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Finite element exterior calculus (FEEC)

The development of FEEC leans heavily on earlier results taken
from

I Whitney, Bossavit, Raviart and Thomas, Nedelec, Hiptmair,...

as well as on the theory of finite elements in general.
The presentation here is mostly based on

I D.N. Arnold, R.S. Falk, R. Winther, Finite element exterior
calculus, homological techniques, and applications, Acta
Numerica 2006.

and later developments based on this paper.



The de Rham complex in three dimensions

We will utilize the de Rham complex in the form:

R ↪→H1(Ω)
grad−−→ H(curl,Ω)

curl−−→ H(div,Ω)
div−−→ L2(Ω) −→ 0,

where Ω ⊂ R3 and

H1(Ω) = {u ∈ L2(Ω) | grad u ∈ L2(Ω; R3) },
H(curl,Ω) = {u ∈ L2(Ω; R3) | curl u ∈ L2(Ω; R3) },
H(div,Ω) = {u ∈ L2(Ω; R3) | div u ∈ L2(Ω) }.



Discretizations and commuting diagrams

Stability of numerical methods utilizing the discrete spaces H1
h ,

Hh(curl), Hh(div) and L2
h is frequently based on the existence of

the following commuting diagram:

R ↪→H1(Ω)
grad−−→ H(curl,Ω)

curl−−→ H(div,Ω)
div−−→ L2(Ω) −→ 0yI1

h

yIc
h

yId
h

yI0
h

R ↪→ H1
h

grad−−→ Hh(curl)
curl−−→ Hh(div)

div−−→ L2
h −→ 0.

A technical problem in most of the finite element literature: The
canonical projections Ih are not defined on the entire space, but
this problem can be fixed by using modified interpolation operators.
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The de Rham complex and differential forms

By introducing differential forms the de Rham complex can be
written as

R ↪→Λ0(Ω)
d−→ Λ1(Ω)

d−→ · · · d−→ Λn(Ω) −→ 0.

Here Λk(Ω) = C∞(Ω; Altk), where Altk is the vector space of
alternating k–linear maps on Rn.

The exterior derivative d : Λk(Ω) → Λk+1(Ω) is defined by

dωx(v1, . . . , vk+1) =
k+1∑
j=1

(−1)j+1∂vj ωx(v1, . . . , v̂j , . . . , vk+1),

for ω ∈ Λk(Ω) and v1, . . . , vk+1 ∈ Rn.
One easily checks that d2 = 0.
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Proxy fields

In the case of n = 3 the identification of C∞(Ω; Altk) with the
corresponding spaces of scalar/vector fields is based on

I Alt0 ≡ R ∼= R

I Alt1 ≡ (R3)∗ ∼= R3 by µ ↔ u where µ(v) = u · v

I Alt2 ∼= R3 by µ ↔ u where µ(v ,w) = (u × v) · w

I Alt3 ∼= R by µ ↔ c where µ(u, v ,w) = cdet(u, v ,w)



Exterior product and pull backs

The wedge product maps Altj × Altk into Altj+k , and is defined by

ω∧µ(v1, . . . vj+k)

=
∑

σ

(signσ)ω(vσ(1), . . . vσ(j))µ(vσ(j+1), . . . vσ(j+k)).

Ω’Ω
ϕ

If φ : Ω → Ω′ then the pull back φ∗ : Λk(Ω′) → Λk(Ω) is given by

(φ∗ω)x(v1, v2, . . . , vk) = ωφ(x)(Dφx(v1),Dφx(v2), . . . ,Dφx(vk)),

where Dφx is the derivative of φ at x mapping TxΩ into Tφ(x)Ω
′.



Exterior product and pull backs

The wedge product maps Altj × Altk into Altj+k , and is defined by

ω∧µ(v1, . . . vj+k)

=
∑

σ

(signσ)ω(vσ(1), . . . vσ(j))µ(vσ(j+1), . . . vσ(j+k)).

Ω’Ω
ϕ

If φ : Ω → Ω′ then the pull back φ∗ : Λk(Ω′) → Λk(Ω) is given by

(φ∗ω)x(v1, v2, . . . , vk) = ωφ(x)(Dφx(v1),Dφx(v2), . . . ,Dφx(vk)),

where Dφx is the derivative of φ at x mapping TxΩ into Tφ(x)Ω
′.



The pullback commutes with the exterior derivative, i.e.,

φ∗(dω) = d(φ∗ω), ω ∈ Λk(Ω′),

and distributes with respect to the wedge product:

φ∗(ω ∧ η) = φ∗ω ∧ φ∗η.

Stokes theorem: ∫
Ω

dω =

∫
∂Ω

Tr Ω, ω ∈ Λn−1
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Variants of the de Rham complex

L2 de Rham complex:

0 → HΛ0(Ω)
d−→ HΛ1(Ω)

d−→ · · · d−→ HΛn(Ω) → 0

where HΛk(Ω) = {ω ∈ L2Λk(Ω) | dω ∈ L2Λk+1(Ω) } and where the
Hodge ? operator is used to define the inner product in L2Λk(Ω).

The polynomial de Rham complex:

0 → PrΛ
0 d−→ Pr−1Λ

1 d−→ · · · d−→ Pr−nΛ
n → 0

is exact.

Here

PrΛ
k = {ω ∈ Λk |ω(v1, . . . vk) ∈ Pr , ∀v1, . . . vk }

such that PrΛ
k ∼= Pr ⊗ Altk .
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The Koszul complex

The Koszul differential κ of a k-form ω is the (k − 1)-form given by

(κω)x(v1, . . . , vk−1) = ωx

(
X (x), v1, . . . , vk−1

)
,

where X (x) is the vector from the origin to x .
For each r , κ maps Pr−1Λ

k to PrΛ
k−1,

and the Koszul complex

0 → Pr−nΛ
n κ−→ Pr−n+1Λ

n−1 κ−→ · · · κ−→ PrΛ
0 −→ R → 0,

is exact.
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The spaces P−r Λk

The operators d and κ are related by the homotopy relation

(dκ + κd)ω = (r + k)ω, ω ∈ HrΛ
k ,

where Hr denotes the homogeneous polynomials of degree r .
As a consequence we obtain the identity

PrΛ
k = Pr−1Λ

k + κHr−1Λ
k+1 + dHr+1Λ

k−1

We then define the space P−r Λk by

P−r Λk = Pr−1Λ
k + κPr−1Λ

k+1.

We note that P−r Λ0 = PrΛ
0 and P−r Λn = Pr−1Λ

n. Furthermore,

0 → P−r Λ0 d−→ P−r Λ1 d−→ · · · d−→ P−r Λn → 0

is an exact complex, and the space P−r Λk is affine invariant.
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Significance of affine invariant spaces

^

Affine map

T

T

In fact, P−r Λk is nearly the only affine invariant polynomial space
X satisfying

PrΛ
k ) X ) Pr−1Λ

k .

More precisely, either X = P−r−1Λ
k , or

X = {ω ∈ PrΛ
k | dω ∈ Pr−2Λ

k+1 }.
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The four exact sequences ending with PrΛ
3(T ) in 3D

0 → Pr+1Λ
0 d−→ P−r+1Λ

1 d−→ P−r+1Λ
2 d−→ PrΛ

3 → 0

0 → Pr+2Λ
0 d−→ Pr+1Λ

1 d−→ P−r+1Λ
2 d−→ PrΛ

3 → 0

0 → Pr+2Λ
0 d−→ P−r+2Λ

1 d−→ Pr+1Λ
2 d−→ PrΛ

3 → 0

0 → Pr+3Λ
0 d−→ Pr+2Λ

1 d−→ Pr+1Λ
2 d−→ PrΛ

3 → 0



The four sequences ending with P0Λ
3(T ) in 3D

0 → grad−−→ curl−−→ div−−→ → 0

0 → grad−−→ curl−−→ div−−→ → 0

0 → grad−−→ curl−−→ div−−→ → 0

0 → grad−−→ curl−−→ div−−→ → 0



Piecewise smooth differential forms

It is a consequence of Stokes theorem that a piecewise smooth
k–form ω, with respect to a simplicial mesh Th of Ω, is in HΛk(Ω)
if and only if the trace of ω, Tr ω, is continuous on the interfaces.

Here Tr ω is defined by restricting the
spatial variable x to the interface, and
by applying ω only to tangent vectors of
the interface.



Piecewise smooth differential forms

It is a consequence of Stokes theorem that a piecewise smooth
k–form ω, with respect to a simplicial mesh Th of Ω, is in HΛk(Ω)
if and only if the trace of ω, Tr ω, is continuous on the interfaces.

Here Tr ω is defined by restricting the
spatial variable x to the interface, and
by applying ω only to tangent vectors of
the interface.



Degrees of freedom

To obtain finite element differential forms—not just pw polynomials—we

need degrees of freedom, i.e., a decomposition of the dual spaces

(PrΛ
k(T ))∗ and (P−r Λk(T ))∗ (with T a simplex), into subspaces

associated to subsimplices f of T .

DOF for PrΛ
k(T ): to a subsimplex f of dimension d we associate

ω 7→
∫

f
Trf ω ∧ η, η ∈ P−r+k−dΛd−k(f )

DOF for P−r Λk(T ):

ω 7→
∫

f
Trf ω ∧ η, η ∈ Pr+k−d−1Λ

d−k(f )

Given a triangulation T , we can then define PrΛ
k(T ), P−r Λk(T ). They

are subspaces of HΛk(Ω).
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Construction of bounded cochain projections

The canonical projections, Ih, determined by the degrees of
freedom, commute with d . But they are not bounded on HΛk .

If we apply the three operations:

I extend (E )

I regularize (R)

I canonical projection (Ih)

we get a map Qk
h : HΛk(Ω) → Λk

h which is bounded and commutes
with d . But it is not a projection.

However the composition

πk
h = (Qk

h |Λk
h
)−1 ◦ Qk

h

can be shown to be a bounded cochain projection. Its operator
norm depends on the shape regularity of the mesh.
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De Rham cohomology

0 → Λ0(Ω)
d−→ Λ1(Ω)

d−→ Λ2(Ω) → 0

0 → C∞(Ω)
grad−−→ C∞(Ω; R2)

curl−−→ C∞(Ω) → 0



Cohomology

The de Rham complex

HΛk−1(Ω)
dk−1

−−−→ HΛk(Ω)
dk

−→ HΛk+1(Ω)

is called exact if for all k,

Zk := ker dk = range dk−1 =: Bk .

In general, Bk ⊂ Zk and we assume throughout that the kth
cohomology group Zk/Bk is finite dimensional.
The space of harmonic k-forms, Hk , consists of all q ∈ Zk such
that

〈q, µ〉 = 0 µ ∈ Bk .

This leads to the Hodge decomposition
HΛk(Ω) = Zk ⊕ Zk⊥ = Bk ⊕ Hk ⊕ Zk⊥. Note that Hk ∼= Zk/Bk .
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Hodge Laplace problem

HΛk−1(Ω)
dk−1

−−−→ HΛk(Ω)
dk

−→ HΛk+1(Ω)

Formally: Given f ∈ Λk , find u ∈ Λk such that

(dk−1δk−1 + δkdk)u = f .

Here δk is a formal adjoint of dk .

The following mixed formulation is always well-posed: Given
f ∈ L2Λk(Ω), find σ ∈ HΛk−1, u ∈ HΛk and p ∈ Hk such that

〈σ, τ〉 − 〈dτ, u〉 =0 ∀τ ∈ HΛk−1

〈dσ, v〉+ 〈du, dv〉+ 〈p, v〉 = 〈f , v〉 ∀v ∈ HΛk

〈u, q〉 =0 ∀q ∈ Hk
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Hodge Laplacian

Well-posedness of the Hodge Laplace problem follows from the
Hodge decomposition and Poincaré’s inequality:

‖ω‖L2 ≤ c ‖dω‖L2 , ω ∈ (Zk)⊥.

Special cases (dim Hk = 0):

I k = 0: ordinary Laplacian
I k = n: mixed Laplacian
I k = 1, n = 3: σ = − div u, grad σ + curl curl u = f
I k = 2, n = 3: σ = curl u, curl σ − grad div u = f ,
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Abstract framework, Hilbert complex

I Let {Λk}n
k=0 be a finite set of Hilbert spaces with inner

products 〈·, ·〉 = 〈·, ·〉k

I and d = dk : HΛk ⊂ Λk → Λk+1 be densely defined closed
operators satisfying d ◦ d = 0

I We obtain a Hilbert complex

HΛk−1(Ω)
dk−1

−−−→ HΛk(Ω)
dk

−→ HΛk+1(Ω)

I Assume range dk = Bk+1 ⊂ Λk+1 is closed in Λk+1 (and
HΛk+1), which implies Poincaré’s inequality

‖ω‖ ≤ cp‖dω‖ ω ∈ Zk⊥, Zk = ker dkk.

I ker dk/ range dk−1 = Zk/Bk has finite dimension
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Discretization, Abstract setting

· · · −→ HΛk−1 dk−1

−−→ HΛk −→ · · ·

x∪
x∪

· · · −→ Λk−1
h

dk−1

−−→ Λk
h −→ · · ·

Complex of Hilbert spaces with dk bounded and closed range.

For discretization, construct a finite dimensional subcomplex.

Discrete Hodge decomposition follows: Λk
h = Bk

h ⊕ Hk
h ⊕ (Zk

h)⊥

Galerkin’s method: HΛk−1, HΛk , Hk −→ Λk−1
h , Λk

h , Hk
h

When is it stable?
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Bounded cochain projections

Key property: Suppose that there exists a bounded cochain
projection.

· · · −→ HΛk−1 dk−1

−−−→ HΛk −→ · · ·yπk−1
h

yπk
h

· · · −→ Λk−1
h

dk−1

−−−→ Λk
h −→ · · ·

I πk
h uniformly bounded

I ‖πk
hω − ω‖ → 0.

I πk
h a projection

I πk
hdk−1 = dk−1πk−1

h

Theorem

I If ‖v − πk
hv‖ < ‖v‖ ∀v ∈ Hk , then the induced map on

cohomology is an isomorphism.

I gap
(
Hk ,Hk

h

)
≤ sup

v∈Hk ,‖v‖=1

‖v − πk
hv‖

I The discrete Poincaré inequality holds uniformly in h.

I Galerkin’s method is stable and convergent.
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Proof of discrete Poincaré inequality

Theorem: Assume that ‖πh‖L(Λk ,Λk ) ≤ cπ. Then

‖ω‖ ≤ cpcπ‖dω‖, ω ∈ Zk⊥
h .

Proof: Given ω ∈ Zk⊥
h , define η ∈ Zk⊥ ⊂ HΛk(Ω) by dη = dω. By

the Poincaré inequality, ‖η‖ ≤ cp‖dω‖, so it is enough to show
that ‖ω‖ ≤ cπ‖η‖. Now, ω − πhη ∈ Λk

h and d(ω − πhη) = 0, so
ω − πhη ∈ Zk

h . Therefore

‖ω‖2 = 〈ω, πhη〉+ 〈ω, ω − πhη〉 = 〈ω, πhη〉 ≤ ‖ω‖‖πhη‖,

whence ‖ω‖ ≤ ‖πhη‖. The result follows from the uniform
boundedness of πh.
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Preconditioning the Hodge Laplace problem

Hodge Lapace problem (assume no harmonic forms):
Find (σ, u) ∈ HΛk−1 × HΛk such that

〈σ, τ〉 − 〈dτ, u〉 =0 ∀τ ∈ HΛk−1

〈dσ, v〉+ 〈du, dv〉 = 〈f , v〉 ∀v ∈ HΛk

with coefficient matrix

A =

(
I d (k−1)∗

dk−1 −dk∗dk

)
Here d∗ is the formal adjoint of d .



Construction of a preconditioner

A =

(
I d (k−1)∗

dk−1 −dk∗dk

)
B =

(
(I + d (k−1)∗dk−1)−1 0

0 (I + dk∗dk)−1

)
where the operator I + d∗d corresponds to the bilinear form

〈σ, τ〉+ 〈dσ, dτ〉



Special case, n = 3

The preconditioner B corresponds to:

k = 0 B = (I − div grad)−1 = (I −∆)−1

k = 1 B =

(
(I −∆)−1 0

0 (I + curl curl)−1

)

k = 2 B =

(
(I + curl curl)−1 0

0 (I − grad div)−1

)

k = 3 B =

(
(I − grad div)−1 0

0 I

)


