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The setup

G finite group
k field of characteristic p
For simplicity I’ll assume G is a p-group
so there’s only one simple kG -module
Slight modifications of statements are necessary for a more general
finite group
Mod(kG ) objects: kG -modules, arrows: module homomorphisms
— an abelian category

Definition

A localising subcategory of Mod(kG ) is a full subcategory C

satisfying:

If 0→ M1 → M2 → M3 → 0 and two of M1, M2, M3 are in C

then so is the third

C is closed under direct sums.
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The Main Theorem

Theorem

There is a natural one to one correspondence between non-zero
localising subcategories of Mod(kG ) and subsets of

ProjH∗(G , k) = {non-maximal hgs prime ideals in H∗(G , k)}

Remark

This is analogous to Neeman’s classification of localising
subcategories of D(ModR) for a commutative ring R, but quite a
bit harder.
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History

Thick subcategories of small objects Db(proj R):
Hopkins 1985

Localising subcategories of all objects D(ModR):
Neeman 1990

Thick subcategories of small objects mod(kG )/stmod(kG ):
Benson, Carlson and Rickard 1995

Localising subcategories of all objects Mod(kG )/StMod(kG ):
Benson, Iyengar and Krause 2007

Colocalising subcategories of all objects D(ModR):
Neeman 2008

Colocalising subcategories of all objects Mod(kG ):
Benson, Iyengar and Krause 2009
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Localising subcategories of Mod(kG )

Observation

kG is filtered by copies of k so if M is in C then kG ⊗M is in C,
hence kG is in C, so all projectives are in C.

Definition

The stable module category StMod(kG )
objects: kG -modules, arrows:

HomkG (M,N) =
HomkG (M,N)

PHomkG (M,N)

PHomkG (M,N) = homs factoring through some projective

This is a triangulated category with translation Ω−1.

Now, a localising subcategory is a full triangulated subcategory
closed under direct sums.
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The category KInj(kG )

Problem with StMod(kG ):
End∗kG (k) = Ĥ∗(G , k) is usually not Noetherian.

We enlarge StMod(kG ) slightly to “put back the maximal ideal” of
H∗(G , k).

Definition

KInj(kG ) objects: complexes of injective = projective kG -modules
arrows: homotopy classes of degree preserving chain maps

This is a triangulated category.

Definition

KacInj(kG ) is the full triangulated subcategory of acyclic complexes

Tate resolutions: StMod(kG ) ' KacInj(kG ).
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End∗kG (k) = Ĥ∗(G , k) is usually not Noetherian.

We enlarge StMod(kG ) slightly to “put back the maximal ideal” of
H∗(G , k).

Definition

KInj(kG ) objects: complexes of injective = projective kG -modules

arrows: homotopy classes of degree preserving chain maps

This is a triangulated category.

Definition

KacInj(kG ) is the full triangulated subcategory of acyclic complexes

Tate resolutions: StMod(kG ) ' KacInj(kG ).

Dave Benson Localising subcategories



The category KInj(kG )

Problem with StMod(kG ):
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Recollement

StMod(kG )'KacInj(kG )

Homk (tk,−)
←−−−−−−−−−−→←−−−−−
−⊗k tk

KInj(kG )

Homk (pk,−)
←−−−−−−−−−−→←−−−−−
−⊗kpk

D Mod(kG ).

Observation

The only localising subcategories of D Mod(kG ) are everything and
zero.

Theorem

There is a natural one to one correspondence between localising
subcategories of KInj(kG ) and subsets of

Spec∗H∗(G , k) = {all hgs prime ideals in H∗(G , k)}.
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Spec∗H∗(G , k) = {all hgs prime ideals in H∗(G , k)}.
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Strategy

Reduce to elementary abelian subgroups

E = 〈g1, . . . , gr | gp
i = 1, gigj = gjgi 〉 ∼= (Z/p)r

using Quillen’s stratification theorem etc.

Koszul construction:
Xi = gi − 1 ∈ kE
kE = k[X1, . . . ,Xr ]/(X p

1 , . . . ,X p
r )

A = kE 〈Y1, . . . ,Yr 〉, a dg algebra
deg Xi = 0, deg Yi = 1.
Y 2

i = 0, YiYj = −YjYi , d(Yi ) = Xi , d(Xi ) = 0.
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Transfer of stratification

Definition

KInjdg(A)

objects: dg A-modules which are injective as A]-modules
arrows: homotopy classes of degree preserving chain maps.

Theorem

The functors

KInj(kE )
res←−−−−−−−−→
ind

KInjdg(A)

give a one to one correspondence on localising subcategories.
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Formality

H∗(A) is an exterior algebra on generators X p−1
i Yi .

Let Λ = Λ(U1, . . . ,Ur )

Λ→ A Ui 7→ X p−1
i Yi

is a quasi-isomorphism. Hence it induces an equivalence of
triangulated categories

KInjdg(A)
∼−→ KInjdg(Λ).

Still using dg Λ-modules, differential on Λ is zero.
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BGG correspondence

Let S = Ext∗Λ(k, k) = k[x1, . . . , xr ], deg xi = −2.

There is a version of the Bernstein-Gelfand-Gelfand correspondence

Ddg (S) ' KInjdg (Λ).

The final step in the proof is to classify localising subcategories of
Ddg (S) using methods similar to Neeman’s.

Dave Benson Localising subcategories
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Leitfaden

Ddg(S) KInjdg(Λ) KInjdg(A) 

KInj(kE ) KInj(kG ) StMod(kG ) Mod(kG ).

Leitfaden
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Details: Stratifying Triangulated Categories

Let T be a triangulated category with direct sums and with a
compact generator C .
Zn(T): natural transformations x : Id→ τn satisfying
xτ = (−1)nτx .
Z (T) is a graded commutative ring: yx = (−1)|x ||y |xy .
Suppose we’re given a Noetherian graded commutative ring R and
a homomorphism R → Z (T ).
For each X in T, regard H∗

C (X ) = HomT(C ,X ) as a graded
R-module via R → EndT(C ).

Definition

A subset V of Spec∗(R) is specialisation closed if p ∈ V , q ⊇ p

implies q ∈ V .
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Support

Definition

If V is specialisation closed, set

TV = {X ∈ T | suppRH∗
C (X ) ⊆ V }

as a full subcategory of T.

Theorem

TV depends only on V , not on the choice of compact generator C .

By Brown representability: There is a localisation functor
LV : T → T such that LV X = 0 ⇐⇒ X ∈ TV .
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Support, contd.

There is a functorial Rickard triangle

ΓV X → X → LV X

If p ∈ Spec∗R, choose V ,W ⊆ Spec∗R specialisation closed such
that p 6∈W , V = W ∪ {p}.
Then the “local cohomology functor” Γp = ΓV LW is independent
of these choices.

Definition

The support of an object X is defined to be

suppX = {p | ΓpX 6= 0}
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Stratification

Definition

We say T is stratified by R if ∀ p ∈ Spec∗R, ΓpT is either zero or a
minimal non-zero localising subcategory.

Theorem

(Under mild assumptions, e.g. R finite Krull dimension)
If T is stratified by R then there is a one to one correspondence
between localising subcategories of T and subsets of
{p ∈ Spec∗R | ΓpT 6= 0} given as follows:
C 7→

⋃
X∈C suppX

S 7→ full subcategory of T with objects {X ∈ T | suppX ⊆ S}.

Theorem

H∗(G , k) stratifies KInj(kG ) and hence also StMod(kG ).
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If T is stratified by R then there is a one to one correspondence
between localising subcategories of T and subsets of
{p ∈ Spec∗R | ΓpT 6= 0} given as follows:
C 7→

⋃
X∈C suppX

S 7→ full subcategory of T with objects {X ∈ T | suppX ⊆ S}.

Theorem

H∗(G , k) stratifies KInj(kG ) and hence also StMod(kG ).
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Some consequences

New proof of the tensor product theorem:

supp (X ⊗k Y ) = suppX ∩ suppY

without cyclic shifted subgroups and Dade’s theorem.

Telescope conjecture for KInj(kG ) and StMod(kG ):
Smashing subcategories (= localising subcategories where
localisation preserves coproducts) are compactly generated.

For a localising subcategory the following are equivalent:
1 X ∈ C⇒ X ∗ ∈ C
2 C is closed under products
3 C = D⊥ with D compactly generated
4 the complement of the set of primes corresponding to C is

specialisation closed.
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Costratification and Cosupport

Recall that for X ∈ KInj(kG ),

suppX = {p ∈ Spec∗H∗(G , k) | ΓpX = Γpk ⊗k X 6= 0}

Definition

cosuppX = {p | Homk(Γpk,X ) 6= 0}

Definition

A colocalising subcategory of a triangulated category is a
triangulated subcategory closed under products.
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Classification of Colocalising Subcategories

Theorem

Cosupport defines a one to one correspondence between
colocalising subcategories of KInj(kG ) and subsets of
Spec∗H∗(G , k), and also between colocalising subcategories of
StMod(kG ) and subsets of ProjH∗(G , k).

Proofs follow the same route as for localising subcategories but the
details are different.

Theorem

cosuppHomk(X ,Y ) = suppX ∩ cosuppY .
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Some final remarks

C ∗(BG ; k) = cochains on the classifying space of G
This is a differential graded algebra
Ddg(C

∗(BG ; k)) is the derived category of differential graded
modules over C ∗(BG ; k)

Theorem

If G is a p-group then KInj(kG ) ' Ddg(C
∗(BG ; k)).

For any finite group the localising subcategory generated by ik in
KInj(kG ) is equivalent to Ddg(C

∗(BG ; k)).

The E∞ structure on C ∗(BG ; k) allow us to make X
L
⊗C∗(BG ;k) Y

into a dg C ∗(BG ; k)-module
So we get a symmetric monoidal category.
This tensor product corresponds to ordinary tensor product over k
with diagonal G -action for objects in KInj(kG ).
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