Moments, Krylov subspace methods, model reduction and RCWA in elipsometry

Zdeněk Strakoš

Academy of Sciences and Charles University, Prague http://www.cs.cas.cz/strakos

Thanks to the collaborators

Gene H. Golub
Anne Greenbaum
Gerard Meurant
Dianne P. O'Leary
Chris Paige
Petr Tichý
John Hench

Historical remark on iterative methods

1950 - Iterative methods for elliptic PDE

- Ph.D. Thesis by D. Young at Harvard (published in 1954)

1951, 1952 - Lanczos algorithm, conjugate gradient method by C. Lanczos, M. Hestenes and E. Stiefel

1962 - Book Matrix Iterative Analysis by R. Varga
1971 - Book Iterative methods by D. Young

1971 - Lecture of J. Reid in Dundee (published in 1971)
1971 - Ph.D. Thesis of C.C. Paige at the University of London (published in 1972, 1976 and 1980)

Projections onto Krylov subspaces

$$
A x=b, \quad A \in \mathbb{C}^{N \times N}, \quad r_{0}=b-A x_{0}
$$

Here x_{n} approximates the solution x using the projection onto low dimensional subspaces

$$
\mathcal{K}_{n}\left(A, r_{0}\right) \equiv \operatorname{span}\left\{r_{0}, A r_{0}, \cdots, A^{n-1} r_{0}\right\}
$$

Nonlinearity and moments

The projection process using Krylov subspaces is highly nonlinear in A and it depends on r_{0},

$$
x_{n} \in \mathcal{K}_{n}\left(A, r_{0}\right) \equiv \operatorname{span}\left\{r_{0}, A r_{0}, \cdots, A^{n-1} r_{0}\right\}
$$

$\mathcal{K}_{n}\left(A, r_{0}\right)$ accumulate the dominant information of A with respect to r_{0}.
Unlike in the power method for computing the single dominant eigenspace, here all the information accumulated along the way is used, see Parlett (1980), Example 12.1.1.

The idea of projections using Krylov subspaces is in a fundamental way linked with the problem of moments.

The story goes back to Gauss (1814).

Outline

1. Krylov subspace methods as matching moments model reduction
2. Convergence of $C G$ in the presence of close eigenvalues
3. Gauss-Christoffel quadrature can be sensitive to small perturbations of the distribution function
4. $C G$ in finite precision arithmetic
5. Application to scattering amplitude estimation in elipsometry

1 : Matching moments

Consider a non-decreasing distribution function $\omega(\lambda), \lambda \geq 0$ with the moments given by the Riemann-Stieltjes integral

$$
\xi_{k}=\int_{0}^{\infty} \lambda^{k} d \omega(\lambda), \quad k=0,1, \ldots
$$

Find the distribution function $\omega^{(n)}(\lambda)$ with n points of increase $\lambda_{i}^{(n)}$ which matches the first $2 n$ moments for the distribution function $\omega(\lambda)$,

$$
\int_{0}^{\infty} \lambda^{k} d \omega^{(n)}(\lambda) \equiv \sum_{i=1}^{n} \omega_{i}^{(n)}\left(\lambda_{i}^{(n)}\right)^{k}=\xi_{k}, \quad k=0,1, \ldots, 2 n-1
$$

1 : Gauss-Christoffel quadrature

Clearly,

$$
\int_{0}^{\infty} \lambda^{k} d \omega(\lambda)=\sum_{i=1}^{n} \omega_{i}^{(n)}\left(\lambda_{i}^{(n)}\right)^{k}, \quad k=0,1, \ldots, 2 n-1
$$

represents the n-point Gauss-Christoffel quadrature, see
C. F. Gauss, Methodus nova integralium valores per approximationem inveniendi, (1814),
C. G. J. Jacobi, Über Gauss' neue Methode, die Werthe der Integrale näherungsweise zu finden, (1826),
and the description given in H. H. J. Goldstine, A History of Numerical Analysis from the 16th through the 19th Century, (1977).

With no loss of generality we assume $\xi_{0}=1$.

1 : Model reduction via matching moments I

Gauss-Christoffel quadrature formulation:

$$
\int_{0}^{\infty} f(\lambda) d \omega(\lambda) \approx \sum_{i=1}^{n} \omega_{i}^{(n)} f\left(\lambda_{i}^{(n)}\right)
$$

where the reduced model given by the distribution function with n points of increase $\omega^{(n)}$ matches the first $2 n$ moments

$$
\int_{0}^{\infty} \lambda^{k} d \omega(\lambda)=\sum_{i=1}^{n} \omega_{i}^{(n)}\left(\lambda_{i}^{(n)}\right)^{k}, \quad k=0,1, \ldots, 2 n-1
$$

1 : Stieltjes recurrence

Let $p_{1}(\lambda) \equiv 1, p_{2}(\lambda), \ldots, p_{n+1}(\lambda)$ be the first $n+1$ orthonormal polynomials corresponding to the distribution function $\omega(\lambda)$. Then, writing $P_{n}(\lambda)=\left(p_{1}(\lambda), \ldots, p_{n}(\lambda)\right)^{T}$,

$$
\lambda P_{n}(\lambda)=T_{n} P_{n}(\lambda)+\delta_{n+1} p_{n+1}(\lambda) e_{n}
$$

represents the Stieltjes recurrence (1883-4), with the Jacobi matrix

$$
T_{n} \equiv\left(\begin{array}{cccc}
\gamma_{1} & \delta_{2} & & \\
\delta_{2} & \gamma_{2} & \ddots & \\
& \ddots & \ddots & \delta_{n} \\
& & \delta_{n} & \gamma_{n}
\end{array}\right), \quad \delta_{l}>0
$$

1: Matrix computation: Lanczos \equiv Stieltjes

In matrix computations, T_{n} results from the Lanczos process (1951) applied to T_{n} starting with e_{1}. Therefore $p_{1}(\lambda) \equiv 1, p_{2}(\lambda), \ldots, p_{n}(\lambda)$ are orthonormal with respect to the inner product

$$
\left(p_{s}, p_{t}\right) \equiv \sum_{i=1}^{n}\left|\left(z_{i}^{(n)}, e_{1}\right)\right|^{2} p_{s}\left(\theta_{i}^{(n)}\right) p_{t}\left(\theta_{i}^{(n)}\right),
$$

where $z_{i}^{(n)}$ is the orthonormal eigenvector of T_{n} corresponding to the eigenvalue $\theta_{i}^{(n)}$, and $p_{n+1}(\lambda)$ has the roots $\theta_{i}^{(n)}, i=1, \ldots, n$.
Consequently,

$$
\omega_{i}^{(n)}=\left|\left(z_{i}^{(n)}, e^{1}\right)\right|^{2}, \quad \lambda_{i}^{(n)}=\theta_{i}^{(n)},
$$

Golub and Welsh (1969),
Meurant and S, Acta Numerica (2006).

1 : Linear algebraic equation

Given $A x=b \quad$ with an HPD $A \in \mathbb{C}^{N \times N}, r_{0}=b-A x_{0}, w_{1}=r_{0} /\left\|r_{0}\right\|$. Assume, for simplicity of notation, $\operatorname{dim}\left(\mathcal{K}_{n}\left(A, r_{0}\right)\right)=n$.

Consider the spectral decomposition

$$
A=S \operatorname{diag}\left(\lambda_{i}\right) S^{*}
$$

where for clarity of exposition we assume that the eigenvalues are distinct,

$$
0<\lambda_{1}<\ldots<\lambda_{N}, \quad S=\left[s_{1}, \ldots, s_{N}\right]
$$

A and $w_{1}\left(b, x_{0}\right)$ determine the distribution function $\omega(\lambda)$ with N points of increase λ_{i} and weights $\omega_{i}=\left|\left(s_{i}, w_{1}\right)\right|^{2}, i=1, \ldots, N$.

1 : Distribution function $\omega(\lambda)$

1 : Model reduction via matching moments II

Matrix formulation:

$$
\begin{aligned}
\int_{0}^{\infty} \lambda^{k} d \omega(\lambda) & =\sum_{i=1}^{N} \omega_{j}\left(\lambda_{j}\right)^{k}=w_{1}^{*} A^{k} w_{1}, \\
\sum_{i=1}^{n} \omega_{i}^{(n)}\left(\lambda_{i}^{(n)}\right)^{k} & =\sum_{i=1}^{n} \omega_{i}^{(n)}\left(\theta_{i}^{(n)}\right)^{k}=e_{1}^{T} T_{n}^{k} e_{1} .
\end{aligned}
$$

matching the first $2 n$ moments therefore means

$$
w_{1}^{*} A^{k} w_{1} \equiv e_{1}^{T} T_{n}^{k} e_{1}, \quad k=0,1, \ldots, 2 n-1
$$

1 : Conjugate gradients (CG) for $A x=b$

The A-norm of the error is minimal! See Elman, Silvester and Wathen (2005), p. 71.

$$
\left\|x-x_{n}\right\|_{A}=\min _{u \in x_{0}+\mathcal{K}_{n}\left(A, r_{0}\right)}\|x-u\|_{A}
$$

with the formulation via the Lanczos process, $w_{1}=r_{0} /\left\|r_{0}\right\|$,

$$
A W_{n}=W_{n} T_{n}+\delta_{n+1} w_{n+1} e_{n}^{T}, \quad T_{n}=W_{n}^{*}(A) A W_{n}(A)
$$

and the CG approximation given by

$$
T_{n} y_{n}=\left\|r_{0}\right\| e_{1}, \quad x_{n}=x_{0}+W_{n} y_{n}
$$

1 : Alternative descriptions

- Stay with A, b, r_{0}, w_{1} and work with the matrix formulation using the Lanczos process (CG) applied to A with w_{1}.
- Using the basis of eigenvectors S, the matrix formulation reduces to the mathematically equivalent polynomial formulation, Lanczos (CG) reduces to the Stieltjes process applied to the distribution function $\omega(\lambda)$.

In both descriptions the n-th step gives the Jacobi matrix T_{n} and the distribution function $\omega_{n}(\lambda)$.

The relationship was pointed out by Hestenes and Stiefel (1952), ... nice Ph.D. Thesis by Kent (1989, Stanford), book by B. Fischer (1996), paper by Fischer and Freund (1992).

$1: C G \equiv$ matrix formulation of the Gauss Q

$$
\begin{array}{rlr}
A x= & b, x_{0} \\
\uparrow & \longleftrightarrow & \int_{\zeta}^{\xi} \lambda^{-1} d \omega(\lambda) \\
T_{n} y_{n}=\left\|r_{0}\right\| e_{1} \\
x_{n}=x_{0}+W_{n} y_{n} & \longleftrightarrow & \sum_{i=1}^{n} \omega_{i}^{(n)}\left(\theta_{i}^{(n)}\right)^{-1}
\end{array}
$$

$$
\omega^{(n)}(\lambda) \longrightarrow \omega(\lambda)
$$

1 : Matching moments model reduction

CG (Lanczos) reduces for A HPD at the step n the original model

$$
A x=b, r_{0}=b-A x_{0}
$$

to

$$
T_{n} y_{n}=\left\|r_{0}\right\| e_{1}
$$

such that the the $2 n$ moments are matched,

$$
w_{1}^{*} A^{k} w_{1}=e_{1}^{T} T_{n}^{k} e_{1}, \quad k=0,1, \ldots, 2 n-1 .
$$

1 : Comments on literature

Proofs of results related to moments or model reduction are in the literature typically based on factorizations of the matrix of moments, Golub and Welsh (1969), Dahlquist, Golub and Nash (1978), ... , Kent(1989), ... , which is also true for Antoulas (2005).

Moment matching techniques has been used for decades in computational physics and in computational chemistry, see Gordon (1968).

Gauss quadrature formulation related to the nonsymmetric Lanczos process and to the Arnoldi process was given by Freund and Hochbruck (1993), motivated by Fischer and Freund (1992). Gauss quadrature was formally extended to the complex plane by Saylor and Smolarski (2001), with motivation from inverse scattering problems in electromagnetics by Warnick (1997), . . . , Golub, Stoll and Wathen (2008).

Here we avoid using matrix of moments, and do not need any formal generalization of the Gauss quadrature formulas to the complex plane.

1 : Vorobyev moment problem - 1958, 1965

Find a linear HPD operator A_{n} on $\mathcal{K}_{n}\left(A, r_{0}\right)$ such that

$$
\begin{aligned}
A_{n} w_{1} & =A w_{1} \\
A_{n}\left(A w_{1}\right) \equiv A_{n}^{2} w_{1} & =A^{2} w_{1} \\
& \vdots \\
A_{n}\left(A^{n-2} w_{1}\right) \equiv A_{n}^{n-1} w_{1} & =A^{n-1} w_{1} \\
A_{n}\left(A^{n-1} w_{1}\right) \equiv A_{n}^{n} w_{1} & =Q_{n}\left(A^{n} w_{1}\right)
\end{aligned}
$$

where Q_{n} projects onto \mathcal{K}_{n} orthogonally to \mathcal{K}_{n}.

1 : Matching moments model reduction

By construction,

$$
w_{1}^{*} A^{k} w_{1}=w_{1}^{*} A_{n}^{k} w_{1}, \quad k=0, \ldots, n-1
$$

Since $\mathcal{K}_{n}\left(A, w_{1}\right)=\operatorname{span}\left\{w_{1}, \ldots, A^{n-1} w_{1}\right\}$, the projection

$$
Q_{n}\left(A^{n} w_{1}\right)-A_{n}^{n} w_{1}=Q_{n}\left(A^{n} w_{1}-A_{n}^{n} w_{1}\right)=0
$$

gives (note that A is Hermitian)

$$
w_{1}^{*} A^{k} w_{1}=w_{1}^{*} A_{n}^{k} w_{1}, \quad k=0,1, \ldots, 2 n-1
$$

1 : Matching moments model reduction

Using the unitary basis W_{n} with $Q_{n}=W_{n} W_{n}^{*}$,

$$
\begin{aligned}
A_{n} & =Q_{n} A Q_{n}=W_{n} W_{n}^{*} A W_{n} W_{n}^{*}=W_{n} T_{n} W_{n}^{*}, \\
A_{n}^{k} & =W_{n} T_{n}^{k} W_{n}^{*},
\end{aligned}
$$

which gives the result

$$
w_{1}^{*} A^{k} w_{1}=w_{1}^{*} A_{n}^{k} w_{1}=e_{1}^{T} T_{n}^{k} e_{1}, \quad k=0,1, \ldots, 2 n-1 .
$$

1 : Non-Hermitian Lanczos

Given a nonsingular $A \in \mathbb{C}^{N \times N}, v \in \mathbb{C}^{N}, w \in \mathbb{C}^{N}, v^{*} w=1$.
The non-Hermitian Lanczos algorithm can be written in the form

$$
\begin{aligned}
A W_{n} & =W_{n} T_{n}+\delta_{n+1} w_{n+1} e_{n}^{T} \\
A^{*} V_{n} & =V_{n} T_{n}^{*}+\beta_{n+1}^{*} v_{n+1} e_{n}^{T} \\
V_{n}^{*} W_{n} & =I_{n}, \quad T_{n}=V_{n}^{*}\left(A, v_{1}, w_{1}\right) A W_{n}\left(A, v_{1}, w_{1}\right)
\end{aligned}
$$

We assume that the algorithm does not break down in steps 1 through n (it can break down later).

1 : Non-Hermitian Lanczos

Here

$$
T_{n} \equiv\left(\begin{array}{cccc}
\gamma_{1} & \beta_{2} & & \\
\delta_{2} & \gamma_{2} & \ddots & \\
& \ddots & \ddots & \beta_{n} \\
& & \delta_{n} & \gamma_{n}
\end{array}\right), \quad \delta_{l}>0, \beta_{l} \neq 0
$$

The columns of W_{n} form a basis of $\mathcal{K}_{n}\left(A, w_{1}\right)$, while the columns of V_{n} a basis of $\mathcal{K}_{n}\left(A^{*}, v_{1}\right)$. Since $V_{n}^{*} W_{n}=I_{n}$, the oblique projector onto $\mathcal{K}_{n}\left(A, w_{1}\right)$ orthogonal to $\mathcal{K}_{n}\left(A^{*}, v_{1}\right)$ can be written as

$$
Q_{n}=W_{n} V_{n}^{*}
$$

1 : Vorobyev moment problem for N. L.

Find a linear operator A_{n} on $\mathcal{K}_{n}\left(A, w_{1}\right)$ such that

$$
\begin{aligned}
A_{n} w_{1} & =A w_{1} \\
A_{n}\left(A w_{1}\right) & =A^{2} w_{1} \\
& \vdots \\
A_{n}\left(A^{n-2} w_{1}\right) & =A^{n-1} w_{1}, \\
A_{n}\left(A^{n-1} w_{1}\right) & =\left(W_{n} V_{n}^{*}\right)\left(A^{n} w_{1}\right) .
\end{aligned}
$$

Using ortogonality to the basis vectors $v_{1}, A^{*} v_{1}, \ldots,\left(A^{*}\right)^{n-1} v_{1}$,

$$
v_{1}^{*} A^{k+n} w_{1}=v_{1}^{*} A^{k} A_{n}^{n} w_{1}, \quad k=0,1, \ldots, n-1 .
$$

1 : Matching moments in nonsymmetric L.

$$
\begin{aligned}
A_{n}= & Q_{n} A Q_{n}=W_{n} V_{n}^{*} A W_{n} V_{n}^{*}=W_{n} T_{n} V_{n}^{*}, \\
A_{n}^{n}= & W_{n} T_{n}^{n} V_{n}^{*}, \\
& v_{1}^{*} A^{k}=e_{1}^{T} T_{n}^{k} V_{n}^{*}, \quad k=0,1, \ldots, n-1,
\end{aligned}
$$

we finally get (using a simple multiplication argument for the first n moments)

$$
v_{1}^{*} A^{k} w_{1} \equiv e_{1}^{T} T_{n}^{k} e_{1}, \quad k=0,1, \ldots, 2 n-1
$$

i.e., n steps of the nonsymmetric Lanczos (or BiCG) represent the model reduction which matches $2 n$ moments.

Outline

1. Krylov subspace methods as matching moments model reduction
2. Convergence of $C G$ in the presence of close eigenvalues
3. Gauss-Christoffel quadrature can be sensitive to small perturbations of the distribution function
4. $C G$ in finite precision arithmetic
5. Application to scattering amplitude estimation in elipsometry

Exact arithmetic !

2 : Exact CG for A, w_{1} and \hat{A}, \hat{w}_{1} :

2 : Observations

- Replacing single eigenvalues by two close ones causes large delays. Clusters can not be replaced by single representatives! Matching moment property is responsible for the possibly large difference.
- The presence of close eigenvalues causes an irregular staircase-like behaviour.
- Local decrease of error says nothing about the total error.
- Stopping criteria must be based on the global information.

2 : Published explanations

The fact that the presence of close eigenvalues affects the convergence of Ritz values and therefore the rate of convergence of the conjugate gradient method is well known; see the beautiful explanation given by
van der Sluis and van der Vorst $(1986,1987)$.

It is closely related to the convergence of the Rayleigh quotient in the power method and to the so-called 'misconvergence phenomenon' in the Lanczos method, see

O'Leary, Stewart and Vandergraft (1979),
Parlett, Simon and Stringer (1982).

Outline

1. Krylov subspace methods as the matching moments model reduction
2. Convergence of CG in the presence of close eigenvalues
3. Gauss-Christoffel quadrature can be sensitive to small perturbations of the distribution function
4. $C G$ in finite precision arithmetic
5. Application to scattering amplitude estimation in elipsometry

3 : CG and Gauss-Ch. quadrature errors

At any iteration step n, CG represents the matrix formulation of the n-point Gauss quadrature of the R-S integral determined by A and r_{0},

$$
\int_{\zeta}^{\xi} f(\lambda) d \omega(\lambda)=\sum_{i=1}^{n} \omega_{i}^{(n)} f\left(\theta_{i}^{(n)}\right)+R_{n}(f) .
$$

For $f(\lambda) \equiv \lambda^{-1}$ the formula takes the form

$$
\frac{\left\|x-x_{0}\right\|_{\mathbf{A}}^{2}}{\left\|r_{0}\right\|^{2}}=n \text {-th Gauss quadrature }+\frac{\left\|x-x_{n}\right\|_{\mathbf{A}}^{2}}{\left\|r_{0}\right\|^{2}} \text {. }
$$

This was a base for the CG error estimation in
[DaGoNa-78, GoFi-93, GoMe-94, GoSt-94, GoMe-97, ...]

3 : Sensitivity of the Gauss-Ch. Quadrature

3 : Simplified problem

3 : Sensitivity statement

1. Gauss-Christoffel quadrature can be highly sensitive to small changes in the distribution function of the approximated integral.
In particular, the difference between the corresponding quadrature approximations (using the same number of quadrature nodes) can be many orders of magnitude larger than the difference between the integrals being approximated.
2. This sensitivity in Gauss-Christoffel quadrature can be observed for discontinuous, continuous, and even analytic distribution functions, and for analytic integrands uncorrelated with changes in the distribution functions and with no singularity close to the interval of integration.

Outline

1. Krylov subspace methods as matching moments model reduction
2. Convergence of $C G$ in the presence of close eigenvalues
3. Gauss-Christoffel quadrature can be sensitive to small perturbations of the distribution function
4. $C G$ in finite precision arithmetic
5. Application to scattering amplitude estimation in elipsometry

4 : Exact and FP CG applied to A, w_{1}

4 : Observations - FP CG

- Rounding errors can cause large delays.
- They may cause an irregular staircase-like behaviour.
- Local decrease of error says nothing about the total error.
- Stopping criteria must be based on global information.
- It must be justified by rigorous rounding error analysis.

Golub and S (1994),
S and Tichý (2002, 2005),
Comput. Methods Appl. Mech. Engrg. (2003).

4 : Close to the exact CG for $\hat{A} \hat{x}=\hat{b}$???

Mathematical model of finite precision Lanczos and CG computations, see

Paige (1971-80), Greenbaum (1989), S (1991), Greenbaum and S (1992), (also Parlett (1990)),

Recent review and update Meurant and S, Acta Numerica, (2006).

Outline

1. Krylov subspace methods as matching moments model reduction
2. Convergence of $C G$ in the presence of close eigenvalues
3. Gauss-Christoffel quadrature can be sensitive to small perturbations of the distribution function
4. $C G$ in finite precision arithmetic
5. Application to scattering amplitude estimation in elipsometry

5 : Diffraction of light

Consider Maxwell equations of electrodynamics for space with no sources

$$
\begin{array}{ll}
\operatorname{div} \widehat{\mathbf{E}}=0, & \operatorname{div} \widehat{\mathbf{H}}=0, \\
\operatorname{curl} \widehat{\mathbf{E}}=-\mu \frac{\partial \widehat{\mathbf{H}}}{\partial t}, & \operatorname{curl} \widehat{\mathbf{H}}=\varepsilon \frac{\partial \widehat{\mathbf{E}}}{\partial t},
\end{array}
$$

which gives the wave equations corresponding to the space invariant ε, μ,

$$
\Delta \widehat{\mathbf{E}}=\varepsilon \mu \frac{\partial^{2} \widehat{\mathbf{E}}}{\partial t^{2}}, \quad \Delta \widehat{\mathbf{H}}=\varepsilon \mu \frac{\partial^{2} \widehat{\mathbf{H}}}{\partial t^{2}} .
$$

5 : Problem setting

Maxwell equations for the conductive material

$$
\begin{array}{ll}
\operatorname{div} \widehat{\mathbf{E}}=0, & \operatorname{div} \widehat{\mathbf{H}}=0 \\
\operatorname{curl} \widehat{\mathbf{E}}=-\mu \frac{\partial \widehat{\mathbf{H}}}{\partial t}, & \operatorname{curl} \widehat{\mathbf{H}}=\varepsilon \frac{\partial \widehat{\mathbf{E}}}{\partial t}+\gamma \widehat{\mathbf{E}}
\end{array}
$$

If ε and μ are space invariant, then we get, similarly as above, the generalized wave equations

$$
\Delta \widehat{\mathbf{E}}=\varepsilon \mu \frac{\partial^{2} \widehat{\mathbf{E}}}{\partial t^{2}}+\gamma \mu \frac{\partial \widehat{\mathbf{E}}}{\partial t}, \quad \Delta \widehat{\mathbf{H}}=\varepsilon \mu \frac{\partial^{2} \widehat{\mathbf{H}}}{\partial t^{2}}+\gamma \mu \frac{\partial \widehat{\mathbf{H}}}{\partial t} .
$$

5 : Problem setting

We will consider only time-harmonic fields, where any field vector $\widehat{\mathbf{V}}(x, y, z, t)$ will be represented by its associated space dependent complex vector $\mathbf{V}(x, y, z)$ such that

$$
\widehat{\mathbf{V}}(x, y, z, t)=\operatorname{Re}[\mathbf{V}(x, y, z) \exp (-\mathbf{i} \omega t)],
$$

Maxwell's equations take the form

$$
\begin{array}{ll}
\operatorname{div} \mathbf{E}=0, & \operatorname{div} \mathbf{H}=0 \\
\operatorname{curl} \mathbf{E}=\mathbf{i} \mu \omega \mathbf{H}, & \operatorname{curl} \mathbf{H}=-\mathbf{i} \varepsilon \omega \mathbf{E}
\end{array}
$$

5 : Problem setting

If the electric permittivity ε and the magnetic permeability μ are space invariant,

$$
\Delta \mathbf{E}=-\varepsilon \mu \omega^{2} \mathbf{E}, \quad \Delta \mathbf{H}=-\varepsilon \mu \omega^{2} \mathbf{H} .
$$

In our application, the permeability, μ, is space invariant, but the permittivity, ε, may be space dependent, $\varepsilon=\varepsilon(x, y, z)$,

$$
\Delta \mathbf{H}=-\varepsilon \mu \omega^{2} \mathbf{H}-\frac{1}{\varepsilon} \operatorname{grad} \varepsilon \otimes \operatorname{curl} \mathbf{H} .
$$

5 : Simple 2D x-periodic grating

Rectangular grating.

5 : TE polarization

The electric field in the TE polarization is then described by the equation

$$
\Delta E_{y}=-k_{0}^{2} \varepsilon_{r}(x) E_{y}, \quad E_{x}=E_{z}=0
$$

with the magnetic field

$$
\left(H_{x}, 0, H_{z}\right)=\frac{\mathbf{i}}{\mu_{0} \omega}\left(\frac{\partial E_{y}}{\partial z}, 0,-\frac{\partial E_{y}}{\partial x}\right) .
$$

5 : TM polarization

The magnetic field in the TM polarization is described by the equation

$$
\Delta H_{y}-\frac{1}{\varepsilon_{r}(x)} \frac{d \varepsilon_{r}(x)}{d x} \frac{\partial H_{y}}{\partial x}=-k_{0}^{2} \varepsilon_{r}(x) H_{y}, \quad H_{x}=H_{z}=0,
$$

with the electric field

$$
\left(E_{x}, 0, E_{z}\right)=\frac{\mathbf{i}}{\varepsilon_{0} \varepsilon_{r}(x) \omega}\left(-\frac{\partial H_{y}}{\partial z}, 0, \frac{\partial H_{y}}{\partial x}\right) .
$$

5 : Diffraction on a periodic media

Discrete diffraction orders

Floquet conditions, separation of variables

$$
F(x, z) \equiv e^{-\mathbf{i} k_{\mathrm{I}} x \sin \theta} E_{y}(x, z)
$$

is strictly periodic in x with a period p. Using the Fourier expansion,

$$
E_{y}(x, z)=\sum_{s=-\infty}^{+\infty} f_{s}(z) e^{\mathbf{i} k_{x s} x}
$$

where

$$
k_{x s} \equiv k_{\mathrm{I}} \sin \theta+s \frac{2 \pi}{p}=k_{0}\left(n_{\mathrm{I}} \sin \theta+s \frac{\lambda}{p}\right), \quad s=0,1,-1, \ldots
$$

5 : RCWA (TE polarization)

In the homogenous superstrate and substrate ε_{r} is constant, and E_{y} solves the Helmholtz equation

$$
\begin{gathered}
\Delta E_{y}=-k_{\ell}^{2} E_{y}, \quad E_{x}=E_{z}=0, \quad \ell=\mathrm{I}, \mathrm{II} \\
{\left[\frac{d^{2}}{d z^{2}}+k_{\ell, z s}^{2}\right] f_{s}^{(\ell)}(z)=0, \quad \ell=\mathrm{I}, \mathrm{II}, \quad s=0,1,-1, \ldots,}
\end{gathered}
$$

where

$$
k_{\ell, z s}^{2}=k_{\ell}^{2}-k_{x s}^{2}
$$

A general solution can be written as

$$
f_{s}^{(\ell)}(z)=A_{s}^{(\ell)} e^{-\mathbf{i} k_{\ell, z s} z}+B_{s}^{(\ell)} e^{\mathbf{i} k_{\ell, z s} z}
$$

5 : RCWA

In the grating region, $\varepsilon_{r}(x)$ represents a periodic function with respect to x with period p. It can therefore be expressed by its Fourier series

$$
\varepsilon_{r}(x)=\sum_{h=-\infty}^{+\infty} \epsilon_{h} e^{\mathbf{i} h \frac{2 \pi}{p} x}
$$

For the TM polarization it is convenient to consider also the subsequent Fourier expansions (not used here)

$$
\frac{1}{\varepsilon_{r}(x)}=\sum_{h=-\infty}^{+\infty} a_{h} e^{\mathbf{i} h \frac{2 \pi}{p} x}
$$

5 : RCWA (TE polarization)

Fourier amplitudes in the grating region are coupled,
$\sum_{j=-\infty}^{+\infty}\left\{\left[\frac{d^{2}}{d z^{2}}-k_{x j}^{2}\right] f_{j}(z)\right\} e^{\mathbf{i} j \frac{2 \pi}{p} x}=-k_{0}^{2} \sum_{j=-\infty}^{+\infty}\left\{\sum_{s=-\infty}^{+\infty} \epsilon_{j-s} f_{s}(z)\right\} e^{\mathbf{i} j \frac{2 \pi}{p} x}$

Equating for the index j leaves the result

$$
\frac{d^{2} f_{j}(z)}{d z^{2}}=k_{x j}^{2} f_{j}(z)-k_{0}^{2} \sum_{s=-\infty}^{+\infty} \epsilon_{j-s} f_{s}(z)
$$

5 : RCWA (TE polarization)

Product of two Fourier expansions:

$$
\begin{aligned}
e^{-\mathbf{i} k_{\mathrm{I}} x \sin \theta} \varepsilon_{r} E_{y} & =\sum_{h=-\infty}^{+\infty} \epsilon_{h} e^{\mathbf{i} h \frac{2 \pi}{p} x} \sum_{s=-\infty}^{+\infty} f_{s}(z) e^{\mathbf{i} s \frac{2 \pi}{p} x} \\
& =\sum_{j=-\infty}^{+\infty}\left\{\sum_{s=-\infty}^{+\infty} \epsilon_{j-s} f_{s}(z)\right\} e^{\mathbf{i} j \frac{2 \pi}{p} x} \\
& =\lim _{N \rightarrow \infty} \sum_{j=-N}^{N}\left(\lim _{M \rightarrow \infty} \sum_{s=-M}^{M} \epsilon_{j-s} f_{s}(z)\right) e^{\mathbf{i} j \frac{2 \pi}{p} x}
\end{aligned}
$$

RCWA (TE polarization)

Simultaneous truncation - how fast does it converge?

$$
e^{-\mathbf{i} k_{\mathrm{I}} x \sin \theta} \varepsilon_{r}(x) E_{y}(x, z)=\lim _{N \rightarrow \infty} \sum_{j=-N}^{N} \psi_{1, j}^{(N)}(z) e^{\mathbf{i} j \frac{2 \pi}{p} x},
$$

where

$$
\psi_{1, j}^{(N)}(x)=\sum_{s=-N}^{N} \epsilon_{j-s} f_{s}(z) .
$$

5 : RCWA - linear algebraic system (TE)

After discretisation and expressing the approximate solutions in terms of matrix functions, the matching of the boundary conditions gives

$$
\left[\begin{array}{cccc}
-I & I & e^{\mathbf{i} \sqrt{C} d k_{0}} & 0 \\
Y_{I} & \sqrt{C} & -\sqrt{C} e^{\mathbf{i} \sqrt{C} d k_{0}} & 0 \\
0 & e^{\mathbf{i} \sqrt{C} d k_{0}} & I & -I \\
0 & \sqrt{C} e^{\mathbf{i} \sqrt{C} d k_{0}} & -\sqrt{C} & -Y_{\mathrm{II}}
\end{array}\right]\left[\begin{array}{c}
r_{\mathrm{TE}} \\
g_{\mathrm{TE}}^{+} \\
g_{\mathrm{TE}}^{-} \\
t_{\mathrm{TE}}
\end{array}\right]=\left[\begin{array}{c}
e_{0} \\
n_{\mathrm{I}} \cos \theta e_{0} \\
0 \\
0
\end{array}\right]
$$

Here only $e_{n+1}^{T} g_{\mathrm{TE}}^{+}$is needed.

5 : RCWA - scattering amplitude - moments

Estimating the scattering amplitude is based on

$$
c^{*} A^{-1} b \approx c^{*} A_{n}^{\dagger} b
$$

where A_{n}^{\dagger} is the matrix representation of the inverse of the restricted operator A_{n},

$$
A_{n}^{\dagger}=W_{n} T_{n}^{-1} V_{n}^{*}
$$

and T_{n} matches the $2 n$ moments

$$
v_{1}^{*} A^{k} w_{1} \equiv e_{1}^{T} T_{n}^{k} e_{1}, \quad k=0,1, \ldots, 2 n-1
$$

5 : RCWA - comparison of estimates

Results with simple block preconditioning.

Conclusions

- It is good to look for interdisciplinary links and for different lines of thought. Such as linking the Krylov subspace methods with model reduction and matching moments.
- Rounding error analysis of Krylov subspace methods has had unexpected side effects such as understanding of general mathematical phenomena independent of any numerical stability issues.
- Analysis of Krylov subspace methods for solving linear problems has to deal with highly nonlinear finite dimensional phenomena.
- The pieces of the mosaic fit together.

Recent references

D. P. O'Leary, Z. S. and Petr Tichý, On sensitivity of Gauss-Christoffel quadrature, Numer. Math. 107, pp. 147-174, 2007,
J. Hench and Z. S., On the RCWA method of computing solutions of Maxwell's equations for a rectangular grating, submitted to ETNA, Jan. 2008
Z. S., Model reduction using the Vorobyev moment problem, submitted to the special issue of Numer. Alg., June 2008,
Z. S. and Petr Tichý, Estimation of $c^{*} A^{-1} b$ via matching moments, submitted to SISC, July 2008,
G. Golub, M. Stoll and A. Wathen, Approximation of the scattering amplitude and linear systems, submitted to ETNA, Dec. 2007.

Thank you!

