Lecture 3: Inexact inverse iteration with preconditioning

Alastair Spence
Department of Mathematical Sciences
University of Bath
CLAPDE, Durham, July 2008
Joint work with M. Freitag (Bath), and M. Robbé \& M. Sadkane (Brest)

(1) Introduction
(2) Preconditioned GMRES for Inverse Power Method
(3) Inexact Subspace iteration
(4) Preconditioned Rayleigh Quotient Iteration and Jacobi-Davidson
(5) Conclusions/Further Work

Outline

(1) Introduction

2 Preconditioned GMRES for Inverse Power Method
(3) Inexact Subspace iteration
4) Preconditioned Rayleigh Quotient Iteration and Jacobi-Davidson
(5) Conclusions/Further Work

Introduction

$$
A x=\lambda x, \quad \lambda \in \mathbb{C}, x \in \mathbb{C}^{n}
$$

- Lecture 2: Detect pure imaginary eigevalues of large sparse matrices
- Seek λ near a given shift σ (good estimate eg. continuation).
- A is large, sparse, nonsymmetric (discretised PDE: $A x=\lambda M x$)

Introduction

$$
A x=\lambda x, \quad \lambda \in \mathbb{C}, x \in \mathbb{C}^{n}
$$

- Lecture 2: Detect pure imaginary eigevalues of large sparse matrices
- Seek λ near a given shift σ (good estimate eg. continuation).
- A is large, sparse, nonsymmetric (discretised PDE: $A x=\lambda M x$)
- Inverse Iteration:
- $y=(A-\sigma I)^{-1} x$
- Solve $(A-\sigma I) y=x$
- Preconditioned iterative solves

Introduction

$$
A x=\lambda x, \quad \lambda \in \mathbb{C}, x \in \mathbb{C}^{n}
$$

- Lecture 2: Detect pure imaginary eigevalues of large sparse matrices
- Seek λ near a given shift σ (good estimate eg. continuation).
- A is large, sparse, nonsymmetric (discretised PDE: $A x=\lambda M x$)
- Inverse Iteration:
- $y=(A-\sigma I)^{-1} x$
- Solve $(A-\sigma I) y=x$
- Preconditioned iterative solves
- Extensions
- Inverse Subspace Iteration
- Jacobi-Davidson method
- Shift-invert Arnoldi method (Melina Freitag: Tuesday lecture)

Inexact inverse iteration

- Assume $x^{(i)}$ is an approximate normalised eigenvector
- Iterative solves (e.g. GMRES) of

$$
(A-\sigma I) y=x^{(i)}
$$

Inexact inverse iteration

- Assume $x^{(i)}$ is an approximate normalised eigenvector
- Iterative solves (e.g. GMRES) of

$$
(A-\sigma I) y=x^{(i)}
$$

- inner-outer
- $\left\|x^{(i)}-(A-\sigma I) y_{k}\right\| \leq \tau^{(i)} \quad,\left(\tau^{(i)}=\right.$ solve tolerance $)$
- Rescale y_{k} to get $x^{(i+1)}$
- Update shift?

Inexact inverse iteration

- Assume $x^{(i)}$ is an approximate normalised eigenvector
- Iterative solves (e.g. GMRES) of

$$
(A-\sigma I) y=x^{(i)}
$$

- inner-outer
- $\left\|x^{(i)}-(A-\sigma I) y_{k}\right\| \leq \tau^{(i)} \quad,\left(\tau^{(i)}=\right.$ solve tolerance $)$
- Rescale y_{k} to get $x^{(i+1)}$
- Update shift?
- (Right) preconditioned solves
(1) P^{-1} "known"
(2)

$$
(A-\sigma I) P^{-1} \tilde{y}=x^{(i)} \quad, P^{-1} \tilde{y}=y
$$

Convergence of inexact inverse iteration

- Given $x^{(i)}$ and $\lambda^{(i)}$

$$
r^{(i)}=A x^{(i)}-\lambda^{(i)} x^{(i)} \quad \text { Eigenvalue residual }
$$

Theorem (Convergence)

If the solve tolerance, $\tau^{(i)}$, is chosen to reduce proportional to the norm of the eigenvalue residual $\left\|r^{(i)}\right\|$ then we recover the rate of convergence achieved when using direct solves.

- Other options/strategies possible: For example Rayleigh quotient iteration with a fixed tolerance converges linearly.

Numerical Example

$$
A x=\lambda x
$$

- discretisation of convection-diffusion operator

$$
-\Delta u+5 u_{x}+5 u_{y}=\lambda u \quad \text { on } \quad(0,1)^{2}
$$

- 3 experiments:
(1) Rayleigh quotient shift; exact solves
(2) Rayleigh quotient shift; with decreasing solve tolerance in GMRES

$$
\tau^{(i)}=\min \left\{\tau, \tau\left\|r^{(i)}\right\|\right\}, \quad \text { with } \quad \tau=0.3
$$

(3) Rayleigh quotient shift; with fixed tolerance $\tau=0.3$

- In all cases solve till

$$
\left\|\frac{r^{(i)}}{\lambda^{(i)}}\right\|<10^{-10}
$$

Numerical Example

Linear and Quadratic convergence

Outline

(1) Introduction
(2) Preconditioned GMRES for Inverse Power Method
(3) Inexact Subspace iteration

4 Preconditioned Rayleigh Quotient Iteration and Jacobi-Davidson
(5) Conclusions/Further Work

Inverse Power Method with and without preconditioned solves

- From now on, assume $\sigma=0$. So: $A y=x^{(i)}$

Inverse Power Method with and without preconditioned solves

- From now on, assume $\sigma=0$. So: $A y=x^{(i)}$
- $A P^{-1} \tilde{y}=x^{(i)} \quad, P^{-1} \tilde{y}=y$.
- Always assume decreasing tolerance: $\tau^{(i)}=C\left\|A x^{(i)}-\lambda^{(i)} x^{(i)}\right\|$
- Convection-Diffusion Example;
(1) smallest eigenvalue: $\lambda_{1} \approx 32.18560954$,
(2) Preconditioned GMRES with tolerance $\tau^{(i)}=0.01\left\|r^{(i)}\right\|$,
(3) ILU based preconditioners.

Convection-Diffusion problem: No Preconditioning - $\left\|A y_{k}-x^{(i)}\right\| \leq \tau^{(i)}$

Figure: Inner iterations vs outer iterations

Question

Why is there no increase in inner iterations as i increases?

Convection-Diffusion problem: Preconditioning - \|AP ${ }^{-1} \tilde{y}_{k}-x^{(i)} \| \leq \tau^{(i)}$

Figure: Inner iterations vs outer iterations

Question

Why is \mathbb{P}_{i}^{-1} better than P^{-1} ?

Note

\mathbb{P}_{i} is a rank-one change to P

Theory: Unpreconditioned solves to find λ_{1}, x_{1}

- $x^{(i)}$ is approximation to x_{1}

- $x^{(i)}=\cos \theta^{(i)} x_{1}+\sin \theta^{(i)} x_{\perp}$

Theory: Unpreconditioned solves to find λ_{1}, x_{1}

- $x^{(i)}$ is approximation to x_{1}

- $x^{(i)}=\cos \theta^{(i)} x_{1}+\sin \theta^{(i)} x_{\perp}$
- $r^{(i)}=A x^{(i)}-\lambda^{(i)} x^{(i)}, \quad\left\|r^{(i)}\right\| \leq C\left|\sin \theta^{(i)}\right|$
- Parlett (1998) - ideas extend to nonsymmetric problems.

GMRES applied to $A y=x^{(i)}$

- y_{k} after k steps
- $\left\|x^{(i)}-A y_{k}\right\| \leq \tau^{(i)}=C\left\|r^{(i)}\right\|$

BATH

GMRES applied to $A y=x^{(i)}$

- y_{k} after k steps
- $\left\|x^{(i)}-A y_{k}\right\| \leq \tau^{(i)}=C\left\|r^{(i)}\right\|$

$$
\begin{aligned}
\left\|x^{(i)}-A y_{k}\right\| & =\min \left\|p_{k}(A) x^{(i)}\right\| \\
& \leq \min \left\|q_{k-1}(A)\left(I-\frac{1}{\lambda_{1}} A\right)\left(\cos \theta^{(i)} x_{1}+\sin \theta^{(i)} x_{\perp}\right)\right\| \\
& \leq C \rho^{k-1}\left|\sin \theta^{(i)}\right|, \quad 0<\rho<1
\end{aligned}
$$

- $k \geq 1+C_{1}\left(\log C_{2}+\log \frac{\left|\sin \theta^{(i)}\right|}{\tau^{(i)}}\right)$
- bound on k does not increase with i.

GMRES applied to $A y=x^{(i)}$

- y_{k} after k steps
- $\left\|x^{(i)}-A y_{k}\right\| \leq \tau^{(i)}=C\left\|r^{(i)}\right\|$

$$
\begin{aligned}
\left\|x^{(i)}-A y_{k}\right\| & =\min \left\|p_{k}(A) x^{(i)}\right\| \\
& \leq \min \left\|q_{k-1}(A)\left(I-\frac{1}{\lambda_{1}} A\right)\left(\cos \theta^{(i)} x_{1}+\sin \theta^{(i)} x_{\perp}\right)\right\| \\
& \leq C \rho^{k-1}\left|\sin \theta^{(i)}\right|, \quad 0<\rho<1
\end{aligned}
$$

- $k \geq 1+C_{1}\left(\log C_{2}+\log \frac{\left|\sin \theta^{(i)}\right|}{\tau^{(i)}}\right)$
- bound on k does not increase with i.
- Reason for no increase? $x^{(i)}=\cos \theta^{(i)} x_{1}+\sin \theta^{(i)} x_{\perp}$

$$
x^{(i)}=\text { eigenvector of } A+\text { "term" } \rightarrow 0
$$

GMRES applied to $A P^{-1} \tilde{y}=x^{(i)}$

- $A P^{-1} u_{1}=\mu_{1} u_{1}:\left(\mu_{1}, u_{1}\right)$ eigenpair nearest zero of $A P^{-1}$
- $x^{(i)}=\cos \tilde{\theta}^{(i)} u_{1}+\sin \tilde{\theta}^{(i)} u_{\perp}$

GMRES applied to $A P^{-1} \tilde{y}=x^{(i)}$

- $A P^{-1} u_{1}=\mu_{1} u_{1}:\left(\mu_{1}, u_{1}\right)$ eigenpair nearest zero of $A P^{-1}$
- $x^{(i)}=\cos \tilde{\theta}^{(i)} u_{1}+\sin \tilde{\theta}^{(i)} u_{\perp}$
- $k \geq 1+\tilde{C}_{1}\left(\log \tilde{C}_{2}+\log \frac{\left|\sin \tilde{\theta}^{(i)}\right|}{\tau^{(i)}}\right)$
- BUT $\sin \tilde{\theta}^{(i)} \rightarrow 0$ only if $u_{1} \in \operatorname{span}\left\{x_{1}\right\}$ generally won't hold

GMRES applied to $A P^{-1} \tilde{y}=x^{(i)}$

- $A P^{-1} u_{1}=\mu_{1} u_{1}:\left(\mu_{1}, u_{1}\right)$ eigenpair nearest zero of $A P^{-1}$
- $x^{(i)}=\cos \tilde{\theta}^{(i)} u_{1}+\sin \tilde{\theta}^{(i)} u_{\perp}$
- $k \geq 1+\tilde{C}_{1}\left(\log \tilde{C}_{2}+\log \frac{\left|\sin \tilde{\theta}^{(i)}\right|}{\tau^{(i)}}\right)$
- BUT $\sin \tilde{\theta}^{(i)} \rightarrow 0$ only if $u_{1} \in \operatorname{span}\left\{x_{1}\right\}$ generally won't hold
- $\sin \tilde{\theta}^{(i)} \nrightarrow 0$
- inner iteration costs increase with i.
- Reason: $x^{(i)}=\cos \tilde{\theta}^{(i)} u_{1}+\sin \tilde{\theta}^{(i)} u_{\perp}$

$$
x^{(i)}={\text { eigenvector of } \quad A P^{-1}+\text { "term" } \nrightarrow 0}
$$

Convection-Diffusion problem: Preconditioning - \|AP ${ }^{-1} \tilde{y}_{k}-x^{(i)} \| \leq \tau^{(i)}$

Figure: Inner iterations vs outer iterations

Question

Why is \mathbb{P}_{i}^{-1} better than P^{-1} ?

New "tuned" preconditioner \mathbb{P}_{i}

- Idea: recreate the good relationship between the right hand side and the iteration matrix

$$
x^{(i)}=\text { eigenvector of iteration matrix }+ \text { "term" } \rightarrow 0
$$

New "tuned" preconditioner \mathbb{P}_{i}

- Idea: recreate the good relationship between the right hand side and the iteration matrix
-

$$
x^{(i)}=\text { eigenvector of iteration matrix }+ \text { "term" } \rightarrow 0
$$

- Define

$$
\mathbb{P}_{i}=P+(A-P) x^{(i)} x^{(i)^{H}}
$$

- \mathbb{P}_{i} is a rank one change to P (Sherman-Morrison)

New "tuned" preconditioner \mathbb{P}_{i}

- Idea: recreate the good relationship between the right hand side and the iteration matrix
$x^{(i)}=$ eigenvector of iteration matrix + "term" $\rightarrow 0$
- Define

$$
\mathbb{P}_{i}=P+(A-P) x^{(i)} x^{(i)^{H}}
$$

- \mathbb{P}_{i} is a rank one change to P (Sherman-Morrison)
- $\mathbb{P}_{i} x^{(i)}=P x^{(i)}+(A-P) x^{(i)} x^{(i)^{H}} x^{(i)}$
- $A x^{(i)}=\mathbb{P}_{i} x^{(i)}$

New "tuned" preconditioner \mathbb{P}_{i}

- Idea: recreate the good relationship between the right hand side and the iteration matrix
-

$$
x^{(i)}=\text { eigenvector of iteration matrix }+ \text { "term" } \rightarrow 0
$$

- Define

$$
\mathbb{P}_{i}=P+(A-P) x^{(i)} x^{(i)^{H}}
$$

- \mathbb{P}_{i} is a rank one change to P (Sherman-Morrison)
- $\mathbb{P}_{i} x^{(i)}=P x^{(i)}+(A-P) x^{(i)} x^{(i)^{H}} x^{(i)}$
- $A x^{(i)}=\mathbb{P}_{i} x^{(i)}$
- Hence

$$
A \mathbb{P}_{i}^{-1} A x^{(i)}=A x^{(i)}
$$

- $A x^{(i)}$ is an eigenvector of $A \mathbb{P}_{i}^{-1}$

GMRES with the tuned preconditioner

Recall

- $A \mathbb{P}_{i}^{-1} \tilde{y}=x^{(i)}$
- $A \mathbb{P}_{i}^{-1} A x^{(i)}=A x^{(i)}$

Is $x^{(i)}$ a "nice" RHS for $A \mathbb{P}_{i}^{-1}$?

GMRES with the tuned preconditioner

Recall

- $A \mathbb{P}_{i}^{-1} \tilde{y}=x^{(i)}$
- $A \mathbb{P}_{i}^{-1} A x^{(i)}=A x^{(i)}$

Is $x^{(i)}$ a "nice" RHS for $A \mathbb{P}_{i}^{-1}$?

- $r^{(i)}=A x^{(i)}-\lambda^{(i)} x^{(i)} \quad \Rightarrow \quad x^{(i)}=\frac{1}{\lambda^{(i)}} A x^{(i)}-\frac{1}{\lambda^{(i)}} r^{(i)}$
- Idea of tuning: change iteration matrix so that

$$
x^{(i)}=\text { eigenvector of } A \mathbb{P}_{i}^{-1}+\text { "term" } \rightarrow 0
$$

GMRES with the tuned preconditioner

Recall

- $A \mathbb{P}_{i}^{-1} \tilde{y}=x^{(i)}$
- $A \mathbb{P}_{i}^{-1} A x^{(i)}=A x^{(i)}$

Is $x^{(i)}$ a "nice" RHS for $A \mathbb{P}_{i}^{-1}$?

- $r^{(i)}=A x^{(i)}-\lambda^{(i)} x^{(i)} \quad \Rightarrow \quad x^{(i)}=\frac{1}{\lambda^{(i)}} A x^{(i)}-\frac{1}{\lambda^{(i)}} r^{(i)}$
- Idea of tuning: change iteration matrix so that

$$
x^{(i)}=\text { eigenvector of } A \mathbb{P}_{i}^{-1}+\text { "term" } \rightarrow 0
$$

- Analysis of GMRES is essentially the same as for unpreconditioned case
- No increase in inner iterations as i increases

Convection-Diffusion problem: Preconditioning - \|AP ${ }^{-1} \tilde{y}_{k}-x^{(i)} \| \leq \tau^{(i)}$

Figure: Inner iterations vs outer iterations

Question and Answer

Why is \mathbb{P}_{i}^{-1} better than $P^{-1} ? \mathbb{P}_{i}^{-1}$ is tuned so that the rhs of the preconditioned system is "good" for the iteration matrix $A \mathbb{P}_{i}^{-1}$

Numerical Example (Freitag/Sp./Vainikko)

- Linearised Stability on Navier-Stokes: Flow past a circular cylinder $(\mathrm{Re}=25)$
- $A x=\lambda M x$
- Both Rayleigh Quotient and fixed shifts
- Mixed FEM $Q_{2}-Q_{1}$ elements with $n=6734,27294,61678$
- FGMRES with block preconditioner of Elman
- seek "dangerous" complex eigenvalue near imaginary axis ($\approx 10 i$)
- stop when residual $\leq 10^{-11}$

Numerics for Navier-Stokes example, $\mathrm{Ax}=\lambda M x$

Figure: Rayleigh Quotient shift and decreasing tolerance

Figure: Fixed shift and decreasing tolerance

Conclusions

Savings of 30% for variable shift: over 50% for fixed shift

Outline

(1) Introduction

2 Preconditioned GMRES for Inverse Power Method
(3) Inexact Subspace iteration

4 Preconditioned Rayleigh Quotient Iteration and Jacobi-Davidson
(5) Conclusions/Further Work

Inexact subspace iteration

- Repeated solve of p-dimensional block system

$$
A Y=X^{(i)}
$$

which is preconditioned as

$$
A \mathbb{P}_{i} \tilde{Y}=X^{(i)}
$$

- The tuned preconditioner, \mathbb{P}_{i} is a rank p update:

$$
\mathbb{P}_{i}=P+(A-P) X^{(i)} X^{(i)^{H}}
$$

Numerical Example

- matrix market library qc2534
- complex symmetric (non-Hermitian)
- $n=2534, n z=463360$
- ILU preconditioner
- subspace dimension 16
- seek first 10 eigenvalues

Preconditioned GMRES

Figure: Inner iterations vs outer iterations

Preconditioned GMRES

Figure: Residual norms vs total number of iterations

Outline

(1) Introduction

2 Preconditioned GMRES for Inverse Power Method
(3) Inexact Subspace iteration
(4) Preconditioned Rayleigh Quotient Iteration and Jacobi-Davidson
(5) Conclusions/Further Work

RQI and J-D: Exact solves $\left(x^{(i)} \rightarrow x\right)$

Rayleigh quotient iteration

At each iteration a system of the form

$$
(A-\rho(x) I) y=x
$$

has to be solved.

Jacobi-Davidson method

At each iteration a system of the form

$$
\left(I-x x^{H}\right)(A-\rho(x) I)\left(I-x x^{H}\right) s=-r
$$

has to be solved, where $r=(A-\rho(x) I) x$ is the eigenvalue residual and $s \perp x$.

Exact solves

Sleijpen and van der Vorst (1996):

$$
y=\alpha(x+s)
$$

for some constant α

RQI and J-D: Inexact solves

Rayleigh quotient iteration

At each iteration a system of the form

$$
(A-\rho(x) I) y=x
$$

has to be solved.

Jacobi-Davidson method

At each iteration a system of the form

$$
\left(I-x x^{H}\right)(A-\rho(x) I)\left(I-x x^{H}\right) s=-r
$$

has to be solved, where $r=(A-\rho(x) I) x$ is the eigenvalue residual and $s \perp x$.

Galerkin-Krylov Solver

- Simoncini and Eldén (2002):

$$
y_{k+1}=\beta\left(x+s_{k}\right)
$$

for some constant β if both systems are solved using a Galerkin-Krylov subspace method

RQI and J-D: Preconditioned Solves

Preconditioning for RQ iteration
At each iteration a system of the form

$$
(A-\rho(x) I) P^{-1} \tilde{y}=x
$$

(with $y=P^{-1} \tilde{y}$) has to be solved.

Preconditioning for JD method

At each iteration a system of the form $\left(I-x x^{H}\right)(A-\rho(x) I)\left(I-x x^{H}\right) \tilde{P}^{\dagger} \tilde{s}=-r$ (with $s=\tilde{P}^{\dagger} \tilde{s}$) has to be solved. Note the restricted preconditioner

$$
\tilde{P}:=\left(I-x x^{H}\right) P\left(I-x x^{H}\right)
$$

Equivalence does not hold!

Example: sherman5.mtx

fixed shift; (preconditioned) FOM as inner solver

Figure: Convergence history of the eigenvalue residuals; no preconditioner

Figure: Convergence history of the eigenvalue residuals; standard preconditioner

Tuned RQI \equiv preconditioned JD

Tuning condition:

$$
\mathbb{P} x=x
$$

- Implement tuning condition by:

$$
\mathbb{P}=P+(I-P) x x^{H}
$$

- Rethink as:

$$
\mathbb{P}=x x^{H}+P\left(I-x x^{H}\right)
$$

Equivalence for inexact solves

Theorem

Let both

$$
(A-\rho(x) I) \mathbb{P}^{-1} \tilde{y}=x, \quad y=\mathbb{P}^{-1} \tilde{y}
$$

and

$$
\left(I-x x^{H}\right)(A-\rho(x) I)\left(I-x x^{H}\right) \tilde{P}^{\dagger} \tilde{s}=-r, \quad s=\tilde{P}^{\dagger} \tilde{s}
$$

be solved with the same Galerkin-Krylov method. Then

$$
y_{k+1}^{R Q}=\gamma\left(x+s_{k}^{J D}\right)
$$

Proof.
Based on Simoncini and Eldén (2002).

Example: sherman5.mtx

fixed shift; (preconditioned) FOM as inner solver

Figure: Convergence history of the eigenvalue residuals; no preconditioner

Figure: standard preconditioner for JD, tuned preconditioner for II

Outline

(1) Introduction

2 Preconditioned GMRES for Inverse Power Method
(3) Inexact Subspace iteration

4 Preconditioned Rayleigh Quotient Iteration and Jacobi-Davidson
(5) Conclusions/Further Work

Conclusions

- When using Krylov solvers for shifted systems $(A-\sigma I) y=x^{(i)}$ in eigenvalue computations then one should "tune" the preconditioner so that the iteration matrix has a "good relationship" with the right hand side,
- For any preconditioner "tuning" is achieved by a small rank change,
- Plenty of unanswered questions arise from PDE eigenvalue problems

