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445/ Historical remark on iterative methods

1950 - Iterative methods for elliptic PDE
- Ph.D. Thesis by D. Young at Harvard (published in 1954)

1951, 1952 - Lanczos algorithm, conjugate gradient method
by C. Lanczos, M. Hestenes and E. Stiefel

1962 - Book Matrix Iterative Analysis by R. Varga
1971 - Book Iterative methods by D. Young

1971 - Lecture of J. Reid in Dundee (published in 1971)

1971 - Ph.D. Thesis of C.C. Paige at the University of London
(published in 1972, 1976 and 1980)
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445/ Projections onto Krylov subspaces

Z. Strako$

Az =b, AeCVN | ry=b— Ax

|

l

Here z,, approximates the solution x using the projection onto low
dimensional subspaces

Kn(A, 7o) = span {rg, Arg, -+ , A" 'y}



4%/ Nonlinearity and moments

Z. Strako$

The projection process using Krylov subspaces is highly nonlinear in A
and it depends on rq,

T, € K,(A,r9) = span{rg, Arg,--- ,An_lro}.

Kn(A,ry) accumulate the dominant information of A with respectto r .

Unlike in the power method for computing the single dominant
eigenspace, here all the information accumulated along the way is used,
see Parlett (1980), Example 12.1.1.

The idea of projections using Krylov subspaces is in a fundamental way
linked with the problem of moments.

The story goes back to Gauss (1814).
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4%/ 1 : Matching moments

Consider a non-decreasing distribution function w(A), A > 0 with the
moments given by the Riemann-Stieltjes integral

§k=/ Nodw(\), k=0,1,...
0

Find the distribution function w(()\) with n points of increase A!™)
which matches the first 2n moments for the distribution function w(\),

/ Modo™) = Y oA = g, k=0,1,...,2n—1.
0 .

Z. Strako$



44'« 1 : Gauss-Christoffel quadrature

Clearly,

n

/ Modw(n) = Y WM, k=0,1,...,2n -1
0

1=1

represents the n-point Gauss-Christoffel quadrature, see

C. F. Gauss, Methodus nova integralium valores per approximationem
Inveniendi, (1814),

C. G. J. Jacobi, Uber Gauss’ neue Methode, die Werthe der Integrale
naherungsweise zu finden, (1826),

and the description given in H. H. J. Goldstine, A History of Numerical
Analysis from the 16th through the 19th Century, (1977).

With no loss of generality we assume &, =1 .
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% 1 : Model reduction via matching moments |

Gauss-Christoffel quadrature formulation:

where the reduced model given by the distribution function with n points
of increase w(™ matches the first 2n  moments

/ Modo(d) = Y w™AME ) k=0,1,...,2n 1.
0 i=1

Z. Strako$



4%/ 1 : Stieltjes recurrence

Let p1(A) =1,p2(A),...,pnr1(N) bethefirst n+1 orthonormal
polynomials corresponding to the distribution function w(\) .

Then, writing BP,(\) = (p1(\),...,pn(A)T,
>\Pn()\) — Tn Pn(>\) + 5n—|—1 pn—i—1(>\) €n

represents the Stieltjes recurrence (1883-4), with the Jacobi matrix

{71 02 \

02 Y2
. . 5 , 0;>0.

\ .. 5;; o )

=
I
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4%/ 1 : Matrix computation: Lanczos = Stieltjes

Z. Strako$

In matrix computations, 7, results from the Lanczos process (1951)
appliedto 7T, startingwith e;. Therefore pi(A) =1, p2(N), ..., pp(N)
are orthonormal with respect to the inner product

psapt Z| pS(e( )) (95”))’
where zi(”) IS the orthonormal eigenvector of 7, corresponding to the
eigenvalue 9§”), and p,.1()\) has the roots 9§">,¢:1,...,n.
Consequently,

o =P N = 6,

Golub and Welsh (1969), ... ... ,
Meurant and S, Acta Numerica (2006)
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4%/ 1 : Linear algebraic equation

Given Az =0b withanHPD A € CY*N rq=0b— Axg, wi = ro/||ro]| .
Assume, for simplicity of notation, dim(XC,(A,r9)) = n.

Consider the spectral decomposition

where for clarity of exposition we assume that the eigenvalues are distinct,

0 < A < ... < Ay, S:[Sl,...,SN].

A and wi(b,zo) determine the distribution function w(\) with
N points of increase ); and weights w; = |(s;,w1)]?, i=1,...,N.

Z. Strako$ 12



1 : Distribution function w(\)
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4%/ 1 : Model reduction via matching moments Il

Matrix formulation:

/ Aodw(N) = ij A = wi AR wy,
0 i=1
DW= Y eV @) = e T
i=1 1=1

matching the first 2n moments therefore means

wi AR w, = el TFe;, k=0,1,...,2n—1.

Z. Strako$ 14



4%/ 1 : Conjugate gradients (CG) for Az =b

Z. Strako$

The A-norm of the error is minimal! See Elman, Silvester and Wathen
(2005), p. 71.

|z —znlla = min |l — ul[4
uE:cO—l—lCn(A,ro)

with the formulation via the Lanczos process, w1 = ro/||r0]|
AW, = W,Tn + Spp1wnerel , T, = WHA) AW, (A),

and the CG approximation given by

Toyn = ||roller, xn = x0 + Wypyn

15



4%/ 1 : Alternative descriptions

Z. Strako$

e Stay with A, b,rg,w; and work with the matrix formulation using the
Lanczos process (CG) appliedto A with w; .

e Using the basis of eigenvectors S , the matrix formulation reduces to
the mathematically equivalent polynomial formulation, Lanczos (CG)

reduces to the Stieltjes process applied to the distribution function w(\).

In both descriptions the n-th step gives the Jacobi matrix 7,, and the
distribution function w,, ().

The relationship was pointed out by Hestenes and Stiefel (1952), ...
nice Ph.D. Thesis by Kent (1989, Stanford), book by B. Fischer (1996),
paper by Fischer and Freund (1992).

16



Z. Strako$

Ln = xO‘i_Wnyn

445/ 1 CG = matrix formulation of the Gauss Q
Ax =b, xg — /f A dw(N)
| ¢
T T
Ty = IIro] ex — e (o)
1=1

w™ () — w(A)

17



4%/ 1 : Matching moments model reduction

CG (Lanczos) reduces for A HPD at the step n the original model

Ax = b, ro =b— Axg
to

Tryn = |Iroller,

such that the the 2n moments are matched,

wi AR w = el TFey, k=0,1,...,2n—1.

Z. Strako$ 18



4%/ 1 : Comments on literature

Z. Strako$

Proofs of results related to moments or model reduction are in the
literature typically based on factorizations of the matrix of moments,
Golub and Welsh (1969), Dahlquist, Golub and Nash (1978), ...,
Kent(1989), ..., which is also true for Antoulas (2005).

Moment matching techniques has been used for decades in computational
physics and in computational chemistry, see Gordon (1968).

Gauss quadrature formulation related to the nonsymmetric Lanczos
process and to the Arnoldi process was given by Freund and Hochbruck
(1993), motivated by Fischer and Freund (1992). Gauss quadrature was
formally extended to the complex plane by Saylor and Smolarski (2001),
with motivation from inverse scattering problems in electromagnetics by
Warnick (1997), ..., Golub, Stoll and Wathen (2008).

Here we avoid using matrix of moments, and do not need any formal
generalization of the Gauss guadrature formulas to the complex plane.

19



4%/ 1 : Vorobyev moment problem - 1958, 1965

Find a linear HPD operator A, on X,(A,ry) such that

An wp = Awl )
An (A wl) = Ai wp = A2w1 ,
A, (A" 2wy) = A"y = A" g,
Ap (A" hwy) = Afwr = Qn (A"w),

where (), projects onto K, orthogonallyto K, .

Z. Strako$



4%/ 1 : Matching moments model reduction

By construction,

wi AP w; = wiAfw,, k=0,...,n—1.
Since K,(A,w;) = span{ws, ..., A" tw;}, the projection
Qn (A" w1) — Aywr = Qn (A" w1 — Ajywi) = 0
gives (note that A is Hermitian)

wi AR w, = wiA¥w, k=0,1,...,2n—1.

Z. Strako$
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4%/ 1 : Matching moments model reduction

Using the unitary basis W,, with @, =W, W* |
A, = QnAQ, = W,W AW W* = W, T, W,
AP = W, TFWE,

n

which gives the result

wi AP w; = wi AP wy = el TFey, k=0,1,...,2n—1.

Z. Strako$



4%/ 1 : Non-Hermitian Lanczos

Z. Strako$

Given anonsingular A € CMV v e OV, w e CN,vvw = 1.

The non-Hermitian Lanczos algorithm can be written in the form

A W, = W,1T, + 5n—|—1 Wn+1 BZ )
A* Vn = Vn T,,;k + 6;;4_1 Un+1 eg ’
V,: Wn = In, Tn = V;(A,vl,wl)AWn(A,vl,wl).

We assume that the algorithm does not break down
in steps 1 through n (it can break down later).

23



44'« 1 : Non-Hermitian Lanczos

Here
( M B \

02 Y2

S
I

5n ) 6l>07ﬁl%07

\ .. 5;7: .

The columns of W, form abasisof C,(A,w;) , whilethe columns of
V, abasisof K,(A*,v;) . Since V*W, = I,, the oblique projector
onto IC,,(A,wy) orthogonalto /C,(A*,v;) can be written as

Z. Strako$



44'« 1 : Vorobyev moment problem for N. L.

Find a linear operator A,, on K, (A,w;) such that

An wr = A Wi ,
An (A wl) = A2 w1 ,
An (An_2 wl) — An_l w1 ,
An (An_l’wl) — (Wn Vn*) (A'"’fwl) .
Using ortogonality to the basis vectors vy, A*vy, ..., (A*)" oy,

i AR = vt AR AT wy, k=0,1,...,n—1.

Z. Strako$
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4« 1 : Matching moments in nonsymmetric L.

Z. Strako$

A, = QnAQ, = W,V AW,V = W, T,V ,
Ay = W, T}V>,

viA¥Y = el TPV k=0,1,...,n—1,

we finally get (using a simple multiplication argument for the first n
moments)

vi AR w = e TFey, k=0,1,...,2n—1,

l.e., n steps of the nonsymmetric Lanczos (or BICG) represent
the model reduction which matches 2n moments.

26



4%/ Outline

1. Krylov subspace methods as matching moments model reduction
2. Convergence of CG in the presence of close eigenvalues

3. Gauss-Christoffel quadrature can be sensitive to small perturbations of
the distribution function

4. CG in finite precision arithmetic
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Exact arithmetic !
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10
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|| x — X ||i — perturbed problem

|| x = X ||i — original problem

5
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iteration n
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20

difference — || nth error ||i

difference — || initial error ||i

10

iteration n
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4%/ 2 : Observations

Z. Strako$

Replacing single eigenvalues by two close ones causes large delays.

Clusters can not be replaced by single representatives! Matching
moment property is responsible for the possibly large difference.

The presence of close eigenvalues causes an irregular staircase-like
behaviour.

Local decrease of error says nothing about the total error.

Stopping criteria must be based on the global information.

30



4%/ 2 : Published explanations

The fact that the presence of close eigenvalues affects the convergence of
Ritz values and therefore the rate of convergence of the conjugate
gradient method is well known; see the beautiful explanation given by

van der Sluis and van der Vorst (1986, 1987).

It is closely related to the convergence of the Rayleigh quotient in the
power method and to the so-called ‘misconvergence phenomenon’ in the
Lanczos method, see

O’Leary, Stewart and Vandergraft (1979),
Parlett, Simon and Stringer (1982).

Z. Strako$ 31



4%/ Outline
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4%/ 3 . CG and Gauss-Ch. quadrature errors

At any iteration step n, CG represents the matrix formulation of the
n-point Gauss quadrature of the R-S integral determined by A and rq ,

5 n
/C FOdw(N) = 3w FO) + Ralh).

For f(\) = A~! the formula takes the form

2
n-th Gauss quadrature + |

This was a base for the CG error estimation in
[DaGoNa-78, GoFi-93, GoMe-94, GoSt-94, GoMe-97, ... ]

Z. Strako$ 33



44'« 3 : Sensitivity of the Gauss-Ch. Quadrature

T T T T
10° .
1070 .
quadrature error — perturbed integral
guadrature error — original integral
10_10 I I
0 5 10 15 20
iteration n
| T T T
0 difference - estimates
100 1 - difference - integrals ]
107
10'10 ! ! ! !

0 5 10 15 20
iteration n
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: 3 . Simplified problem

T T T T T T T T T

10° .
guadrature error — original integral
quadrature error — perturbed integral (2)

10 1 quadrature error — perturbed integral (4) 4
I I I I I |

0 2 4 6 8 10 12 14 16 18 20
iteration n

102 T T T T T T T T T

10°

10°H B's — original integral
[B's — perturbed integral (2)
B's — perturbed integral (4)

10_4 I I I I ! ! ! ! !

0 2 4 6 8 10 12 14 16 18 20
iteration n
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4%/ 3 : Sensitivity statement

Z. Strako$

1. Gauss-Christoffel quadrature can be highly sensitive to small changes
In the distribution function of the approximated integral.
In particular, the difference between the corresponding quadrature
approximations (using the same number of quadrature nodes) can be
many orders of magnitude larger than the difference between the
Integrals being approximated.

2. This sensitivity in Gauss-Christoffel quadrature can be observed

for discontinuous, continuous, and even analytic distribution functions,
and for analytic integrands uncorrelated with changes in the
distribution functions and with no singularity close to the interval of
Integration.

36
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44'« 4 : Exactand FP CG applied to A, w;

10° + -
-10, i
10 —— squared energy norm - FP CG
—— squared energy norm — exact CG
0 5 10 15 20
iteration n
10° H ——difference :
10—10 B

0 5 10 15 20
iteration n
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4%/ 4 : Observations - FP CG

Rounding errors can cause large delays.

They may cause an irregular staircase-like behaviour.

Stopping criteria must be based on global information.

It must be justified by rigorous rounding error analysis.

Golub and S (1994),
S and Tichy (2002, 2005),

Comput. Methods Appl. Mech. Engrg. (2003).

Z. Strako$

Local decrease of error says nothing about the total error.
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AN

44’§/ 4 - Closetotheexact CGfor As = b 2?27

Mathematical model of finite precision Lanczos and CG computations,
see

Paige (1971-80), Greenbaum (1989),
S (1991), Greenbaum and S (1992),
(also Parlett (1990)),

Recent review and update Meurant and S, Acta Numerica, (2006).

Z. Strako$ 40
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4« 5 : Diffraction of light

Consider Maxwell equations of electrodynamics for space with no sources

AN

divE = 0, divH = 0,
OE

OH .
_MW’ CU.ﬂHIEE,

curlE =

which gives the wave equations corresponding to the space invariant ¢, pu,

O2H
€ W 92

O?E

Z. Strako$



4%/ 5 : Problem setting

Maxwell equations for the conductive material

AN

divE = 0, divH = 0,
OE .

OH .
—,ug, Curlesa—l—ny,

curlE =

If £ and p are space invariant, then we get, similarly as above, the
generalized wave eqguations

O2E OF o2H oH

AE = ep— i AH = iy
SHgE TR “HgE TR

Z. Strako$

43



4%/ 5 : Problem setting

Z. Strako$

We will consider only time-harmonic fields, where any field vector

AN

V(z,y, z,t) will be represented by its associated space dependent

complex vector V (x, y, z) such that

AN

V(z,y,z,t) = Re[V(x,y,z2)exp(—iwt)],

Maxwell's equations take the form

divE = 0, divH = 0,
curlE = ipwH, curlH = —icwkE.
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4%/ 5 : Problem setting

If the electric permittivity € and the magnetic permeability ;. are space
Invariant,

AE = —cuw?E, AH = —cpw?H.

In our application, the permeability, u, is space invariant, but the
permittivity, £, may be space dependent, ¢ =¢(z,y,2) ,

1
AH = —cpw?H — ~“grade ® curlH.
£

Z. Strako$
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5 : Simple 2D z-periodic grating

Z. Strako$

Superstrate (region I)

Dt nr
z >
d
grating
D V2 Substrate (region II)
NIt

Rectangular grating.
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44'« 5 : TE polarization

The electric field in the TE polarization is then described by the equation
AE, = —kie(x)E,, E, = E, =0,

with the magnetic field

i OF OF
H:I: Hz — —y7 7_—y .
(Hs, 0, Hz) Lo W ( 0z 0 ox )

Z. Strako$



44'« 5 : TM polarization

The magnetic field in the TM polarization is described by the equation

1 deq(x) OH,
er(x) dx Oz

= —kie (x)H,, H, =H, =0,

with the electric field

i OH OH
E:C Ez — - y y .
(£, 0, E2) goer () w ( 0z 0 ox )

Z. Strako$ 48



5 : Diffraction on a periodic media

Z. Strako$

incident light scattered light

Discrete diffraction orders
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44« Floquet conditions, separation of variables

F(z,2) = e thesinbp (g 2)

IS strictly periodic in z with a period p . Using the Fourier expansion,

+0o0
Ey(ZC,Z) — Z fs(z)eikwsxv

S=—00

where

2 A
kys = krsinf + Pullig ko (nlsin9+s—> , s=0,1,—-1,...,
p p

Z. Strako$



4« 5 : RCWA (TE polarization)

In the homogenous superstrate and substrate <, is constant,

and FE, solves the Helmholtz equation

AE, = -k; E,, E,=FE, =0, (=1I]II,

A general solution can be written as

fs(e) (2) = Age) e~ ikezs 2 Bge) oike s 2

51
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4« 5 : RCWA

In the grating region, &.(x) represents a periodic function with respect
to = with period p . It can therefore be expressed by its Fourier series

—+ 00

er(x) = Z enel" T

h=—o0

For the TM polarization it is convenient to consider also the subsequent
Fourier expansions (not used here)

1 =

ih 2= g
— E ap € P
57“(55)

h=—o0

Z. Strako$
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4« 5 : RCWA (TE polarization)

Fourier amplitudes in the grating region are coupled,

= 2 R
Z {[@_k2 ] fJ(z)} et = _kg Z { Z Eijs(Z)} el T

j:—OO ]:—OO S=——00

Equating for the index j leaves the result

d*f; (2) 2
=k — kg Z €j—s fs (2

S=—00

Z. Strako$ 53



4« 5 : RCWA (TE polarization)

Product of two Fourier expansions:

+00 +00
B_ikaSineery _ Z eheih%’:v Z fs(z)eis%r:z:

h=—o0 §=—00

—+ o0 400

— Z { Z €j—s fs(z)} eij%x
j=—0o0 \s=—o0
N M
j=— s=—M

Z. Strako$

s -+ 247
)alﬂpf”.
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4« RCWA (TE polarization)

Simultaneous truncation - how fast does it converge?

e—ikI:csianr(w)Ey( — lim Z Qp

N—>oo'

where

Z. Strako$
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=

5 : RCWA - linear algebraic system (TE)

After discretisation and expressing the approximate solutions in terms of

matrix functions, the matching of the boundary conditions gives

—1I
Y7
0
0

I
VC

ei\/@dkzo
/_C ei\/adko

ei\/ﬁdko
_ Cei\/@dko
1
—/C

Here only e’ . g}, is needed.

Z. Strako$

0
0
—1I

— Y71 |
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4%/ 5 : RCWA - scattering amplitude - moments

Estimating the scattering amplitude is based on
FATYD ~ Al D,

where Al is the matrix representation of the inverse of the restricted
operator A, ,

Al = W, T v,
and 7T,, matches the 2n moments

vi AR = ef'Trey, k=0,1,...,2n—1.

Z. Strako$ 57



: 5 : RCWA - comparison of estimates

Error |c A b - c*A;lb|

10 T

10° + .
107 F .

/7 ~ Q\\\/
_4 /\\\ //
10 B \\//llllll/lll N
10° .
10° N -
\.
\.
10—10 | \'\ i
~ .
10_12* B _. \'\,\ _ .4
€ BiCG ‘
A .
ol T € (MGS) Arnoldi i
REREEE GLSQR
- — —CGNR (cX )
10*15 I I L L L L L L L
0 2 4 6 8 10 12 14 16 18 20

iteration number

Results with simple block preconditioning.
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44’« Conclusions
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It is good to look for interdisciplinary links and for different lines of
thought. Such as linking the Krylov subspace methods with model
reduction and matching moments.

Rounding error analysis of Krylov subspace methods has had
unexpected side effects such as understanding of general mathematical
phenomena independent of any numerical stability issues.

Analysis of Krylov subspace methods for solving linear problems
has to deal with highly nonlinear finite dimensional phenomena.

The pieces of the mosaic fit together.
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Thank you!
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