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Outline of the three lectures

I The continuous problems

1. Iterative methods for pde problems
2. Preconditioning pde problems
3. Preconditioning parameter dependent problems

I Discrete problems

1. Finite elements and representation of operators
2. Preconditioning in H(div) and H(curl)
3. A general approach to the preconditioning of finite

element systems
4. Various examples

I Mixed methods for elasticity and finite element exterior
calculus
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Krylov space methods

Assume that A : X 7→ X is a symmetric isomorphism on a Hilbert
space X, i.e.

A,A−1 ∈ L(X ,X ),

and consider a linear system of the form

Ax = f .

If the operator A is positive definite then we can approximate x by
the conjugate gradient method (CG), i.e.,

〈Axm, v〉 = 〈f , v〉, v ∈ Km(f ),

where the Krylov space Km is given by

Km = span{ f ,Af , . . . ,Am−1f }.
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Convergence og CG

We obtain
‖x − xm‖A = inf

v∈Km

‖x − v‖A,

where ‖v‖2
A = 〈Av , v〉.

Theorem The CG-method converges in the enegy norm || · ||A,
with a rate which can be bounded by κ(A) = ||A|| · ||A−1||.

Observe that X is allowed to be of infinite dimension, as long as
the operator A can be evaluated.
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Indefinite problems

If the operator A is indefinite, but still a symmetric isomorphism
mapping X to itself, then we can use the minimum residual
method (MINRES), i.e.,

〈Axm,Av〉 = 〈f ,Av〉, v ∈ Km(f ).

and
‖A(x − xm)‖ = inf

v∈Km

‖A(x − v)‖,

Short recurrence relations!
Alternatively, we can use CG applied to the normal equations
(CGN).

Theorem A Krylov space method like MINRES or CGN
converges in || · ||X , with a rate which can be bounded by
κ(A) = ||A||L(X ,X ) · ||A−1||L(X ,X ). (dim X = ∞ allowed).
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Example 1, Integral equation

Fredholm equation of the second kind:

Au(x) := u(x) +

∫
Ω

k(x , y)u(y) dy = f (x),

where we assume that the kernel k is continuous and symmetric,
and that the operator A : X → X is one–one, where X = L2(Ω).

By the Fredholm alternative theorem A−1 ∈ L(X ,X ), and the
equation can be solved by MINRES, or CG if all the eigenvalues of
A are positive.

In fact, since the operator A has the form “identity + compact”
the convergence is superlinear (W, SINUM 1980).



Example 1, Integral equation

Fredholm equation of the second kind:

Au(x) := u(x) +

∫
Ω

k(x , y)u(y) dy = f (x),

where we assume that the kernel k is continuous and symmetric,
and that the operator A : X → X is one–one, where X = L2(Ω).

By the Fredholm alternative theorem A−1 ∈ L(X ,X ), and the
equation can be solved by MINRES, or CG if all the eigenvalues of
A are positive.

In fact, since the operator A has the form “identity + compact”
the convergence is superlinear (W, SINUM 1980).



Example 1, Integral equation

Fredholm equation of the second kind:

Au(x) := u(x) +

∫
Ω

k(x , y)u(y) dy = f (x),

where we assume that the kernel k is continuous and symmetric,
and that the operator A : X → X is one–one, where X = L2(Ω).

By the Fredholm alternative theorem A−1 ∈ L(X ,X ), and the
equation can be solved by MINRES, or CG if all the eigenvalues of
A are positive.

In fact, since the operator A has the form “identity + compact”
the convergence is superlinear (W, SINUM 1980).



Example 2, The Laplace operator

Let
H1

0 (Ω) = X ⊂ L2(Ω) ⊂ X ∗ = H−1(Ω),

and define the negative Laplacian A : X → X ∗ by

〈Au, v〉 =

∫
Ω

grad u · grad v dx , u, v ∈ X .

H

A

HH
0

0

1

1 −1

Conclusion: Krylov space methods are not well–defined for the
operator A.
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PDE–problems

Consider the system
Ax = f ,

where typically, A is an unbounded operator on X , or alternatively
A ∈ L(X ,X ∗) with X strictly contained in X ∗. So the Krylov
space methods are not well defined.

We have:
X

A−→ X ∗ ⊃ X

An isomorphism B : X ∗ 7→ X , i.e., a Riez operator, is called a
preconditioner for A. Then

BA : X
A−→ X ∗ B−→ X

is an isomorphism mapping X to itself.
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Preconditioned Krylov space method

H

H

A

H

B

−1

0
1

0

1

Symmetry: Assume that A : X → X ∗ is symmetric in the sense
that

〈Ax , y〉 = 〈Ay , x〉, x , y ∈ X

and B : X ∗ → X is symmetric and positive definite in the sense
that 〈B·, ·〉 is an inner product on X ∗. Here 〈·, ·〉 is the duality
pairing (L2–symmetry).

As a consequence: 〈B−1·, ·〉 is an inner product on X , and
BA : X → X is symmetric in this inner product.
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Preconditioned system

Conclusion. The preconditioned system

BAx = Bf

can be solved by a Krylov space method with a convergence rate
bounded by κ(BA) = ||BA||L(X ,X )||(BA)−1||L(X ,X ).



Abstract saddle point problem

Abstract variational problem:

min
v∈V

E (v) ≡ 1

2
a(v , v)− F (v) subject to b(v , q) = G (q), q ∈ Q,

where

I V and Q are Hilbert spaces

I F : V → R and G : Q → R are bounded linear functionals

I a : V × V → R and b : V × Q → R are bilinear and bounded

I a is symmetric and positive semidefinite

Associated saddle point system:
Find (u, p) ∈ V × Q such that

a(u, v) +b(v , p) = F (v) v ∈ V
b(u, q) = G (q) q ∈ Q.
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Brezzi conditions

a(u, v) +b(v , p) = F (v) v ∈ V
b(u, q) = G (q) q ∈ Q.

There are constants c1, c2 > 0 such that

inf
q∈Q

sup
v∈V

b(v , q)

‖v‖V ‖q‖Q
≥ c1,

and
a(v , v) ≥ c2‖v‖2

V , v ∈ Z ,

where Z = {v ∈ V | b(v , q) = 0, q ∈ Q }.
Then the coefficient operator A : V × Q → V ∗ × Q∗ is an
isomorphism.
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Block diagonal preconditioners

The coefficient operator

A =

(
A B∗

B 0

)
: V × Q → V ∗ × Q∗

is an isomorphism, where A : V → V ∗ and B : V → Q∗.

Preconditioner:

B =

(
M 0
0 N

)
where M : V ∗ → V and N : Q∗ → Q are positive definite
isomorphisms.

So block diagonal preconditioners are natural, cf. Rusten–W
(1992) and Silvester and Wathen (1993–1994)
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Stokes problem

−∆u − grad p = f in Ω,
div u = g in Ω,

u = 0 on ∂Ω.

Weak formulation: Find (u, p) ∈ (H1
0 )n × L2

0 such that

〈grad u, grad v〉 +〈p, div v〉 = 〈f , v〉 v ∈ (H1
0 )n

〈div u, q〉 = 〈g , q〉 q ∈ L2
0.

Note that the verification of the inf–sup condition

sup
v∈(H1

0 )n

〈q, div v〉
‖v‖1

≥ c‖q‖0 q ∈ L2
0,

where c > 0, is nontrivial (Nečas 1967).
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Preconditioning Stokes problem

Coefficient operator:

A =

(
−∆ − grad
div 0

)
: (H1

0 )n × L2
0 → (H−1)n × L2

0.

The operator

B =

(
(−∆)−1 0

0 I

)
: (H−1)n × L2

0 → (H1
0 )n × L2

0

is the canonical preconditioner, where the positive definite operator
(−∆)−1 can be repalaced by a spectral equivalent operator.



Mixed formulation of the Poisson’s equation

u − grad p = f in Ω,
div u = g in Ω,
u · n = 0 on ∂Ω.

The problem is formally equivalent to:

−∆p = div f − g in Ω, ∂p/∂n = f · n on ∂Ω.

Weak formulation of the mixed system:
Find (u, p) ∈ H0(div)× L2

0 such that

〈u, v〉 +〈p, div v〉 = 〈f , v〉 v ∈ H0(div),
〈div u, q〉 = 〈g , q〉 q ∈ L2

0.

Note, the second Brezzi condition should be verified:

‖v‖2
0 ≥ c ‖v‖2

div ≡ c (‖v‖2
0 + ‖ div v‖2) v ∈ Z ,

where Z = {v ∈ H0(div) | 〈div v , q〉 = 0, q ∈ L2
0 }. This is trivial in

the continuous case, but not in the discrete case.
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The preconditioner

Coefficient operator:

A =

(
I − grad

div 0

)
: H0(div)× L2

0 → H0(div)∗ × L2
0,

where H0(div)∗ can be identified with

H−1(curl) = {f ∈ H−1 | curl f ∈ H−1 }.

Preconditioner:

B = B1 =

(
(I − grad div)−1 0

0 I

)
Here the operator I − grad div is the operator corresponding to the
H0(div)–inner product

〈u, v〉+ 〈div u, div v〉.
Note that this operator is special in the sense that it acts as a
second order elliptic operator on gradient–fields, but degenerates
to the identity on curl–fields.
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Alternative formulation of the Poisson’s equation

Formulation 1:
Find (u, p) ∈ H0(div)× L2

0 such that

〈u, v〉 +〈p, div v〉 = 〈f , v〉 v ∈ H0(div),
〈div u, q〉 = 〈g , q〉 q ∈ L2

0.

Formulation 2:
Find (u, p) ∈ (L2)n × H1 ∩ L2

0 such that

〈u, v〉 −〈grad p, v〉 = 〈f , v〉 v ∈ (L2)n,
−〈u, grad q〉 = 〈g , q〉 q ∈ H1 ∩ L2

0.

which in fact is equivalent to:

〈grad p, grad q〉 =

− 〈f , grad q〉 − 〈g , q〉 ∀q ∈ H1 ∩ L2
0.
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Alternative preconditioners

The coefficient operator

A =

(
I − grad

div 0

)
.

is well defined on two different spaces. Either

X = H0(div)× L2
0 or Y = (L2)n × (H1 ∩ L2

0),

and A maps these spaces isomorphically into their dual spaces
X ∗ ⊃ L2 or Y ∗ ⊃ L2.

This leads to two corresponding preconditioners:

B1 =

(
(I − grad div)−1 0

0 I

)
or B2 =

(
I 0
0 (−∆)−1

)
,

where the operators (I − grad div)−1 and (−∆)−1 can be replaced
by spectral equivalent operators. Note that the preconditioners B1

and B2 are not similar.
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One operator, two nonsimilar preconditioners

Let X = `2(R2) and define an unbounded block diagonal operator
A on X by

A =

A1

A2

. . .


where each Aj is a 2× 2 matrix of the form

Aj =

(
1 aj

aj 0

)
Here aj are positive real numbers such that 1 = a1 ≤ a2 ≤ . . . and
limj→∞ aj = ∞.

The eigenvalues of A are

λj =
1±

√
1 + 4a2

j

2
−→ ±∞ as aj →∞.
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where each Aj is a 2× 2 matrix of the form

Aj =

(
1 aj

aj 0

)
Here aj are positive real numbers such that 1 = a1 ≤ a2 ≤ . . . and
limj→∞ aj = ∞.

The eigenvalues of A are

λj =
1±

√
1 + 4a2

j

2
−→ ±∞ as aj →∞.



Preconditioning

Let B = diag(Bj) where

Bj =

(
βj 0
0 γj

)
, βj , γj > 0.

So study:

BA =

(
β 0
0 γ

) (
1 a
a 0

)
=

(
β βa
γa 0

)
for a ∈ [1,∞).

Alternative 1: β = 1
1+a2 and γ = 1 gives

BA =

( 1
1+a2

a
1+a2

a 0

)
with eigenvalues λ(a) → ±1 as a →∞.
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Extension of this example: If each block Aj is a 3× 3 matrix on
the form

Aj =

1 0 0
0 1 aj

0 aj 0


then we will also include the effect that constraint (0 aj) has a
large kernel.
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Robustness with respect to parameters

We will consider two model problems which depend on small
parameters, namely

I The time dependent Stokes problem

I The Reissner–Mindlin plate model

The goal is to produce preconditioners which results in iterations
which converge uniformly with respect to the parameters, i.e.
κ(BA) = ||BA||L(X ,X )||(BA)−1||L(X ,X ) should be uniformly
bounded.



Example, reaction–diffusion problem

Consider the problem

− ε2 ∆u + u = f in Ω, u|∂Ω = 0.

From energy estimates we see that a natural norm for the solution
u is

‖u‖L2∩εH1
0
≡ (‖u‖2

0 + ε2 ‖ grad u‖2
0)

1/2.

What is the correct norm to put on f such that we get a sharp
bound of the form

‖u‖L2∩εH1
0
≤ c‖f ‖?

where c is independent of ε.

Note that we formally have

u = (I − ε2 ∆)−1f and that ‖u‖2
L2∩εH1

0
= 〈(I − ε2 ∆)u, u〉.
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Intersection and sum of Hilbert spaces.

If X and Y are Hilbert spaces, then X ∩ Y and X + Y are
themselves Hilbert spaces with the norms

‖z‖X∩Y = (‖z‖2
X + ‖z‖2

Y )1/2

and
‖z‖X+Y = inf

z=x+y
x∈X , y∈Y

(‖x‖2
X + ‖y‖2

Y )1/2.

Furthermore, if X ∩ Y is dense in both X and Y then
(X ∩ Y )∗ = X ∗ + Y ∗ and (X + Y )∗ = X ∗ ∩ Y ∗.
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Examples

Example 1: The norm of the space L2 ∩ ε ·H1, ε > 0, is given by

‖f ‖2
L2∩ε ·H1 = ‖f ‖2

0 + ε2 ‖f ‖2
1.

The space L2 ∩ ε ·H1 is equal to H1 as a set. However, the norm
approaches the L2–norm as ε tends to zero.

Example 2: Consider the space H1 + ε−1 L2 with norm given by

‖f ‖2
H1+ε−1 L2 = inf

f =f1+f2
f1∈H1, f0∈L2

‖f1‖2
1 + ε−2 ‖f0‖2

0.

This space is equal to L2 as a set, but the corresponding norm
appraches the H1–norm as ε tends to zero.
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Example 3: Let X = Xε = L2 ∩ ε ·H1
0 . If the duality pairing is an

extension of the L2 inner product, then X ∗ = L2 + ε−1 H−1.

Furthermore,
‖f ‖2

X∗ ∼ 〈(I − ε2 ∆)−1f , f 〉



The time dependent Stokes problem

ut −∆u − grad p = f in Ω× R+,
div u = g in Ω× R+,

u = 0 on ∂Ω× R+,
u = 0 on Ω× {t = 0}.

Various implicit time stepping schemes leads to systems of the form

(I − ε2 ∆)u − grad p = f in Ω,
div u = g in Ω,

u = 0 on ∂Ω,

where ε > 0 is the square root of the time step.
Coefficient operator:

Aε =

(
I − ε2 ∆ − grad

div 0

)
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A preconditioner for time dependent Stokes

Recall that for ε = 0 the operator

A0 =

(
I − grad

div 0

)
is bounded from H0(div)× L2

0 into H−1(curl)× L2
0.

In fact, since

sup
v∈H1

0

〈q, div v〉
‖v‖H(div)∩ε ·H1

≥ sup
v∈H1

0

〈q, div v〉
2‖v‖1

≥ c0‖q‖0

we can conclude that

Aε =

(
I − ε2 ∆ − grad

div 0

)
is an isomorphism mapping (H0(div) ∩ εH1

0 )× L2
0 onto its L2 dual

(H0(div)∗ + ε−1 H−1)× L2
0, and with operator norm independent of

ε.
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We conclude that a uniform preconditioner therefore should be a
positive definte mapping Bε mapping (H0(div)∗ + ε−1 H−1)× L2

0

isomorphically onto (H0(div) ∩ εH1
0 )× L2

0.

Hence, we can choose

Bε =

(
(I − grad div− ε2 ∆)−1 0

0 I

)
,

or any spectrally equivalent operator.
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A preliminary on discretizations

If we want to be able to reach a similar conclusion for the
corresponding preconditioner for a finite element discretization of
the time dependent Stokes problem, it will be necessary that the
finite element method is uniformly stable in the appropriate ε
dependent norm. However, this is usually not the case. In fact,
most common stable Stokes elements are not stable for the mixed
Poisson problem. These elements fail to satisfy the coercivity
condition (the second Brezzi condition)

‖v‖2
0 + ε2 ‖ grad v‖2

0 ≥ c0‖v‖2
div v ∈ Zh,

where Zh ⊂ Vh denotes the set of discrete weakly divergence free
vector fields.

Therefore, the discussion above will not carry over to the
corresponding discrete systems.
Furthermore, I do not know any study of the construction of
uniform preconditioners for the operator I − grad div− ε2 ∆.
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Alternative function space

Recall that the operator A0 also is bounded from
(L2)n × (H1 ∩ L2

0). Hence, it seems that

Aε =

(
I − ε2 ∆ − grad

div 0

)
can be defined on a larger space, where the velocity is allowed to
be in (L2 ∩ εH1

0 )n.

Then the proper norm for the scalar variable
should be

sup
v∈(H1

0 )n

〈q, div v〉
‖v‖L2∩εH1

∼ ‖ grad q‖L2+ε−1 H−1 ∼ ‖q‖H1+ε−1 L2
0
.

Note that for each fixed ε > 0 this is equivalent to the L2 norm,
but it approaches the H1 norm as ε tends to zero.
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Alternative uniform preconditioner

The solution space indicated above will lead to a uniform
preconditioner of the form

Bε =

(
(I − ε2 ∆)−1 0

0 (−∆)−1 + ε2 I

)
In fact, this result is correct, at least in the case of convex
domains. Discrete preconditioners along these lines have been
suggested by Cahouert and Chabard (1988), Bramble and Pasciak
(1997), Turek (1999), Elman (2002), Elman, Silvester and Wathen
(2002), Loghin and Wathen (2002), Mardal and W (2004),
Olshanskii, Peters and Reusken (2005).



A technical difficulty

The problem in the nonconvex case is to establish the proper
uniform inf–sup condition given by

sup
v∈(H1

0 )n

〈q, div v〉
‖v‖L2∩εH1

≥ c0‖q‖H1+ε−1 L2 q ∈ L2
0,

or equivalently,

‖q‖H1+ε−1 L2 ≤ c−1
0 ‖ grad q‖L2+ε−1 H−1 q ∈ L2

0.

Note that for ε = 0 this final condition reduces to

‖q‖1 ≤ c−1
0 ‖ grad q‖0 q ∈ H1 ∩ L2

0,

which is just the Poincaré inequality, while for ε bounded away
from zero it is equivalent to

‖q‖0 ≤ c−1
0 ‖ grad q‖−1 q ∈ L2

0.

However, this is equivalent to the proper inf–sup condition for the
Stokes problem. So both the extreme cases hold, but ....
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Reissner-Mindlin plate

t

We study a clamped plate exposed to a trasnsverse load.



The Reissner-Mindlin plate model

based on: Arnold, Falk and Winther (Math. Mod. Num. Anal.,
1997)

min
(φ,u)∈(H1

0 )2×H1
0

E (φ, u),

where

E (φ, u) =
1

2

∫
Ω
{(CEφ) : (Eφ) + t−2|φ− grad u|2}dx

−
∫

Ω
gu dx .

Here Eφ denotes the symmetric part of gradφ. The thickness
parameter t ∈ [0, 1].



Equilibrium system

− div CEφ+ t−2(φ− grad u) = 0,

t−2(−∆u + div φ) = g ,

φ|∂Ω = 0, u|∂Ω = 0.

Alternatively, with ζ = −t−2(φ− grad u):

− div CEφ− ζ = 0,

− div ζ = g ,

−φ+ grad u − t2ζ = 0.

or in weak form: Find (φ, u, ζ) ∈ (H1
0 )2 × H1

0 × (L2)2 such that

〈CEφ, Eψ〉 − 〈ζ, ψ − grad v〉 = 〈g , v〉 (ψ, v) ∈ (H1
0 )2 × H1

0

−〈φ− grad u, η〉 − t2〈ζ, η〉 = 0 η ∈ (L2)2
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Saddle point structure

The system can formally be written in the form

At

φu
ζ

 =

0
g
0

 ,

where the coefficient operator, At , is given by

At =

− div CE 0 −I
0 0 − div
−I grad −t2I

 .

The two first variables will always be taken in (H1
0 )2 × H1

0 . Note
that for t = 0 the norm on the multiplier space should be

sup
(ψ,v)∈(H1

0 )2×H1
0

〈η, ψ − grad v〉
‖ψ‖1 + ‖v‖1

∼ ‖η‖H−1(div),

where
H−1(div) = {η ∈ (H−1)2 | div η ∈ H−1 }.
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Biharmonic problem (t=0)

In particular, for t = 0 the operator A0 is well defined from
(H1

0 )2 × H1
0 × H−1(div) into its L2 dual given as

(H−1)2 × H−1 × (H0(rot). Here rot η = (η1)y − (η2)x .

The canonical operator mapping H−1(div)∗ = H0(rot) onto
H−1(div) is the differential operator

D0 = I + curl rot .

Therefore, the canonical preconditioner for the biharmonic system
is of the form

B0 =

(−∆)−1 0 0
0 (−∆)−1 0
0 0 D0

 .

Here curl is the formal adjoint of rot, i.e. curl v = (−vy , vx).
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Function spaces, general case

For t > 0 the variational problem takes the form

〈CEφ, Eψ〉 − 〈ζ, ψ − grad v〉 − 〈φ− grad u, η, 〉
+ t2〈ζ, η〉 = 〈g , v〉.

Let
Xt = (H1

0 )2 × H1
0 × (H−1(div) ∩ t · (L2)2)

and X ∗
t its L2–dual

X ∗
t = (H−1)2 × H−1 × (H0(rot) + t−1 · (L2)2)

Theorem. At ∈ L(Xt ,X
∗
t ) and A−1

t ∈ L(X ∗
t ,Xt) with associated

operator norms independent of t.
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Preconditioner; The general case

The canonical preconditioner for the operator

At =

− div CE 0 −I
0 0 − div
−I grad −t2I

 .

is therefore of the form

Bt =

(−∆)−1 0 0
0 (−∆)−1 0
0 0 Dt

 ,

where
Dt = I + (1− t2) curl(I − t2∆)−1 rot .


