_{kG}^{*}(k) = \hat{H}^{*}(G, k)$ is usually not Noetherian.

We enlarge StMod(kG) slightly to "put back the maximal ideal" of $H^*(G, k)$.

DEFINITION

Klnj(kG) objects: complexes of injective = projective kG-modules arrows: homotopy classes of degree preserving chain maps

This is a triangulated category.

DEFINITION

 $K_{ac}lnj(kG)$ is the full triangulated subcategory of acyclic complexes

Tate resolutions: $StMod(kG) \simeq K_{ac}Inj(kG)$.

Recollement

$$\operatorname{StMod}(kG) \simeq \operatorname{K}_{\operatorname{ac}}\operatorname{Inj}(kG) \xrightarrow[-\otimes_k tk]{\operatorname{Hom}_k(tk,-)}}_{(-\otimes_k tk)} \operatorname{KInj}(kG) \xrightarrow[-\otimes_k pk]{\operatorname{Hom}_k(pk,-)}}_{(-\otimes_k pk)} D\operatorname{Mod}(kG).$$

$$\operatorname{StMod}(kG) \simeq \operatorname{K}_{\operatorname{ac}}(kG) \xleftarrow[-\otimes_k tk]{\operatorname{Hom}_k(tk,-)} \operatorname{KInj}(kG) \xleftarrow[-\otimes_k pk]{\operatorname{Hom}_k(pk,-)} D\operatorname{Mod}(kG).$$

OBSERVATION

The only localising subcategories of $D \operatorname{Mod}(kG)$ are everything and zero.

$$\operatorname{StMod}(kG) \simeq \operatorname{K}_{\operatorname{ac}}(kG) \xrightarrow[-\otimes_k tk]{\operatorname{Hom}_k(tk,-)}}_{(-\otimes_k tk)} \operatorname{KInj}(kG) \xrightarrow[-\otimes_k pk]{\operatorname{Hom}_k(pk,-)}}_{(-\otimes_k pk)} D\operatorname{Mod}(kG).$$

OBSERVATION

The only localising subcategories of $D \operatorname{Mod}(kG)$ are everything and zero.

THEOREM

There is a natural one to one correspondence between localising subcategories of Klnj(kG) and subsets of

$$\operatorname{StMod}(kG) \simeq \operatorname{K}_{\operatorname{ac}}(kG) \xrightarrow[-\otimes_k tk]{\operatorname{Hom}_k(tk,-)}}_{(-\otimes_k tk)} \operatorname{KInj}(kG) \xrightarrow[-\otimes_k pk]{\operatorname{Hom}_k(pk,-)}}_{(-\otimes_k pk)} D\operatorname{Mod}(kG).$$

OBSERVATION

The only localising subcategories of $D \operatorname{Mod}(kG)$ are everything and zero.

THEOREM

There is a natural one to one correspondence between localising subcategories of Klnj(kG) and subsets of

Spec^{*} $H^*(G, k) = \{ all hgs prime ideals in H^*(G, k) \}.$

- 4 同 1 - 4 回 1 - 4 回 1

STRATEGY

$${\sf E}=\langle g_1,\ldots,g_r\mid g_i^p=1,\quad g_ig_j=g_jg_i
angle\cong (\mathbb{Z}/p)^r$$

$${\sf E}=\langle g_1,\ldots,g_r\mid g_i^p=1,\quad g_ig_j=g_jg_i
angle\cong (\mathbb{Z}/p)^r$$

using Quillen's stratification theorem etc.

$$E = \langle g_1, \ldots, g_r \mid g_i^p = 1, \quad g_i g_j = g_j g_i \rangle \cong (\mathbb{Z}/p)^r$$

using Quillen's stratification theorem etc.

$$E = \langle g_1, \ldots, g_r \mid g_i^p = 1, \quad g_i g_j = g_j g_i \rangle \cong (\mathbb{Z}/p)^r$$

using Quillen's stratification theorem etc.

• Koszul construction:

 $X_i = g_i - 1 \in kE$

$$E = \langle g_1, \ldots, g_r \mid g_i^p = 1, \quad g_i g_j = g_j g_i \rangle \cong (\mathbb{Z}/p)^r$$

using Quillen's stratification theorem etc.

$$X_i = g_i - 1 \in kE$$

$$kE = k[X_1, \dots, X_r]/(X_1^p, \dots, X_r^p)$$

$$E = \langle g_1, \ldots, g_r \mid g_i^p = 1, \quad g_i g_j = g_j g_i \rangle \cong (\mathbb{Z}/p)^r$$

using Quillen's stratification theorem etc.

$$\begin{aligned} X_i &= g_i - 1 \in kE \\ kE &= k[X_1, \dots, X_r] / (X_1^p, \dots, X_r^p) \\ A &= kE \langle Y_1, \dots, Y_r \rangle, \text{ a dg algebra} \end{aligned}$$

$$E = \langle g_1, \ldots, g_r \mid g_i^p = 1, \quad g_i g_j = g_j g_i \rangle \cong (\mathbb{Z}/p)^r$$

using Quillen's stratification theorem etc.

$$\begin{aligned} X_i &= g_i - 1 \in kE \\ kE &= k[X_1, \dots, X_r] / (X_1^p, \dots, X_r^p) \\ A &= kE \langle Y_1, \dots, Y_r \rangle, \text{ a dg algebra} \\ \deg X_i &= 0, \text{ deg } Y_i = 1. \end{aligned}$$

$$E = \langle g_1, \ldots, g_r \mid g_i^p = 1, \quad g_i g_j = g_j g_i \rangle \cong (\mathbb{Z}/p)^r$$

using Quillen's stratification theorem etc.

$$\begin{aligned} X_i &= g_i - 1 \in kE \\ kE &= k[X_1, \dots, X_r] / (X_1^p, \dots, X_r^p) \\ A &= kE \langle Y_1, \dots, Y_r \rangle, \text{ a dg algebra} \\ \deg X_i &= 0, \deg Y_i = 1. \\ Y_i^2 &= 0, \ Y_i Y_j = -Y_j Y_i, \ d(Y_i) &= X_i, \ d(X_i) = 0. \end{aligned}$$

TRANSFER OF STRATIFICATION

 $KInj_{dg}(A)$

 $Klnj_{dg}(A)$ objects: dg *A*-modules which are injective as A^{\sharp} -modules

 $KInj_{dg}(A)$ objects: dg *A*-modules which are injective as A^{\sharp} -modules arrows: homotopy classes of degree preserving chain maps.

KInj_{dg}(A) objects: dg A-modules which are injective as A^{\sharp} -modules arrows: homotopy classes of degree preserving chain maps.

THEOREM

KInj_{dg}(A) objects: dg A-modules which are injective as A^{\sharp} -modules arrows: homotopy classes of degree preserving chain maps.

THEOREM

The functors

$$\operatorname{KInj}(kE) \xrightarrow[\operatorname{ind}]{\operatorname{res}} \operatorname{KInj}_{\operatorname{dg}}(A)$$

KInj_{dg}(A) objects: dg A-modules which are injective as A^{\sharp} -modules arrows: homotopy classes of degree preserving chain maps.

THEOREM The functors $Klnj(kE) \xrightarrow{res}_{ind} Klnj_{dg}(A)$ give a one to one correspondence on localising subcategories.

イロト イポト イヨト イヨト

FORMALITY

 $H_*(A)$ is an exterior algebra on generators $X_i^{p-1}Y_i$.

 $H_*(A)$ is an exterior algebra on generators $X_i^{p-1}Y_i$. Let $\Lambda = \Lambda(U_1, \dots, U_r)$

 $H_*(A)$ is an exterior algebra on generators $X_i^{p-1}Y_i$. Let $\Lambda = \Lambda(U_1, \dots, U_r)$

$$\Lambda \to A \qquad U_i \mapsto X_i^{p-1} Y_i$$

 $H_*(A)$ is an exterior algebra on generators $X_i^{p-1}Y_i$. Let $\Lambda = \Lambda(U_1, \dots, U_r)$

$$\Lambda \to A \qquad U_i \mapsto X_i^{p-1} Y_i$$

is a quasi-isomorphism. Hence it induces an equivalence of triangulated categories

 $H_*(A)$ is an exterior algebra on generators $X_i^{p-1}Y_i$. Let $\Lambda = \Lambda(U_1, \dots, U_r)$

$$\Lambda \to A \qquad U_i \mapsto X_i^{p-1} Y_i$$

is a quasi-isomorphism. Hence it induces an equivalence of triangulated categories

$$\operatorname{KInj}_{\operatorname{dg}}(A) \xrightarrow{\sim} \operatorname{KInj}_{\operatorname{dg}}(\Lambda).$$

 $H_*(A)$ is an exterior algebra on generators $X_i^{p-1}Y_i$. Let $\Lambda = \Lambda(U_1, \dots, U_r)$

$$\Lambda \to A \qquad U_i \mapsto X_i^{p-1} Y_i$$

is a quasi-isomorphism. Hence it induces an equivalence of triangulated categories

$$\operatorname{KInj}_{\operatorname{dg}}(A) \xrightarrow{\sim} \operatorname{KInj}_{\operatorname{dg}}(\Lambda).$$

Still using dg Λ -modules, differential on Λ is zero.

・ ロ ト ・ 四 ト ・ 日 ト ・ 日 ト

BGG CORRESPONDENCE

Let
$$S = \text{Ext}^*_{\Lambda}(k, k) = k[x_1, ..., x_r]$$
, deg $x_i = -2$.

Let
$$S = \operatorname{Ext}_{\Lambda}^{*}(k, k) = k[x_1, \dots, x_r]$$
, deg $x_i = -2$.

There is a version of the Bernstein-Gelfand-Gelfand correspondence

Let
$$S = \operatorname{Ext}^*_{\Lambda}(k, k) = k[x_1, \ldots, x_r]$$
, deg $x_i = -2$.

There is a version of the Bernstein-Gelfand-Gelfand correspondence

 $D_{dg}(S) \simeq \operatorname{KInj}_{dg}(\Lambda).$

Let
$$S = \operatorname{Ext}^*_{\Lambda}(k, k) = k[x_1, \ldots, x_r]$$
, deg $x_i = -2$.

There is a version of the Bernstein-Gelfand-Gelfand correspondence

$$D_{\mathrm{d}g}(S) \simeq \mathrm{KInj}_{\mathrm{d}g}(\Lambda).$$

The final step in the proof is to classify localising subcategories of $D_{dg}(S)$ using methods similar to Neeman's.

LEITFADEN

$D_{dg}(S) \rightsquigarrow \operatorname{KInj}_{dg}(\Lambda) \rightsquigarrow \operatorname{KInj}_{dg}(A) \rightsquigarrow$ $\operatorname{KInj}(kE) \rightsquigarrow \operatorname{KInj}(kG) \rightsquigarrow \operatorname{StMod}(kG) \rightsquigarrow \operatorname{Mod}(kG).$

Leitfaden

DETAILS: STRATIFYING TRIANGULATED CATEGORIES

Let \mathfrak{T} be a triangulated category with direct sums and with a compact generator C. $Z^n(\mathfrak{T})$: natural transformations $x \colon \mathrm{Id} \to \tau^n$ satisfying $x\tau = (-1)^n \tau x$.

 $Z^n(\mathfrak{T})$: natural transformations x: Id $\rightarrow \tau^n$ satisfying $x\tau = (-1)^n \tau x$.

 $Z(\mathfrak{T})$ is a graded commutative ring: $yx = (-1)^{|x||y|}xy$.

 $Z^{n}(\mathfrak{T})$: natural transformations x: Id $\rightarrow \tau^{n}$ satisfying $x\tau = (-1)^{n}\tau x$.

 $Z(\mathfrak{T})$ is a graded commutative ring: $yx = (-1)^{|x||y|}xy$.

Suppose we're given a Noetherian graded commutative ring R and a homomorphism $R \rightarrow Z(T)$.

 $Z^n(\mathfrak{T})$: natural transformations $x \colon \mathsf{Id} \to \tau^n$ satisfying $x\tau = (-1)^n \tau x.$

 $Z(\mathfrak{T})$ is a graded commutative ring: $yx = (-1)^{|x||y|}xy$.

Suppose we're given a Noetherian graded commutative ring R and a homomorphism $R \to Z(T)$. For each X in \mathcal{T} , regard $H^*_C(X) = \operatorname{Hom}_{\mathcal{T}}(C, X)$ as a graded

R-module via $R \to \operatorname{End}_{\mathfrak{T}}(\tilde{C})$.

 $Z^{n}(\mathcal{T})$: natural transformations $x \colon \mathsf{Id} \to \tau^{n}$ satisfying $x\tau = (-1)^{n}\tau x$.

 $Z(\mathfrak{T})$ is a graded commutative ring: $yx = (-1)^{|x||y|}xy$.

Suppose we're given a Noetherian graded commutative ring R and a homomorphism $R \to Z(T)$. For each X in \mathcal{T} , regard $H^*_C(X) = \operatorname{Hom}_{\mathcal{T}}(C, X)$ as a graded R-module via $R \to \operatorname{End}_{\mathcal{T}}(C)$.

DEFINITION

A subset V of Spec^{*}(R) is specialisation closed if $\mathfrak{p} \in V$, $\mathfrak{q} \supseteq \mathfrak{p}$ implies $\mathfrak{q} \in V$.

SUPPORT

If V is specialisation closed, set

$$\mathfrak{T}_V = \{X \in \mathfrak{T} \mid \mathsf{supp}_R H^*_C(X) \subseteq V\}$$

as a full subcategory of $\ensuremath{\mathbb{T}}.$

If V is specialisation closed, set

$$\mathfrak{T}_{V} = \{X \in \mathfrak{T} \mid \mathsf{supp}_{R}H^{*}_{C}(X) \subseteq V\}$$

as a full subcategory of $\ensuremath{\mathbb{T}}.$

THEOREM

 \mathcal{T}_V depends only on V, not on the choice of compact generator C.

If V is specialisation closed, set

$$\mathfrak{T}_V = \{X \in \mathfrak{T} \mid \mathsf{supp}_R H^*_C(X) \subseteq V\}$$

as a full subcategory of $\ensuremath{\mathbb{T}}.$

THEOREM

 \mathcal{T}_V depends only on V, not on the choice of compact generator C.

By Brown representability: There is a localisation functor $L_V: \mathfrak{T} \to \mathfrak{T}$ such that $L_V X = 0 \iff X \in \mathfrak{T}_V$.

SUPPORT, CONTD.

SUPPORT, CONTD.

There is a functorial Rickard triangle

$$\Gamma_V X \to X \to L_V X$$

SUPPORT, CONTD.

There is a functorial Rickard triangle

$$\Gamma_V X \to X \to L_V X$$

If $\mathfrak{p} \in \operatorname{Spec}^* R$, choose $V, W \subseteq \operatorname{Spec}^* R$ specialisation closed such that $\mathfrak{p} \notin W$, $V = W \cup \{\mathfrak{p}\}$.

There is a functorial Rickard triangle

$$\Gamma_V X \to X \to L_V X$$

If $\mathfrak{p} \in \operatorname{Spec}^* R$, choose $V, W \subseteq \operatorname{Spec}^* R$ specialisation closed such that $\mathfrak{p} \notin W$, $V = W \cup \{\mathfrak{p}\}$.

Then the "local cohomology functor" $\Gamma_{\mathfrak{p}} = \Gamma_V L_W$ is independent of these choices.

There is a functorial Rickard triangle

$$\Gamma_V X \to X \to L_V X$$

If $\mathfrak{p} \in \operatorname{Spec}^* R$, choose $V, W \subseteq \operatorname{Spec}^* R$ specialisation closed such that $\mathfrak{p} \notin W$, $V = W \cup \{\mathfrak{p}\}$.

Then the "local cohomology functor" $\Gamma_{\mathfrak{p}} = \Gamma_V L_W$ is independent of these choices.

DEFINITION

The support of an object X is defined to be

 $\operatorname{supp} X = \{ \mathfrak{p} \mid \Gamma_{\mathfrak{p}} X \neq 0 \}$

ヘロア ヘロア ヘビア ヘビア

STRATIFICATION

We say \mathcal{T} is stratified by R if $\forall \mathfrak{p} \in \operatorname{Spec}^* R$, $\Gamma_{\mathfrak{p}} \mathcal{T}$ is either zero or a minimal non-zero localising subcategory.

We say \mathcal{T} is stratified by R if $\forall \mathfrak{p} \in \operatorname{Spec}^* R$, $\Gamma_{\mathfrak{p}} \mathcal{T}$ is either zero or a minimal non-zero localising subcategory.

THEOREM

(Under mild assumptions, e.g. R finite Krull dimension)

We say \mathcal{T} is stratified by R if $\forall \mathfrak{p} \in \operatorname{Spec}^* R$, $\Gamma_{\mathfrak{p}} \mathcal{T}$ is either zero or a minimal non-zero localising subcategory.

THEOREM

(Under mild assumptions, e.g. R finite Krull dimension) If T is stratified by R then there is a one to one correspondence between localising subcategories of T and subsets of $\{\mathfrak{p} \in \operatorname{Spec}^* R \mid \Gamma_{\mathfrak{p}}T \neq 0\}$ given as follows:

We say \mathcal{T} is stratified by R if $\forall \mathfrak{p} \in \operatorname{Spec}^* R$, $\Gamma_{\mathfrak{p}} \mathcal{T}$ is either zero or a minimal non-zero localising subcategory.

THEOREM

(Under mild assumptions, e.g. R finite Krull dimension) If \mathcal{T} is stratified by R then there is a one to one correspondence between localising subcategories of \mathcal{T} and subsets of $\{\mathfrak{p} \in \operatorname{Spec}^* R \mid \Gamma_{\mathfrak{p}} \mathcal{T} \neq 0\}$ given as follows: $\mathcal{C} \mapsto \bigcup_{X \in \mathcal{C}} \operatorname{supp} X$

We say \mathcal{T} is stratified by R if $\forall \mathfrak{p} \in \operatorname{Spec}^* R$, $\Gamma_{\mathfrak{p}} \mathcal{T}$ is either zero or a minimal non-zero localising subcategory.

THEOREM

(Under mild assumptions, e.g. R finite Krull dimension) If \mathfrak{T} is stratified by R then there is a one to one correspondence between localising subcategories of \mathfrak{T} and subsets of $\{\mathfrak{p} \in \operatorname{Spec}^* R \mid \Gamma_{\mathfrak{p}}\mathfrak{T} \neq 0\}$ given as follows: $\mathfrak{C} \mapsto \bigcup_{X \in \mathfrak{C}} \operatorname{supp} X$ $S \mapsto full subcategory of \mathfrak{T}$ with objects $\{X \in \mathfrak{T} \mid \operatorname{supp} X \subseteq S\}$.

We say \mathcal{T} is stratified by R if $\forall \mathfrak{p} \in \operatorname{Spec}^* R$, $\Gamma_{\mathfrak{p}} \mathcal{T}$ is either zero or a minimal non-zero localising subcategory.

THEOREM

(Under mild assumptions, e.g. R finite Krull dimension) If \mathfrak{T} is stratified by R then there is a one to one correspondence between localising subcategories of \mathfrak{T} and subsets of $\{\mathfrak{p} \in \operatorname{Spec}^* R \mid \Gamma_{\mathfrak{p}}\mathfrak{T} \neq 0\}$ given as follows: $\mathfrak{C} \mapsto \bigcup_{X \in \mathfrak{C}} \operatorname{supp} X$ $S \mapsto full subcategory of \mathfrak{T}$ with objects $\{X \in \mathfrak{T} \mid \operatorname{supp} X \subseteq S\}$.

THEOREM

 $H^*(G, k)$ stratifies KInj(kG) and hence also StMod(kG).

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Some consequences

• New proof of the tensor product theorem:

```
\operatorname{supp}(X \otimes_k Y) = \operatorname{supp} X \cap \operatorname{supp} Y
```

without cyclic shifted subgroups and Dade's theorem.

• New proof of the tensor product theorem:

```
\operatorname{supp}(X \otimes_k Y) = \operatorname{supp} X \cap \operatorname{supp} Y
```

without cyclic shifted subgroups and Dade's theorem.

• Telescope conjecture for KInj(*kG*) and StMod(*kG*):

• New proof of the tensor product theorem:

```
\operatorname{supp}(X \otimes_k Y) = \operatorname{supp} X \cap \operatorname{supp} Y
```

without cyclic shifted subgroups and Dade's theorem.

• Telescope conjecture for KInj(kG) and StMod(kG): Smashing subcategories


```
\operatorname{supp}(X \otimes_k Y) = \operatorname{supp} X \cap \operatorname{supp} Y
```

without cyclic shifted subgroups and Dade's theorem.

• Telescope conjecture for Klnj(kG) and StMod(kG): Smashing subcategories (= localising subcategories where localisation preserves coproducts)


```
\operatorname{supp}(X \otimes_k Y) = \operatorname{supp} X \cap \operatorname{supp} Y
```

without cyclic shifted subgroups and Dade's theorem.

 Telescope conjecture for KInj(kG) and StMod(kG):
 Smashing subcategories (= localising subcategories where localisation preserves coproducts) are compactly generated.


```
\operatorname{supp}(X \otimes_k Y) = \operatorname{supp} X \cap \operatorname{supp} Y
```

without cyclic shifted subgroups and Dade's theorem.

- Telescope conjecture for KInj(kG) and StMod(kG):
 Smashing subcategories (= localising subcategories where localisation preserves coproducts) are compactly generated.
- For a localising subcategory the following are equivalent:

```
\operatorname{supp}(X \otimes_k Y) = \operatorname{supp} X \cap \operatorname{supp} Y
```

without cyclic shifted subgroups and Dade's theorem.

- Telescope conjecture for KInj(kG) and StMod(kG):
 Smashing subcategories (= localising subcategories where localisation preserves coproducts) are compactly generated.
- For a localising subcategory the following are equivalent:

$$X \in \mathcal{C} \Rightarrow X^* \in \mathcal{C}$$


```
\operatorname{supp}(X \otimes_k Y) = \operatorname{supp} X \cap \operatorname{supp} Y
```

without cyclic shifted subgroups and Dade's theorem.

- Telescope conjecture for KInj(kG) and StMod(kG):
 Smashing subcategories (= localising subcategories where localisation preserves coproducts) are compactly generated.
- For a localising subcategory the following are equivalent:

$$X \in \mathcal{C} \Rightarrow X^* \in \mathcal{C}$$

2 C is closed under products


```
\operatorname{supp}(X \otimes_k Y) = \operatorname{supp} X \cap \operatorname{supp} Y
```

without cyclic shifted subgroups and Dade's theorem.

- Telescope conjecture for KInj(kG) and StMod(kG):
 Smashing subcategories (= localising subcategories where localisation preserves coproducts) are compactly generated.
- For a localising subcategory the following are equivalent:

$$X \in \mathcal{C} \Rightarrow X^* \in \mathcal{C}$$

- 2 C is closed under products
- **③** $\mathcal{C} = \mathcal{D}^{\perp}$ with \mathcal{D} compactly generated

イロト イポト イヨト イヨト

```
\operatorname{supp}(X \otimes_k Y) = \operatorname{supp} X \cap \operatorname{supp} Y
```

without cyclic shifted subgroups and Dade's theorem.

- Telescope conjecture for KInj(kG) and StMod(kG):
 Smashing subcategories (= localising subcategories where localisation preserves coproducts) are compactly generated.
- For a localising subcategory the following are equivalent:

$$X \in \mathcal{C} \Rightarrow X^* \in \mathcal{C}$$

- 2 C is closed under products
- $\textcircled{O} \ \mathcal{C} = \mathcal{D}^{\perp} \ \text{with} \ \mathcal{D} \ \text{compactly generated}$
- the complement of the set of primes corresponding to C is specialisation closed.

Recall that for $X \in KInj(kG)$,

$$\operatorname{supp} X = \{ \mathfrak{p} \in \operatorname{Spec}^* H^*(G, k) \mid \Gamma_\mathfrak{p} X = \Gamma_\mathfrak{p} k \otimes_k X \neq 0 \}$$

Recall that for $X \in \text{KInj}(kG)$,

$$\operatorname{supp} X = \{ \mathfrak{p} \in \operatorname{Spec}^* H^*(G, k) \mid \Gamma_{\mathfrak{p}} X = \Gamma_{\mathfrak{p}} k \otimes_k X \neq 0 \}$$

DEFINITION

 $\operatorname{cosupp} X = \{ \mathfrak{p} \mid \operatorname{Hom}_k(\Gamma_{\mathfrak{p}}k, X) \neq 0 \}$

Recall that for $X \in \text{KInj}(kG)$,

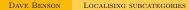
$$\operatorname{supp} X = \{ \mathfrak{p} \in \operatorname{Spec}^* H^*(G, k) \mid \Gamma_{\mathfrak{p}} X = \Gamma_{\mathfrak{p}} k \otimes_k X \neq 0 \}$$

DEFINITION

 $\operatorname{cosupp} X = \{ \mathfrak{p} \mid \operatorname{Hom}_k(\Gamma_{\mathfrak{p}}k, X) \neq 0 \}$

DEFINITION

A colocalising subcategory of a triangulated category is a triangulated subcategory closed under products.



90

CLASSIFICATION OF COLOCALISING SUBCATEGORIES

THEOREM

Cosupport defines a one to one correspondence between colocalising subcategories of KInj(kG) and subsets of Spec^{*} $H^*(G, k)$, and also between colocalising subcategories of StMod(kG) and subsets of Proj $H^*(G, k)$.

THEOREM

Cosupport defines a one to one correspondence between colocalising subcategories of KInj(kG) and subsets of Spec^{*} $H^*(G, k)$, and also between colocalising subcategories of StMod(kG) and subsets of Proj $H^*(G, k)$.

Proofs follow the same route as for localising subcategories but the details are different.

THEOREM

Cosupport defines a one to one correspondence between colocalising subcategories of KInj(kG) and subsets of Spec^{*} $H^*(G, k)$, and also between colocalising subcategories of StMod(kG) and subsets of Proj $H^*(G, k)$.

Proofs follow the same route as for localising subcategories but the details are different.

THEOREM

 $\operatorname{cosupp} \operatorname{Hom}_k(X, Y) = \operatorname{supp} X \cap \operatorname{cosupp} Y.$

 $C^*(BG; k) =$ cochains on the classifying space of G

 $C^*(BG; k) =$ cochains on the classifying space of G This is a differential graded algebra

THEOREM

If G is a p-group then $Klnj(kG) \simeq D_{dg}(C^*(BG; k))$.

THEOREM

If G is a p-group then $Klnj(kG) \simeq D_{dg}(C^*(BG; k))$. For any finite group the localising subcategory generated by ik in Klnj(kG) is equivalent to $D_{dg}(C^*(BG; k))$.

THEOREM

If G is a p-group then $Klnj(kG) \simeq D_{dg}(C^*(BG; k))$. For any finite group the localising subcategory generated by ik in Klnj(kG) is equivalent to $D_{dg}(C^*(BG; k))$.

The E_{∞} structure on $C^*(BG; k)$ allow us to make $X \bigotimes_{C^*(BG; k)}^{\mathbb{L}} Y$ into a dg $C^*(BG; k)$ -module

THEOREM

If G is a p-group then $Klnj(kG) \simeq D_{dg}(C^*(BG; k))$. For any finite group the localising subcategory generated by ik in Klnj(kG) is equivalent to $D_{dg}(C^*(BG; k))$.

The E_{∞} structure on $C^*(BG; k)$ allow us to make $X \stackrel{{}_{\otimes}}{\otimes}_{C^*(BG; k)} Y$ into a dg $C^*(BG; k)$ -module So we get a symmetric monoidal category.

イロト イポト イヨト イヨト

THEOREM

If G is a p-group then $Klnj(kG) \simeq D_{dg}(C^*(BG; k))$. For any finite group the localising subcategory generated by ik in Klnj(kG) is equivalent to $D_{dg}(C^*(BG; k))$.

The E_{∞} structure on $C^*(BG; k)$ allow us to make $X \bigotimes_{C^*(BG; k)}^{\mathbb{L}} Y$ into a dg $C^*(BG; k)$ -module

So we get a symmetric monoidal category.

This tensor product corresponds to ordinary tensor product over k with diagonal *G*-action for objects in Klnj(kG).

イロト イポト イヨト イヨト