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Remarks on represetation of finite element operators

Let a = a(u, v) be the bilinear form, i.e.,

a(u, v) =

∫
Ω

uv + grad u · grad v dx .

Consider a finite element method for the corresponding problem

−∆u + u = f , ∂nu = 0,

of the form: Find uh ∈ Vh ⊂ H1 such that

a(uh, v) = 〈f , v〉, v ∈ Vh.

Frequently, in the finite element literature this problem is written
Ahuh = fh, where the operator Ah : Vh → Vh is defined by

〈Ahu, v〉 = a(u, v), u, v ∈ Vh.

This operator depends on the finite element space Vh, but is
independent of any basis of the this space.
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Stiffness matrix

Recall that the corresponding stiffness matrix,

Ah : Rn → Rn,

is given by (Ah)i ,j = a(φj , φi ), where {φj}n
j=1 is a basis for the

finite element space Vh.
What is the relation between Ah and Ah?

We define two “representation operators” πh, µh : Vh → Rn by

v =
∑

j

(πhv)jφj , (µhv)j = 〈v , φj〉.

We refer to the vectors πhv and µhv as the primal and dual
representations of v ∈ Vh.
Note that

(πhu) · (µhv) =
∑

j

(πhu)j〈v , φj〉 = 〈u, v〉

so π−1
h = µ∗h and µ−1

h = π∗h.
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From Ah to Ah

For any v ∈ Vh we have

(µh(Ahv))i = 〈Ahv , φi 〉 = a(v , φi ) =
∑

j

(πhv)ja(φj , φi ) = (Ahπhv)i .

Hence, µhAh = Ahπh, or the diagram

Vh
Ah−→ Vhyπh

yµh

Rn Ah−→ Rn

commutes. Alternatively, the sparse stiffness matrix is given by

Ah = µhAhπ
−1
h = µhAhµ

∗
h.
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Squaring the operators

Note that the matrix

A2
h = µhAhπ

−1
h µhAhπ

−1
h = µhAhBhAhπh 6= µhA

2
hπ
−1
h ,

where Bh = π−1
h µh. Hence, A2

h is not a sparse representation of A2
h.

Instead the matrix

Ahπhµ
−1
h Ah = µhAhπ

−1
h (πhµ

−1
h )µhAhπ

−1
h = µhA

2
hπ
−1
h

represents A2
h, but the matrix πhµ

−1
h (the inverse mass matrix) is

not sparse.
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Representation of finite element operators

Conclusion: The stiffness matrix Ah is a sparse matrix
representation of µhAhπ

−1
h ,

(while for example the matrix representation of πhAhµ
−1
h is not

sparse.)

When we do preconditioned iterative methods we usually rely on
representations of the form the form µhAhπ

−1
h for the differential

operator and πhBhµ
−1
h for the preconditioner, i.e.

BhAh : primal repr.
Ah−→ dual repr.

Bh−→ primal repr.

This should be compared to the corresponding diagram for the
continuous problem

BA : X
A−→ X ∗ B−→ X
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Preconditioning in H(div) and H(curl)

The function spaces H1, H(curl), H(div) and also L2 appears
naturally in weak formulations of various systems of partial
differential equations. As a consequence, we will need
preconditioners for the corresponding Riez operators, i.e., the for
the operators

I −∆, I + curl curl, I − grad div I

corresponding to the inner products

〈u, v〉+〈grad u, grad v〉 〈u, v〉+〈curl u, curl v〉 〈u, v〉+〈div u, div v〉

and 〈u, v〉.
Note that the last inner product gives rise to the mass matrix
µhπ

−1
h which can be expensive to invert exactly on finite element

spaces with continuity constraints.
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Non strongly elliptic operators

Of course, there is a the large collection of litterature on how to
construct efficient preconditioners for discrete versions of the
operator

I −∆,

and we will not give a detailed overview of such techniques here.

However, the operators

I + curl curl and I − grad div

represents additional difficulties. These difficulties are basically
caused by the fact that these operators are not strongly elliptic,
since the operators curl and div has a large null–space.

Here we shall outline how to construct multigrid preconditioners
for such operators.
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The V–cycle multigrid algorithm

Let X ⊂ Y be Hilbert spaces, the bilinear form a : X × X → R is
an inner product on X , and 〈·, ·〉 the inner product on Y .
Furthermore, let

X1 ⊂ X2 ⊂ · · · ⊂ XJ

be finite dimensional subspaces of X . The finite element operator
Aj : Xj → Xj is then defined by

〈Ajx , y〉 = a(x , y) x , y ∈ Xj .

and let A = AJ .

Let Rj : Xj → Xj be Y symmetric and positive definite smoothing
operators, and B = BJ : XJ → XJ the corresponding multigrid
preconditioner obtained from the standard V–cycle algorithm with
m smoothing steps.

Finally, let Pj : X → Xj be the projection (with respect to the
inner product a).
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The Braess–Hackbusch Theorem (1983)

Theorem: Suppose that the smoothers satisfy the conditions

a((I − RjAj)x , x) ≥ 0 x ∈ Xj ,

and
〈R−1

j x , x〉 ≤ αa(x , x) x ∈ (I − Pj−1)Xj .

Then

0 ≤ a((I − BA)x , x) ≤ α

α + m
a(x , x), x ∈ XJ

and, as a consequence, κ(BA) ≤ 1 + α
2m .

The first condition states that the smoothers are properly
bounded. This condition will automatically be satisfied for a
multiplicative smoother, i.e., a Gauss–Seidel type smoother.
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Construction of smoothers

The basic challenge is to construct smoothers which satisfy the
second condition of the theorem, i.e.,

〈R−1
j x , x〉 ≤ αa(x , x) x ∈ (I − Pj−1)Xj

or with simplified notation

〈R−1x , x〉 ≤ αa(x , x) x ∈ (I − P0)X ,

where X0 ⊂ X are the finite element spaces, replacing Xj−1 ⊂ Xj .

Note that this condition states that the smoother satisfy a proper
lower bound when restricted to “the high frequency components.”
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Domain decomposition smoothers

If the finite element space X can be decomposed as a sum of
spaces (not necessarily direct) of the form

X =
∑

i

X i ,

then we can define an additive (Jacobi) or a multiplicative
(Gauss–Seidel) smoother with respect to this decomposition, based
on solving “local” problems of the form

a(x i , y) = 〈g , y〉 y ∈ X i .

Furthermore, the verification of the second condition is then a
consequence of the stable decomposition property, i.e.,

inf
xi∈Xi

x=
P

x i

∑
i

a(x i , x i ) ≤ γa(x , x) x ∈ (I − P0)X

with α proportional to γ.
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Preconditioning in H1

Let the domain Ω be decomposed into a finite union of overlapping
subdomains, Ω = ∪Ωi , with a finite number of overlaps.
Let X = Vh ⊂ H1(Ω) be a finite element space and let

V i
h = {v ∈ Vh | supp(v) ∈ Ω̄i }

Stable decomposition property:

inf
vi∈V i

h
v=

P
v i

∑
i

a(v i , v i ) ≤ γa(v , v) x ∈ (I − P0)Vh,

where P0 is the projection onto Vh0 ⊂ Vh.

Verification, v ∈ (I − P0)Vh, v =
∑

i πh(v)iφi . Take v i = πh(v)φi :∑
i

a(v i , v i ) ≤ ch−2
∑

i

‖v i‖2
0 ≤ ch−2‖v‖2

0 ≤ ch−2h2
0a(v , v)

≤ γa(v , v).
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The role of duality and improved estimates

The critical estimate, which will not hold for H(curl) or H(div), is
the “high frequency estimate”

‖v‖2
0 ≤ ch2

0a(v , v) v ∈ (I − P0)Vh.

Example: H(div : Ω), where Ω ⊂ R2 is simply connected. So we
have

a(u, v) = 〈u, v〉+ 〈div u, div v〉

such that a(v , v) = ‖v‖0 if v = curl φ = (−φy , φx)
t .

In this case the de–Rham complex takes the form:

H1(Ω)
curl−→ H(div; Ω)

div−→ L2(Ω)

implying that v ∈ H(div; Ω) has an orthogonal Helmholtz
decomposition of the form

H(div) = curl(H1)⊕ Z⊥, where Z⊥ = ker(div)⊥.
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Discrete Helholtz decomposition

The proper “high frequency estimates” in the H(div) case is
derived from a proper discrete Helmholz decomposition. Assume
we have a correspondig discrete complex

R ↪→H1(Ω)
curl−−→ H(div,Ω)

div−−→ L2(Ω) −→ 0y⊂ y⊂ y⊂
R ↪→ Wh

curl−−→ Vh
div−−→ Qh −→ 0.

leading to a discrete Helholtz decomposition:

Vh = curl(H1)⊕ Z⊥h , where Z⊥h ⊂ Vh, Z⊥h = ker(div)⊥.
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Improved estimates in H(div)

The estimate

‖v‖0 ≤ c h0a(v , v) v ∈ (I − P0)Vh.

which holds in the H1 case

should now be replaced by the
following:
Assume v ∈ (I − P0)Vh, with a corresponding decomposition

v = curl w + z , w ∈ Wh, z ∈ Z⊥h .

Then
‖w‖0 ≤ c h0‖v‖0 and ‖z‖0 ≤ c h0‖v‖div.
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Consequences for H(div) smoothers

If Ω =
∑

i Ωi and we want to use a corresponding additive or
multiplicative smoother derived from the decomposition

Vh =
∑

i

V i
h, V i

h = Vh(Ωi )

then the domains Ωi have to be chosen so large that the space V i
h

itself admits a Helmholtz decomposition.
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Smoothers of this form were proposed by Arnold, Falk, W (1997,
2000).



Explicit use of the Helholz decomposition

Alternatively, we can explicitly use a decomposition of the form

Vh =
∑

i

V i
h +

∑
j

curlW j
h.
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Smoothers of this form has been proposed by Vassilevski and
Wang (1992), Hiptmair (1997, 1999), Hiptmair and Toselli (2000).



A general approach to preconditioning finite element
systems

We basically like to argue that if we have identified

I the correct preconditioner for the continuous problem

and we have found

I a stable finite element discretization

then we also know the basic structure of

I the mesh independent preconditioner for the corresponding
discrete problem.
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Abstract variational problem, Babuska-Aziz 1972

This theory is in some sense more general than the Brezzi theory.
On the other hand, the Brezzi theory is more useful for saddle point
problems since we obtain conditions which are more easily checked.
Let X be a Hilbert space and a : X × X → R a bounded and
symmetric (but not necessary coercive) bilinear form satifying

inf
x∈X

sup
y∈X

a(x , y)

‖x‖X‖y‖X
= inf

x∈X

|a(x , x)|
‖x‖2

X

≥ c0 > 0.

For a given f ∈ X ∗ consider the variational problem: Find x ∈ X
such that

a(x , y) = 〈f , y〉 y ∈ X or equivalently Ax = f ,

where A : X → X ∗ is given by

〈Ax , y〉 = a(x , y) x , y ∈ X .
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Abstract variational problem

The linear system Ax = f has a unique solution and

‖A−1‖L(X∗,X ) ≤ c−1
0 and ‖A‖L(X ,X∗) ≤ C1,

where C1 > 0 is the bound for a, i.e.,

a(x , y) ≤ C1‖x‖X‖y‖X .



Example, Mixed Poisson problem

Find (u, p) ∈ H0(div)× L2
0 such that

〈u, v〉+ 〈p, div v〉 = 〈f , v〉 ∀v ∈ H0(div),
〈div u, q〉 = 〈g , q〉 ∀q ∈ L2

0.

Hence, we have X = H0(div)× L2
0 and

a(x , y) = 〈u, v〉+ 〈p, div v〉+ 〈div u, q〉,

with x = (u, p) and y = (v , q).

The inner product on X is given by

〈x , y〉X = 〈u, v〉+ 〈div u, div v〉+ 〈p, q〉.
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From Brezzi to Babuska-Aziz

Consider an abstract saddle point problem of the form:
Find (u, p) ∈ V × Q such that

a0(u, v) +b(v , p) = F (v) v ∈ V
b(u, q) = G (q) q ∈ Q.

and let
a(x , y) = a0(u, v) + b(v , p) + b(u, q)

with x = (u, p) and y = (v , q).

If the Brezzi conditions holds for the bilinear forms a0 and b, then
the bilinear form a = a(x , y) satisfies the Babuska-Aziz conditions.
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The abstract preconditioner, continuous case

Define B : X ∗ → X by

〈Bf , y〉X = 〈f , y〉 y ∈ X .

Note that

〈BAx , y〉X = 〈Ax , y〉 = a(x , y) = 〈x ,BAy〉X ,

so BA is a symmetric operator mapping X to itself.
Furthermore,

‖BA‖L(X ,X ) = sup
x∈X

|〈BAx , x〉X |
‖x‖2

X

= sup
x∈X

|a(x , x)|
‖x‖2

X

≤ C1

and

‖(BA)−1‖−1
L(X ,X ) = inf

x∈X

|〈BAx , x〉X |
‖x‖2

X

= inf
x∈X

sup
y∈Y

a(x , y)

‖x‖X‖y‖X
≥ c0 > 0.
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Stable finite element discretization

Let Xh ⊂ X and consider the corresponding discrete variational
problem: Find xh ∈ Xh such that

a(xh, y) = 〈f , y〉 y ∈ Xh or equivalently Ahxh = fh,

where A : Xh → X ∗
h is given by

〈Ahx , y〉 = a(x , y) x , y ∈ Xh.

Since, a is not positive definite it is not clear that this
discretization is stable, in fact the system can even be singular.

The stable discretizations are characterized by the a corresponding
discrete inf–sup condition of the form

inf
x∈Xh

sup
y∈Xh

a(x , y)

‖x‖X‖y‖X
≥ c > 0,

where the constant c is independent of the mesh parameter h.
This condition does not follow from the corresponding condition
for the continuous case.
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The abstract preconditioner, discrete case

As in the continuous case we define the preconditioner
Bh : Xh → Xh by

〈Bhf , y〉X = 〈f , y〉 y ∈ Xh.

The same arguments as in the continuous case shows that
BhAh : Xh → Xh is symmetric (with respect to 〈·, ·〉X ) and that

‖BhAh‖L(Xh,Xh) ≤ C1, and ‖(BhAh)
−1‖L(Xh,Xh) ≤ c−1.

So we have confirmed the claim that for stable discretizations the
structure of the preconditioner for the discrete problems follows
from the structure of the preconditioner in the continuous case.
Furthermore, the inner product, 〈·, ·〉X on Xh is only determined up
to equivalence of norms.
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The mixed Poisson problem

Recall that we consider the operator

A =

(
I − grad

div 0

)
or more precisely the weak system:
Find (u, p) ∈ H0(div)× L2

0 such that

〈u, v〉+ 〈p, div v〉 = 〈f , v〉 ∀v ∈ H0(div),
〈div u, q〉 = 〈g , q〉 ∀q ∈ L2

0.

Discretization: Find (uh, ph) ∈ Vh × Qh ⊂ H0(div)× L2
0 such that

〈u, v〉+ 〈p, div v〉 = 〈f , v〉 ∀v ∈ Vh,
〈div u, q〉 = 〈g , q〉 ∀q ∈ Qh.
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Stable discretization of the mixed Poisson problem

For numerical stability the pair of spaces (Vh,Qh) has to satisfy the
two Brezzi conditions, i.e., c1, c1 > 0, independent of h, such that

sup
v∈Vh

〈q, div v〉
‖v‖div

≥ c1‖q‖0 q ∈ Qh,

and
‖v‖2

0 ≥ c2‖v‖2
div = c2(‖v‖2

0 + ‖ div v‖2
0) v ∈ Zh,

where
Zh = {z ∈ Vh | 〈div z , q〉 = 0, q ∈ Qh }.

Note that any stable Stokes element satisfies the first condition,
but not the second. In fact, all the standard Stokes elements fails
to satisfy this condition.
The second condition is usually fulfilled by requiring that
div Vh ⊂ Qh.
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Commuting diagram

When div Vh ⊂ Qh then the first Brezzi condition

sup
v∈Vh

〈q, div v〉
‖v‖div

≥ c‖q‖0 q ∈ Qh,

will follow from the existence of a uniformly bounded operator
Πh : H0(div) → Vh such that

div(Πhv) = Ph div v ,

where Ph is the L2–projecton onto Qh.

This relation can be expressed in a commuting diagram of the form

H0(div)
div−→ L2

0yΠh

yPh

Vh
div−→ Qh



Commuting diagram

When div Vh ⊂ Qh then the first Brezzi condition

sup
v∈Vh

〈q, div v〉
‖v‖div

≥ c‖q‖0 q ∈ Qh,

will follow from the existence of a uniformly bounded operator
Πh : H0(div) → Vh such that

div(Πhv) = Ph div v ,

where Ph is the L2–projecton onto Qh.
This relation can be expressed in a commuting diagram of the form

H0(div)
div−→ L2

0yΠh

yPh

Vh
div−→ Qh



The mixed Poisson problem, preconditioning

Preconditioner, continuous case:

B = B1 =

(
(I − grad div)−1 0

0 I

)
.

Preconditioner, discrete case:

B1,h =

(
Mh 0
0 I

)
.

where Mh ≈ (I − grad div)−1.

Numerical results (Lowest order Raviart-Thomas = P−1 − P0):

h 1 2−1 2−2 2−3 2−4

κ(Ah) 8.25 15.0 29.7 59.6 119

κ(BhAh) 1.04 1.32 1.68 2.18 2.34
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Alternative preconditioner

Consider the same problem as above with the P−1 −P0 element, or
more generally the P−r − Pr−1 element. From the continuous
discussion we should also be able to use a preconditione rof the
form

B2,h =

(
I 0
0 Nh

)
,

where Nh ≈ (−∆)−1.

A technical problem is that the operator Nh must be defined on
the discontinuous pressure space. However, in Rusten, Vassilevski
and W (Math. Comp 1996) we showed that we should use a
preconditioner for the bilinear form

a(p, q) =
∑
T

∫
T

grad p · grad q dx +
∑

e

h−1
e

∫
e
[p][q] ds.
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The time dependent Stokes problem

Recall that we consider the operator

Aε =

(
I − ε2 ∆ − grad

div 0

)
.

For ε positive, and bounded away from zero, this operator is well
defined on (H1

0 )n × L2
0. In order to obtain norm estimates

uniformly in ε, then one possible function space is
(L2 ∩ ε H1

0 )n × ((H1 ∩ L2
0) + ε−1 L2

0) into its L2–dual.

This leads to a uniform preconditioner of the form

Bε =

(
(I − ε2 ∆)−1 0

0 (−∆)−1 + ε2 I

)
.
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Time dependent Stokes, discrete problems

Bε,h =

(
Mε,h 0

0 ε2 Ih + Nh

)
,

where Mε,h ≈ (I − ε2 ∆)−1, Nh ≈ (−∆)−1 and Ih ≈ I .

In the experiments below the operators Mε,h and Nh are generated
by a V–cycle multigrid procedure.
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The Taylor–Hood element

So we use continuous P2 velocities and continuous P1 pressures.
The operator Ih, approximating the inverse mass matrix πhIµ

−1
h , is

derived by a simple symmetric Gauss–Seidel iterartion.

h 2−2 2−3 2−4 2−5 2−6 2−7

κ(Nh(−∆h)) 1.71 1.50 1.47 1.47 1.47 1.47

κ(Ih) 1.66 1.62 1.61 1.60 1.60 1.60

h\ ε 0 0.001 0.01 0.1 0.5 1.0

2−3 1.11 1.11 1.03 1.14 1.22 1.22

2−5 1.11 1.09 1.03 1.23 1.24 1.24

2−7 1.11 1.02 1.20 1.24 1.24 1.24

Table: κ(Mε,h(I − ε2 ∆h))
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Table: κ(Mε,h(I − ε2 ∆h))



The Taylor–Hood element

h\ ε 0 0.001 0.01 0.1 0.5 1.0

2−3 6.03 6.05 6.92 13.42 15.25 15.32

2−5 6.07 6.23 10.62 15.14 15.59 15.61

2−7 6.08 7.81 14.18 15.55 15.64 15.65

Table: κ(Bε,hAε,h), Taylor–Hood element.



Alternative preconditioner

Following the continuous theory we should also be able to find a
uniform preconditioner of the form

Bε,h =

(
Mε,h 0

0 I

)
,

where Meps,h ≈ (I − grad div− ε2 ∆)−1. However, the Taylor-Hood
method, like most other Stokes elements, is not stable in
(H0(div) ∩ ε H1

0 )× L2
0 uniformly in ε, cf. Mardal, Tai and W

(SINUM 2002).



Actually, in that paper we constructed a stable 2d–element, with
velocities taken as a nine dimensional space of reduced cubic vector
fields, and with piecewise constant pressures. A corresponding 3–d
element was presented by Tai and W (Calcolo 2006).



Actually, in that paper we constructed a stable 2d–element, with
velocities taken as a nine dimensional space of reduced cubic vector
fields, and with piecewise constant pressures. A corresponding 3–d
element was presented by Tai and W (Calcolo 2006).



Mini–element

So we use continuous velocities of the form P1+ “cubic bubbles”
and as above continuous P1 pressures.

h\ ε 0 0.001 0.01 0.1 0.5 1.0

2−3 2.79 2.73 1.35 1.05 1.14 1.16

2−5 2.94 2.22 1.02 1.15 1.20 1.21

2−7 2.95 1.14 1.11 1.20 1.23 1.23

Table: κ(Mε,h(I − ε2 ∆h))

h\ ε 0 0.001 0.01 0.1 0.5 1.0

2−3 4.32 4.23 3.59 13.87 19.18 19.43

2−5 4.65 3.50 8.56 18.53 19.83 19.88

2−7 4.67 4.52 15.74 19.72 19.93 19.93

Table: κ(Bε,hAε,h)
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The P2–P0 element

We use continuous P2 velocities and discontinuous P0 pressures.
Note that for discontinuous pressures it is not obvious how to
generate Nh ≈ (−∆)−1. We utilize Xu’s auxiliary space approach
with a mapping to continuous piecewise linears.

h 2−2 2−3 2−4 2−5 2−6 2−7

κ(Nh(−∆h)) 3.07 3.13 3.16 3.18 3.17 3.18

Table: κ(Nh(−∆h)).

h\ ε 0 0.001 0.01 0.1 0.5 1.0

2−3 4.96 4.95 4.48 5.56 7.85 7.79

2−5 5.22 5.07 4.46 7.12 8.72 8.74

2−7 5.28 4.30 5.93 8.27 9.24 9.28

Table: κ(Bε,hAε,h) using the P2 − P0 element.
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The Reissner–Mindlin plate model

We recall that

At =

− div CE 0 −I
0 0 − div
−I grad −t2I

 .

and that the continuous preconditioner takes the form

Bt =

(−∆)−1 0 0
0 (−∆)−1 0
0 0 Dt

 ,

where
Dt = I + (1− t2) curl(I − t2∆)−1 rot .



The Arnold–Falk method

For a general overview of stable elements for the Reissner–Mindlin
model, see Falk 2008 (C.I.M.E. summer school 2006).
The examples presented here are taken from A-F-W97 and uses
the Arnold –Falk element, i.e.,

I continuous P1+ “cubic bubbles” for the rotation φ

I P1 with continuity at midpoints of edges for displacement u

I discontinuous P0 for the shear stress ζ

To evaluate the operator Dt = I + (1− t2) curl(I − t2∆)−1 rot on
the latter space, we introduce an operator roth into continuous
piecewise linears.
The elliptic preconditioners needed are generated by a combination
of V–cycle multigrid procedures and the auxiliary space approach.
In particular, we like to show that we obtain condition numbers
independent of h and the thickness parameter t.



The Arnold–Falk method

For a general overview of stable elements for the Reissner–Mindlin
model, see Falk 2008 (C.I.M.E. summer school 2006).
The examples presented here are taken from A-F-W97 and uses
the Arnold –Falk element, i.e.,

I continuous P1+ “cubic bubbles” for the rotation φ

I P1 with continuity at midpoints of edges for displacement u

I discontinuous P0 for the shear stress ζ

To evaluate the operator Dt = I + (1− t2) curl(I − t2∆)−1 rot on
the latter space, we introduce an operator roth into continuous
piecewise linears.
The elliptic preconditioners needed are generated by a combination
of V–cycle multigrid procedures and the auxiliary space approach.
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Experiments, Reissner–Mindlin

Preconditioner for At,h:

Bt =

Lh 0 0
0 Mh 0
0 0 Nt,h

 ,

where Lh ≈ (−∆h)
−1), Mh ≈ (−∆h)

−1 and Nt,h ≈ Dt,h where

Dt,h = I + (1− t2) curl(I − t2∆h)
−1 roth .

h 2−3 2−4 2−5 2−6 2−7

iterations–MR 41 41 35 29 24
iterations–CGN 48 50 48 40 34

κ(Bt,hAt,h) 8.17 10.7 11.1 10.6 9.62

Table: t = 0
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Experiments, Reissner–Mindlin, t = 0.01

h 2−3 2−4 2−5 2−6 2−7

iterations–MR 39 35 28 40 72
iterations–CGN 48 50 48 108 360

κ(Bt,hAt,h) 8.15 10.7 11.4 32.9 113

Table: t = 0.01, Nt,h = D0,h

h 2−3 2−4 2−5 2−6 2−7

iterations–MR 39 36 28 25 24
iterations–CGN 48 50 48 42 36

κ(Bt,hAt,h) 8.15 10.7 11.2 11.1 9.68

Table: t = 0.01, Nt,h = Dt,h
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Experiments, Reissner–Mindlin, t = 1

h 2−3 2−4 2−5 2−6 2−7

iterations–MR 22 22 20 20 20
iterations–CGN 102 104 106 104 102

κ(Bt,hAt,h) 17.5 18.4 19.0 19.0 18.9

Table: t = 1, Nt,h = Dt,h = I



Experiments, Reissner–Mindlin, t = 0.1

h 2−3 2−4 2−5 2−6 2−7

iterations–MR 78 80 80 78 78
iterations–CGN 226 214 198 190 188

κ(Bt,hAt,h) 90.2 78.5 72.7 70.1 70.7

Table: t = 0.1, Nt,h = I

h 2−3 2−4 2−5 2−6 2−7

iterations–MR 28 28 27 26 26
iterations–CGN 48 54 52 50 50

κ(Bt,hAt,h) 8.64 10.8 11.1 11.2 11.1

Table: t = 0.1, Nt,h = Dt,h



Experiments, Reissner–Mindlin, t = 0.1

h 2−3 2−4 2−5 2−6 2−7

iterations–MR 78 80 80 78 78
iterations–CGN 226 214 198 190 188

κ(Bt,hAt,h) 90.2 78.5 72.7 70.1 70.7

Table: t = 0.1, Nt,h = I

h 2−3 2−4 2−5 2−6 2−7

iterations–MR 28 28 27 26 26
iterations–CGN 48 54 52 50 50

κ(Bt,hAt,h) 8.64 10.8 11.1 11.2 11.1

Table: t = 0.1, Nt,h = Dt,h



Other examples I, Scatterd data interpolation

In a paper in Adv. Comp. Math. 2002 by Lyche, Nilssen and W
we study a scatterd data interpolation problem of the form

min
v∈H2

0

E (v) ≡
∑
|α|=2

∫
Ω
|Dαv |2 dx subject to v(xi ) = gi .

where Ω ⊂ R2. This is a generalization of the classical problem of
interpolating cubic splines. We study preconditioning of the
obtained saddle point problem.



Scattered data interpolation

The saddle point system has the structure(
∆2 π∗

π 0

) (
u
λ

)
=

(
0
g

)
where the operator π : H2

0 (Ω) → Rm is defined by interpolation at
the points {xi}.



Other examples II, A nonlinear problem

In a recent preprint by Hu, Tai and W we study nonlinear so–called
harmonic map problems, i.e., we consider a problem of the form

min
v∈H1

g (Ω,M)
E (v) ≡

∫
Ω
| grad v |2 dx .

Here the space H1
g (Ω,M) is the set of H1 vector fields with values

in a smooth manifold M, given on the form

M = {v ∈ Rd |F (v) = 0 }

The most classical example is

M = {v ∈ Rd | |v | = 1 }.

In particular, we study preconditioning of the linear systems
occuring through the Newton process.
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Saddle point problem, harmonic map

We consider the following nonlinear saddle point problem:
Find u and λ such that

〈grad u, grad v〉 +〈DF (u) · v , λ〉 = 0 v ∈ H1
0

〈F (u), µ〉 = 0 µ ∈ H−1

By solving this system by Newton’s method we end up with linear
saddle point problems at each step of the iteration, and the
prposed preconditioners for these systems will be of the form

B =

(
−∆−1 0

0 −∆

)



Other examples III

I For a study of an inverse problem, where preconditioning with
respect to the regularization parameter is studied, see Nielsen
and Mardal (SIMULA 2008).

I For a study of preconditioners for the Babuska Langrange
multiplier method, see Haug and W, Math. Comp. 1999.


