Finite Volume/DG Schemes Based on Constrained Minimization Function Recovery

Panayot S. Vassilevski

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

London Mathematical Society Durham Symposium
Computational Linear Algebra for Partial Differential Equations

$$
\text { JULY 15, } 2008
$$

[^0]
Content

- The Euler Equations of Gas Dynamics in Lagrangian Coordinates
- Conservative Finite Volume/DG Schemes Based on Integral Form of Equations
- Function Recovery
- The Overall Computational Scheme and Solution Algorithms
- Incorporating Entropy Inequalities (is it really needed?)
- Numerical Illustration
- Conclusions

The Equations of Gas Dynamics

The equation of gas dynamics in Eulerian coordinates：ε

$$
\begin{aligned}
& \text { conservation of mass : } \quad \frac{\partial \varrho}{\partial t}=-\operatorname{div}(\varrho \mathbf{v}) \text {, } \\
& \text { conservation of momentum : } \quad \frac{\partial(\varrho \mathbf{v})}{\partial t}=-\nabla p-\sum_{j=1}^{d} \frac{\partial\left(\varrho v_{j} \mathbf{v}\right)}{\partial x_{j}}, \\
& \text { conservation of energy : } \frac{\partial(\varrho E)}{\partial t}=-\operatorname{div}((\varrho E+p) \mathbf{v}) \text {. } \\
& E=\varepsilon+\frac{1}{2}|\mathbf{v}|^{2} \quad=\text { internal energy }+ \text { kinetic energy. }
\end{aligned}
$$

Equation of state：

$$
p=p(\varrho, \varepsilon)=\operatorname{EOS}(\varrho, \varepsilon),
$$

For example（polytropic ideal gas）：

$$
p=(\gamma-1) \varrho \varepsilon, \text { for a } \gamma>1 .
$$

Lagrangian Coordinates

Let

$$
\frac{d \mathbf{x}}{d t}=\mathbf{v}(\mathbf{x}, t), \quad \mathbf{x}=\left(x_{i}\right) \in \mathbb{R}^{d}, d=2 \text { or } 3
$$

with initial condition

$$
\left.\mathbf{x}\right|_{t=0}=\boldsymbol{\xi}
$$

By definition，the pair $(\boldsymbol{\xi}, t)$ is called Lagrangian coordinates associated with the velocity field \mathbf{v} ．Let

$$
J(\boldsymbol{\xi}, t)=\operatorname{det}\left(\frac{\partial x_{i}(\boldsymbol{\xi}, t)}{\partial \xi_{j}}\right) .
$$

Define， $\bar{\varphi}(\boldsymbol{\xi}, t)=\varphi(\mathbf{x}(\boldsymbol{\xi}, t), t)$ ．Then

$$
\frac{\partial(\bar{\varphi} J)}{\partial t}=J\left(\overline{\frac{\partial \varphi}{\partial t}}+\overline{\operatorname{div}(\varphi \mathbf{v})}\right) .
$$

Integral Form of Equations

Conservation of mass：

$$
\frac{\partial}{\partial t} \int_{V(t)} \varrho d \mathbf{x}=0
$$

Conservation of momentum：

$$
\frac{\partial}{\partial t} \int_{V(t)} \varrho \mathbf{v} d \mathbf{x}=-\int_{V(t)} \nabla p d \mathbf{x} .
$$

Conservation of total energy：

$$
\frac{\partial}{\partial t} \int_{V(t)} \varrho E d \mathbf{x}=-\int_{V(t)} \operatorname{div}(p \mathbf{v}) d \mathbf{x}
$$

Conservation of Momentum：a General Integral Form

Let $\mathrm{x}^{\underline{\alpha}}=x_{1}^{\alpha_{1}} \ldots x_{d}^{\alpha_{d}}$ ．Then

$$
\frac{\partial}{\partial t} \int_{V(t)} \varrho \mathbf{x}^{\underline{\alpha}} \mathbf{v} d \mathbf{x}=-\int_{V(t)} \mathbf{x}^{\underline{\alpha}} \nabla p d \mathbf{x} .
$$

Proof：

$$
\begin{aligned}
\frac{\partial}{\partial t} \int_{V(t)} \mathbf{x}^{\underline{\alpha}} \varrho \mathbf{v} d \mathbf{x} & =\frac{\partial}{\partial t} \int_{V(0)} \boldsymbol{\xi}^{\underline{\alpha}} \overline{\varrho \overline{\mathbf{v}}} J d \boldsymbol{\xi} \\
& =\int_{V(0)} \boldsymbol{\xi}^{\underline{\alpha}} \frac{\partial \overline{\varrho \mathbf{v}} J}{\partial t} d \boldsymbol{\xi} \\
& =\int_{V(t)} \mathbf{x}^{\underline{\alpha}}\left(\sum_{j=1}^{d} \frac{\partial \varrho v_{j} \mathbf{v}}{\partial x_{j}}+\frac{\partial \varrho \mathbf{v}}{\partial t}\right) d \mathbf{x} \\
& =-\int_{V(t)} \mathbf{x}^{\underline{\alpha}} \nabla p d \mathbf{x}
\end{aligned}
$$

Conservative Finite Volume Schemes

The integral form is the basis for constructing conservative finite volume schemes and also for DG schemes（for $\underline{\alpha} \neq 0$ ）．
Consider conservation of momentum equation

$$
\frac{\partial}{\partial t} \int_{V(t)} \varrho \mathbf{v} d \mathbf{x}=-\int_{V(t)} \nabla p d \mathbf{x} .
$$

Use time discretization $t_{n+1}=t_{n}+\Delta t$ and let $V_{n}=V\left(t_{n}\right)$ ．
We have，（for an explicit scheme）

$$
\frac{1}{\Delta t}\left(\int_{V_{n+1}} \varrho \mathbf{v} d \mathbf{x}-\int_{V_{n}} \varrho \mathbf{v} d \mathbf{x}\right)=-\int_{V_{n}} \nabla p_{h} d \mathbf{x} .
$$

Here，p_{h} is a finite element approximation of p（to be specified）．

Conservative Finite Volume Schemes

Let $m(V)=\int_{V} \varrho d \mathbf{x}$ be the mass associated with a volume V ．From the conservation of mass equation

$$
\frac{\partial}{\partial t} \int_{V(t)} \varrho d \mathbf{x}=0
$$

we have that the mass is constant，i．e．，

$$
m\left(V_{n}\right)=\int_{V\left(t_{n}\right)} \varrho d \mathbf{x}=\int_{V\left(t_{n+1}\right)} \varrho d \mathbf{x}=m\left(V_{n+1}\right) .
$$

We approximate ϱ at $t=t_{n}$ with discontinuous piecewise constants：

$$
\varrho_{n}=m\left(V_{n}\right) /\left|V_{n}\right|=m(V) /\left|V_{n}\right| .
$$

A FV Conservation of Momentum Equation

Then the following FV scheme is straightforward：

$$
m(V) \frac{1}{\Delta t}\left(\frac{1}{\left|V_{n+1}\right|} \int_{V_{n+1}} \mathbf{v}_{n+1} d \mathbf{x}-\frac{1}{\left|V_{n}\right|} \int_{V_{n}} \mathbf{v}_{n} d \mathbf{x}\right)=-\int_{V_{n}} \nabla p_{h} d \mathbf{x} .
$$

It is clear that we can compute the average values

$$
\frac{1}{\left|V_{n+1}\right|} \int_{V_{n+1}} \mathbf{v}_{n+1} d \mathbf{x}=\frac{1}{m(V)} \int_{V_{n+1}} \varrho \mathbf{v}_{n+1} d \mathbf{x}
$$

without knowing the actual approximation \mathbf{v}_{h} to \mathbf{v}_{n+1} ．

Smooth Function Recovery From Averages

Thus the problem of function recovery arises:
Given the (weighted) average values

$$
\frac{1}{m(V)} \int_{V_{n+1}} \varrho \mathbf{v}_{n+1} d \mathbf{x}
$$

construct a smooth function \mathbf{v}_{h} (that has the prescribed averages) to be used in the approximation of conservation of energy equation

$$
\frac{1}{\Delta t}\left(\int_{V_{n+1}} \varrho \varepsilon d \mathbf{x}-\int_{V_{n}} \varrho \varepsilon d \mathbf{x}\right)=-\int_{V_{n+1}} p_{h} \operatorname{div} \mathbf{v}_{h} d \mathbf{x} .
$$

We formulate one function recovery procedure based on minimizing certain energy functional subject to some constraints.

Constrained Total Variation（TV）Function Recovery

We need a second finite element mesh \mathcal{T}_{h} ， a refinement of the primal（FV or finite element）mesh \mathcal{T}_{H} ．

The accuracy of the scheme is determined by \mathcal{T}_{H} ．
The TV function recovery reads：
Find a finite element function \mathbf{v}_{h} with minimal total variation

$$
\mathbf{J}_{T V}\left(\mathbf{v}_{h}\right)=\int_{\Omega}\left|\nabla \mathbf{v}_{h}\right| d \mathbf{x} \mapsto \min
$$

with prescribed integral moments for all $V=V_{n+1} \in \mathcal{T}_{H}$

$$
\int_{V} \varrho \mathbf{v}_{h} d \mathbf{x}
$$

Constrained Total Variation (TV) Function Recovery

Consider now the conservation of energy equation (for V as an union of elements from \mathcal{T}_{h}):

$$
\int_{V_{n+1}} \varrho_{n+1} E_{n+1} d \mathbf{x}=\int_{V_{n}} \varrho_{n} E_{n} d \mathbf{x}_{n}-\Delta t \int_{\partial V_{n+1}} p_{h} \mathbf{v}_{h} \cdot \mathbf{n} d \sigma .
$$

From physical consideration (nonnegative internal energy), splitting $E=\varepsilon+\frac{1}{2}|\mathbf{v}|^{2}$, gives
$0 \leq\left(\int_{V_{n+1}} \varrho \varepsilon d \mathbf{x}=\right) \int_{V_{n}} \varrho_{n} E_{n} d \mathbf{x}_{n}-\Delta t \underset{\partial V_{n+1}}{\int} p_{h} \mathbf{v}_{h} \cdot \mathbf{n} d \sigma-\frac{1}{2} \int_{V_{n+1}}^{\int} \varrho_{n+1}\left|\mathbf{v}_{h}\right|^{2} d \mathbf{x}$.
This is a quadratic inequality constraint for $\mathbf{v}_{h}=\mathbf{v}_{n+1}$ imposed on any $V=V_{n+1} \in \mathcal{T}_{H}$ (viewed as a fine-grid, \mathcal{T}_{h}, domain), if ϱ_{n+1} and p_{h} are considered given.

Constrained Energy Minimization Function Recovery

Similar problem can be formulated for p_{h} ．Find a finite element function p_{h} such that

$$
J_{T V}\left(p_{h}\right)=\int_{\Omega}\left|\nabla p_{h}\right| d \mathbf{x} \mapsto \min ,
$$

subject to the equality constraints（for all $V \in T_{H}$ ）using the E．O．S．：

$$
\frac{1}{|V|} \int_{V} p_{h} d \mathbf{x}=\bar{p} \equiv \frac{\gamma-1}{|V|} \int_{V} \varrho \varepsilon d \mathbf{x} .
$$

Note that the quadratic inequality for \mathbf{v}_{h} implies that $\bar{p} \geq 0$ ．

Function Recovery as Regularized "Interpolation"

The equality constraints can be imposed (approximately) via the Rudin-Osher-Fatemi noise removal functional (Physica D, 1992):

$$
J_{R O F}\left(p_{h}\right)=\left\|p_{h}-\bar{p}\right\|_{0}^{2}+\epsilon \int_{\Omega}\left|\nabla p_{h}\right| d \mathbf{x} \mapsto \min .
$$

The purpose of the recovery procedure is to construct a smooth function (with prescribed averages) so that its derivatives (grad and/or div) can be used to close-up the overall FV/DG scheme. That is,

- we first have a sort of "interpolation" procedure (from averages construct a function), and then
- perform "numerical differentiation" (use grad or div).

This is an ill-posed problem. Hence the need of regularization, which is provided by the TV-functional.

Non-oscillatory TV Function Recovery

TV recovery of a piecewise constant function.

The Overall FV Scheme

We have a primal（moving）mesh \mathcal{T}_{H} ．In the recovery procedures，we need a dynamically constructed mesh \mathcal{T}_{h} that is a refinement of \mathcal{T}_{H} ． Algorithm 1 （Conservative FV scheme）
－To move the mesh，find a finite element function x_{h} such that

$$
\left\|\mathbf{x}_{h}-\left(\mathbf{x}_{n}+\Delta t \mathbf{v}_{n}\right)\right\|_{0}^{2}+\epsilon \int_{\Omega_{n}}\left|\nabla \mathbf{x}_{h}\right| \mapsto \min
$$

Then， \mathbf{x}_{n+1} equals \mathbf{x}_{h} restricted to the vertices of $\mathcal{T}_{H}\left(a t=t_{n}\right)$ and defines the vertices of the moved \mathcal{T}_{H} at time $t=t_{n+1}$ ．Thus，we can compute the volumes $|V|$ for any $V=V_{n+1} \in \mathcal{T}_{H}$ ．We can then compute

$$
\varrho_{n+1}=\frac{m(V)}{\left|V_{n+1}\right|}, \quad \overline{\mathbf{v}}_{n+1}=\frac{1}{m(V)}\left[\int_{V_{n}} \varrho_{n} \mathbf{v}_{n} d \mathbf{x}_{n}-\Delta t \int_{V_{n+1}} \nabla p_{h} d \mathbf{x}_{n+1}\right] .
$$

The Overall Scheme

- Solve the constrained energy minimization problems for $\mathbf{v}_{h} \in \mathbf{S}_{h}$ and $p_{h} \in S_{h}$ (vector and scalar H^{1}-conforming fi nite element spaces):

$$
\begin{gathered}
\mathbf{J}_{R O F}\left(\mathbf{v}_{h}\right)=\left\|\mathbf{v}_{h}-\overline{\mathbf{v}}_{n+1}\right\|_{0, \varrho_{n+1}}^{2}+\epsilon \int_{\Omega_{n+1}}\left|\nabla \mathbf{v}_{h}\right| d \mathbf{x}_{n+1} \mapsto \min , \\
J_{R O F}\left(p_{h}\right)=\left\|p_{h}-\bar{p}_{n+1}\right\|_{0}^{2}+\epsilon \int_{\Omega_{n+1}}\left|\nabla p_{h}\right| d \mathbf{x}_{n+1} \mapsto \min ,
\end{gathered}
$$

subject to the quadratic inequality constraints for any $V=V_{n+1} \in \mathcal{T}_{H}$

$$
-\frac{1}{2} \int_{V_{n+1}} \varrho_{n+1}\left|\mathbf{v}_{h}\right|^{2} d \mathbf{x}-\Delta t \int_{\partial V_{n+1}} p_{h} \mathbf{v}_{h} \cdot \mathbf{n} d \sigma+\int_{V_{n}} \varrho E_{n} d \mathbf{x}_{n} \geq 0 .
$$

- From the E.O.S., compute $\bar{p}_{n+1}=\frac{\gamma-1}{\left|V_{n+1}\right|} \int_{V_{n+1}} \varrho_{n+1} \varepsilon_{n+1} d \mathbf{x}_{n+1}=$

$$
\frac{\gamma-1}{\left|V_{n+1}\right|}\left[\int_{V_{n}} \varrho_{n} E_{n} d \mathbf{x}_{n}-\Delta t \int_{\partial V_{n+1}} p_{h} \mathbf{v}_{h} \cdot \mathbf{n} d \sigma-\frac{1}{2} \int_{V_{n+1}} \varrho_{n+1}\left|\mathbf{v}_{h}\right|^{2} d \mathbf{x}\right] \geq 0
$$

Computational Issues

The nonlinear TV functional is non－elliptic．In practice，we approximate it with a nonlinear elliptic one：

$$
\left|\nabla p_{h}\right| \approx\left\{\begin{array}{rl}
\frac{1}{\left|\nabla p_{h}\right|}\left|\nabla p_{h}\right|^{2}, & \text { if }\left|\nabla p_{h}\right| \geq \delta, \\
\frac{1}{\delta}\left|\nabla p_{h}\right|^{2}, & \text { if }\left|\nabla p_{h}\right|<\delta,
\end{array}=g_{\delta}\left(\left|\nabla p_{h}\right|\right)\left|\nabla p_{h}\right|^{2},\right.
$$

for a mesh－dependent tolerance δ ．The approximation to the ROF functional gives rise to a quadratic（matrix－vector）functional

$$
\mathcal{J}(\mathbf{v}) \equiv \frac{1}{2} \mathbf{v}^{T}(M+\epsilon A(\mathbf{v})) \mathbf{v}-\mathbf{v}^{T} \mathbf{b} \mapsto \min .
$$

M is the mass－matrix and A comes from the non－linear elliptic form

$$
a(u, \varphi)=\int_{\Omega} g_{\delta}(|\nabla u|) \nabla u \cdot \nabla \varphi d \mathbf{x}
$$

Computational Issues

The overall minimization procedure is based on monotone Gauss-Seidel iterations within Picard linearization. That is, for a current iterate \mathbf{v} we perform a loop over all indices i. At every step i, based on the unit coordinate vector e_{i}, we solve 1D quadratic minimization problem:

$$
\mathcal{J}\left(\mathbf{v}+t \mathbf{e}_{i}\right) \mapsto \min , t \in \mathbb{R},
$$

subject to the quadratic inequality constraints. The set of constraints provides a set of intervals where $t \in \mathbb{R}$ can vary. All the intervals contain the origin. Thus the intersection of all intervals is non-empty.

In summary, each 1D minimization step involves finding minimum of a (scalar) quadratic functional over a (scalar) interval. This ensures the monotonicity of the process.
One monotone Gauss-Seidel loop is completed after all indices i are visited.

Entropy

Introducing the fluxes

$$
\mathbf{f}_{i}=p\left[\begin{array}{c}
0 \\
\mathbf{e}_{i} \\
0
\end{array}\right]+v_{i}\left[\begin{array}{c}
\varrho \\
\varrho \mathbf{v} \\
\varrho E+p
\end{array}\right], \quad \mathbf{e}_{i} \in \mathbb{R}^{d},
$$

the original Euler equations take the vector form

$$
\frac{\partial \widehat{\boldsymbol{\eta}}}{\partial t}+\sum_{j=1}^{d} \frac{\partial \mathbf{f}_{j}}{\partial x_{j}}=0
$$

Here $\widehat{\boldsymbol{\eta}}=\left(\eta_{k}\right)_{k=0}^{d+1}$ is the vector of the conserved variables：

$$
\eta_{0}=\varrho, \boldsymbol{\eta}=\left(\eta_{k}\right)_{k=1}^{d}=\varrho \mathbf{v}, \text { and } \eta_{d+1}=\varrho E,
$$

Entropy

The E．O．S．gives

$$
p=(\gamma-1) \varrho\left(E-\frac{1}{2}|\mathbf{v}|^{2}\right)=(\gamma-1)\left(\eta_{d+1}-\frac{1}{2}|\boldsymbol{\eta}|^{2} / \eta_{0}\right) .
$$

Thus，in terms of the conserved variables $\left(\eta_{k}\right)$

$$
\mathbf{f}_{i}=(\gamma-1)\left(\eta_{d+1}-\frac{1}{2}|\boldsymbol{\eta}|^{2} / \eta_{0}\right)\left[\begin{array}{c}
0 \\
\mathbf{e}_{i} \\
0
\end{array}\right]+\left[\begin{array}{c}
\eta_{i} \\
\frac{\eta_{i}}{\eta_{0}} \boldsymbol{\eta} \\
\frac{\eta_{i}}{\eta_{0}}\left(\gamma \eta_{d+1}-\frac{\gamma-1}{2} \frac{\left.1 \boldsymbol{\eta}\right|^{2}}{\eta_{0}}\right)
\end{array}\right] .
$$

Entropy

The entropy function is

$$
\begin{aligned}
U=U(\widehat{\boldsymbol{\eta}})=U\left(\eta_{0}, \boldsymbol{\eta}, \eta_{d+1}\right) & =-\varrho \log \left(\frac{\varepsilon}{\varrho^{\gamma-1}}\right) \\
& =-\eta_{0} \log \left(\frac{\eta_{d+1}-\frac{1}{2} \frac{|\boldsymbol{\eta}|^{2}}{\eta_{0}}}{\eta_{0}^{\gamma}}\right)
\end{aligned}
$$

The entropy fluxes are

$$
F_{j}=U v_{j}=U \frac{\eta_{j}}{\eta_{0}} .
$$

The following relations hold，for any $k=0, \ldots, d+1$ and $j=1, \ldots, d$ ，

$$
\nabla_{\widehat{\eta}} U \cdot \frac{\partial \mathbf{f}_{j}}{\partial \eta_{k}}=\frac{\partial F_{j}}{\partial \eta_{k}} .
$$

Entropy Inequality

This property shows that the original（vector）conservation law

$$
\frac{\partial \widehat{\boldsymbol{\eta}}}{\partial t}+\sum_{j=1}^{d} \frac{\partial \mathbf{f}_{j}}{\partial x_{j}}=0
$$

implies the（scalar）conservation law（assuming enough smoothness）

$$
\frac{\partial U}{\partial t}+\sum_{j=1}^{d} \frac{\partial F_{j}}{\partial x_{j}}=0
$$

Convexity of U and a limit in $\epsilon \mapsto 0$ of an elliptically perturbed system leads to the entropy inequality $\left(F_{j}=U v_{j}\right)$

$$
\frac{\partial U}{\partial t}+\sum_{j=1}^{d} \frac{\partial\left(v_{j} U\right)}{\partial x_{j}}=\frac{\partial U}{\partial t}+\operatorname{div}(U \mathbf{v}) \leq 0
$$

Entropy Inequality

Since $U=-\varrho s, s: e^{s}=\frac{E-\frac{1}{2}|\mathbf{v}|^{2}}{\varrho^{\gamma-1}}$ ，the entropy inequality reads

$$
\frac{\partial(-\varrho s)}{\partial t}+\operatorname{div}(-\varrho s \mathbf{v}) \leq 0 .
$$

In Lagrangian coordinates，it takes the form：

$$
\frac{\partial}{\partial t} \int_{V(t)} \varrho s d \mathbf{x} \geq 0
$$

In practice，we can use the inequality（since the mass is constant）

$$
\frac{1}{\int_{V_{n+1}} \varrho d x} \int_{V_{n+1}} \varrho s d \mathbf{x} \geq \frac{1}{\int_{V_{n}} \varrho d x} \int_{V_{n}} \varrho s d \mathbf{x}
$$

Discrete Entropy Inequality

That is，the average value of s increases：

$$
\bar{s}_{n+1} \geq \bar{s}_{n}
$$

We may as well assume that the average value of

$$
e^{s}=\frac{E-\frac{1}{2}|\mathbf{v}|^{2}}{\varrho^{\gamma-1}}=\frac{\varepsilon}{\varrho^{\gamma-1}}
$$

increases．Hence，for the average internal energy $\bar{\varepsilon}=\frac{1}{m(V)} \int_{V} \varrho \varepsilon d \mathbf{x}$ ， the following discrete entropy inequality holds：

$$
\bar{\varepsilon}_{n+1} \geq\left(\frac{\varrho_{n+1}}{\varrho_{n}}\right)^{\gamma-1} \bar{\varepsilon}_{n}=\left(\frac{\left|V_{n}\right|}{\left|V_{n+1}\right|}\right)^{\gamma-1} \bar{\varepsilon}_{n}
$$

Discrete Entropy Inequality

Thus in the recovery procedure，we can use the stronger inequality

$$
\begin{gathered}
-\frac{1}{2} \int_{V_{n+1}} \varrho_{n+1}\left|\mathbf{v}_{h}\right|^{2} d \mathbf{x}-\Delta t \int_{\partial V_{n+1}} p_{h} \mathbf{v}_{h} \cdot \mathbf{n} d \sigma+\int_{V_{n}} \varrho_{n} E_{n} d \mathbf{x}_{n} \\
\left(=\int_{V_{n+1}} \varrho \varepsilon_{n+1} d \mathbf{x}\right) \geq\left(\frac{\left|V_{n}\right|}{\left|V_{n+1}\right|}\right)^{\gamma-1} \int_{V_{n}} \varrho_{n} \varepsilon_{n} d \mathbf{x}
\end{gathered}
$$

This inequality poses the challenge to find a feasible \mathbf{v}_{h} that satisfies
all the quadratic inequality constraints（for all $V \in \mathcal{T}_{H}$ ）．

Note that the simpler inequalities（with zero on the r．h．s．）are satisfied with $\mathbf{v}_{h}=0$ ．

Numerical Illustration

At $t=0, p \approx 0$ outside a single volume（square）$V \in \mathcal{T}_{H}$ and p is equal to a constant on V such that the total energy $\int_{\Omega} \rho E d \mathbf{x}=1$ ．Also， $\mathbf{v}=0$ and $\rho=1$ initially．We keep $\mathbf{v} \cdot \mathbf{n}=0$ on $\partial \Omega$ for $t \geq 0$ ．

The tests show conversion of internal energy into kinetic and vice－versa．

Numerical Illustration

Figure 1：Initial mesh and recovered pressure．

Numerical Illustration

Figure 2：Recovered pressure at time $t=0.0994$ ．

Numerical Illustration

Figure 3：Recovered pressure at time $t=0.200$ ．

Numerical Illustration

Figure 4：Recovered pressure at time $t=0.289$ ．

Numerical Illustration

Figure 5：Recovered pressure at time $t=0.352$ ．

Numerical Illustration

Figure 6: Recovered pressure at time $t=0.430$.

Numerical Illustration

Figure 7：Recovered pressure at time $t=0.534$ ．

Numerical Illustration

Figure 8：Recovered pressure at time $t=0.639$ ．

Numerical Illustration

Figure 9：Recovered pressure at time $t=0.754$ ．

Numerical Illustration

Figure 10: Recovered pressure at time $t=0.857$.

Numerical Illustration

Figure 11：Recovered pressure at time $t=0.969$ ．

Numerical Illustration

Figure 12：Moved mesh at time $t=0.0994$ ．

Numerical Illustration

Figure 13：Moved mesh at time $t=0.200$ ．

Numerical Illustration

Figure 14：Moved mesh at time $t=0.289$ ．

Numerical Illustration

Figure 15: Moved mesh at time $t=0.352$.

Numerical Illustration

Figure 16: Moved mesh at time $t=0.430$.

Numerical Illustration

Figure 17: Moved mesh at time $t=0.534$.

Numerical Illustration

Figure 18：Moved mesh at time $t=0.639$ ．

Numerical Illustration

Figure 19：Moved mesh at time $t=0.754$ ．

Numerical Illustration

Figure 20：Moved mesh at time $t=0.857$ ．

Numerical Illustration

Figure 21: Moved mesh at time $t=0.969$.

Numerical Illustration：Symmetry

Figure 22：Recovered pressure（rotated）at time $t=$

Conclusions

- We have proposed new conservative fi nite volume schemes (for Lagrangian hydrodynamics).
- They are based on standard integral form of the conservation laws and utilize non-oscillatory (TV based) function recovery.
- The function recovery procedures seem to be able to replace traditionally used "artifi cial viscosity"and limiters.
- The local mesh refi nement used in the function recovery is essential and needs further study for effi ciency. It can easily destroy symmetry.
- The most expensive part in the computation is the constrained minimization with quadratic inequality constraints. To speed it up, we may need a multilevel procedure (not as straightforward due to the quadratic inequalities).
- The monotone Gauss-Seidel in the pressure recovery has provable mesh-independent convergence (there are no inequalities).
■ Extension to higher order integral moments is feasible. This will lead to new DG (discontinuous Galerkin) schemes.

[^0]: \dagger Work performed under the auspices of the U.S. Department of Enerq\|yy

