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Recap and plan for today

Lecture 1:
1 Compute paths of F (x, λ) = 0 using pseudo-arclength
2 Detect singular points Det(Fx(x, λ)) = 0
3 Compute paths of singular points in two-parameter problems
4 bordered systems
5 4-6 cell interchange in the Taylor problem

Lecture 2:

Accurate calculation of Hopf points

Detection of Hopf bifurcations (find pure imaginary eigenvalues in a
large sparse parameter-dependent matrix)

1 Bifurcation theory
2 Complex analysis
3 Cayley transform

Stable and unstable periodic orbits
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Lecture 1: Compute singular points

Seek (x, λ) such that Fx(x, λ) is singular

Consider �
Fx(x, λ) Fλ(x, λ)
cT d

� �
∗
g

�
=

�
0
1

�

Det(Fx) = 0 ⇐⇒ g = 0.

Accurate calculation: Consider the pair

F (x, λ) = 0, g(x, λ) = 0

Newton’s Method:�
Fx(x, λ) Fλ(x, λ)
gx(x, λ)T gλ(x, λ)

� �
∆x
∆λ

�
= −

�
F
g

�

System nonsingular if d
dt
µ 6= 0 at singular point
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Accurate calculation of Hopf points

Assume A(λ) = Fx(x, λ) is real and nonsingular

At Hopf point: A(λ) has eigenvalues ±iω
Rank(A(λ)2 + ω2I) = n− 2

Calculate Hopf point using 2-bordered matrix: set up

F (x, λ) = 0, g(x, λ, ω) = 0, h(x, λ, ω) = 0

where �
A(λ)2 + ω2I B

CT D

�2
4 ∗
g
h

3
5 =

2
4 0
r1
r2

3
5

Newton system, (n+ 2)× (n+ 2), needs gx, gλ, gω, hx, . . .

Block version of (D)+iterative refinement on (C)

2-bordered matrix is nonsingular if complex pair cross imaginary axis
“smoothly”
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Hopf continued

A(λ) = Fx(x, λ)

If you don’t want to form A(λ)2: split complex eigenvector/eigenvalue
into Real and Imaginary parts and work with (2n+ 2)× (2n+ 2)
matrices involving A(λ)

Extensions for N-S: A(λ)φ = µBφ

BUT: Whatever system is used, accurate estimates for λ and ω are
needed

Compute paths of Hopf points in 2-parameter problems (3-bordered
matrices)

Summary of methods: Govaerts (2000)

Alastair Spence University of Bath
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Bifurcation Theory: Takens-Bogdanov (TB) point

At a TB point, Fx has a 2-dim Jordan block, i.e.

�
0 1
0 0

�
. A typical

picture is:

Alastair Spence University of Bath
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“Organising Centre” Algorithm

Two parameter problem F (x, λ, α) = 0

Fix α. Compute a Turning point in (x, λ)(Easy!). Remember:

Fxφ = 0, (Fx)Tψ = 0

For the 2-parameter problem: Compute path of Turning points looking
for ψTφ = 0 (TB point) (Easy)

Jump onto path of Hopf points (symmetry-breaking) (Easy)

Compute path of Hopf points (pseudo-arclength) (Easy)

In parameter space the paths of Hopf and Turning points are
tangential at TB

Alastair Spence University of Bath
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5 cell anomalous flows in the Taylor Problem

Figure: Two different 5-cell flows
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5-cell flows experimental results

Figure: parameter space plots of 5-cell flows
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5-cell flows numerical results (Anson)

Figure: parameter space plots of 5-cell flows
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“Organising Centre” approach

Figure: 5-cell flows: Sequence of Bifurcation diagrams as aspect ratio changes

This understanding wouldn’t be possible without the numerical results
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The “idea”: Govaerts/Spence (1996)

Figure: For each point on F (x, λ) = 0 can we calculate the number of eigenvalues
in the unstable half plane?

Why Nice?

(a) Seek an integer, and (b) Estimate for Im(µ) not needed.

Alastair Spence University of Bath
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Complex Analysis

Winding number

If g(z) is analytic in Γ

N − P =
1

2π
[arg g(z)]Γ

= Winding Number

= W (g)

Contour for real matrices

Algorithm

“Counting Sectors”: Ying/Katz (1988) (based on Henrici (1974) )

If g changes so that a real pole crosses Left to Right, W (g) decreases
by π. (real zero crosses L to R then W (g) increases)

If g changes so that a complex pole crosses Left to Right, W (g)
decreases by 2π

Need to evaluate g(iy)) on Γ

Alastair Spence University of Bath
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How to choose g(z)?

Don’t choose g(z) = Det(A(λ)− zI)

g(z) = cT (A(λ)− zI)−1b

Schur complement of M =

�
A(λ)− zI b

cT 0

�

poles are eigenvalues of A(λ); zeros depend on choices of b and c.
Choose b and c so that the zeros “cancel” the poles to keep W (g)
“small”

Need to evaluate
g(iy) = cT (A(λ)− iyI)−1b

as y moves up Imaginary axis (Ying/Katz algorithm chooses y’s)

Alastair Spence University of Bath

Hopf bifurcations and periodic orbits
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The Tubular Reactor problem (Govaerts/Spence, 1996)

Coupled pair of nonlinear parabolic PDEs for Temperature and
Concentration

Scaling: for a complex pole crossing Imag axis W (g) reduces by 4

Winding numbers for 3 choices of g

point on path W (g1) W (g2) W (g3)

1 3 5 1
2 3 5 1
3 3 5 3∗

4 3 5 3

5 −1† 1† −1†

6 −1 3‡ 1‡

1 ∗ = zero of g3
2 † = Hopf!
3 ‡ = zero of g2 and g3.

Alastair Spence University of Bath
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Final comments on “Winding Number” algorithm

Govaerts/Spence was “proof of concept”: tested on a “not too
difficult” problem

Work is to evaluate

g(iy) = cT (A(λ)− iyI)−1b

as y moves up Imaginary axis

For PDE matrices - Krylov solvers/model reduction?

Ideas from yesterday’s lectures by Strakos (scattering amplitude) and
Ernst (frequency domain).

Also: Stoll, Golub, Wathen (2007)

Note: you choose b and c!

Alastair Spence University of Bath

Hopf bifurcations and periodic orbits



Outline Introduction Hopf Bif Theory Complex Cayley Periodic

Outline

1 Introduction

2 Calculation of Hopf points

3 Hopf detection using bifurcation theory

4 Hopf detection using Complex Analysis

5 Hopf detection using the Cayley Transform

6 Stable and unstable periodic orbits

Alastair Spence University of Bath

Hopf bifurcations and periodic orbits



Outline Introduction Hopf Bif Theory Complex Cayley Periodic

The Cayley Transform

Figure: The mapping of µ to θ

Aφ = µBφ

Choose α and β and form:

C = (A− αB)−1(A− βB) The Cayley transform

As λ varies, if µ crosses the line Re(α+ β)/2 then θ moves outside the
unit ball

Alastair Spence University of Bath
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Hopf detection using the Cayley Transform

Mapping
θ = (µ− α)−1(µ− β)

So β = −α maps left-half plane (“stable”) into unit circle

Algorithm: At each point on F (x, λ) = 0:
1 Choose α, β
2 monitor dominant eigenvalues of C = (A− αB)−1(A− βB)

Don’t need to know Im(µ)

Successfully computed Hopf bifurcations in Taylor problem and
Double-diffusive convection

BUT: “large” eigenvalues, µ, “cluster” at θ = 1

Alastair Spence University of Bath
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Periodic orbits

Theory

ẋ = F (x, λ), x(t) ∈ Rn

x(0) = x(T ), T=period

Solution (“flow”): φ(x(0), t, λ)

Periodic: φ(x(0), T, λ) = x(0)

Phase condition: s(x(0)) = 0

Stability: Monodromy matrix

φx =
∂φ

∂x(0)
(x(0), T, λ)

µi ∈ σ(φx): Floquet multipliers

Stability: |µi| < 1, i = 2 . . . n
(µ1 = 1)

Monodromy matrix is FULL

Phase plane

Alastair Spence University of Bath
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Stability of periodic orbits

Figure: Plot of Floquet multipliers for a stable periodic orbit

Loss of stability: multiplier crosses unit circle (e.g. real eigenvalue
crosses through -1 then “period-doubling bifurcation”)

If solution is stable just integrate in time: OK if µi not near unit circle

“Integrate in time” is no good for unstable orbits

Alastair Spence University of Bath
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Newton-Picard Method for periodic orbits (Lust et. al.)

Unknowns: initial condition, x(0), and period, T , (drop λ)

Fixed point problem + phase condition

φ(x(0), T ) = x(0), s(x(0)) = 0

Picard Iteration: Guess (x(0)(0), T (0)) and compute x(1)(0)

φ(x(0)(0), T (0)) = x(1)(0)

Newton’s Method: Guess (x(0)(0), T (0)) and compute corrections

�
φx − I φT

sx 0

� �
∆x(0)
∆T

�
= −

�
r1
r2

�

Newton-Picard Method: Split Rn into “stable” and “unstable”
subspaces. Convergence? - Modified Newton

1 Picard on “stable” subspace (large)
2 Newton on “unstable” subspace (small)
3 Schroff&Keller: “Recursive Projection Method” - computing stable and

unstable steady states using initial value codes

Alastair Spence University of Bath

Hopf bifurcations and periodic orbits



Outline Introduction Hopf Bif Theory Complex Cayley Periodic

Newton-Picard Method for periodic orbits (Lust et. al.)

Unknowns: initial condition, x(0), and period, T , (drop λ)

Fixed point problem + phase condition

φ(x(0), T ) = x(0), s(x(0)) = 0

Picard Iteration: Guess (x(0)(0), T (0)) and compute x(1)(0)

φ(x(0)(0), T (0)) = x(1)(0)

Newton’s Method: Guess (x(0)(0), T (0)) and compute corrections

�
φx − I φT

sx 0

� �
∆x(0)
∆T

�
= −

�
r1
r2

�

Newton-Picard Method: Split Rn into “stable” and “unstable”
subspaces. Convergence? - Modified Newton

1 Picard on “stable” subspace (large)
2 Newton on “unstable” subspace (small)
3 Schroff&Keller: “Recursive Projection Method” - computing stable and

unstable steady states using initial value codes

Alastair Spence University of Bath

Hopf bifurcations and periodic orbits



Outline Introduction Hopf Bif Theory Complex Cayley Periodic

Newton-Picard Method for periodic orbits (Lust et. al.)

Unknowns: initial condition, x(0), and period, T , (drop λ)

Fixed point problem + phase condition

φ(x(0), T ) = x(0), s(x(0)) = 0

Picard Iteration: Guess (x(0)(0), T (0)) and compute x(1)(0)

φ(x(0)(0), T (0)) = x(1)(0)

Newton’s Method: Guess (x(0)(0), T (0)) and compute corrections

�
φx − I φT

sx 0

� �
∆x(0)
∆T

�
= −

�
r1
r2

�

Newton-Picard Method: Split Rn into “stable” and “unstable”
subspaces. Convergence? - Modified Newton

1 Picard on “stable” subspace (large)
2 Newton on “unstable” subspace (small)
3 Schroff&Keller: “Recursive Projection Method” - computing stable and

unstable steady states using initial value codes

Alastair Spence University of Bath

Hopf bifurcations and periodic orbits



Outline Introduction Hopf Bif Theory Complex Cayley Periodic

Newton-Picard Method for periodic orbits (Lust et. al.)

Unknowns: initial condition, x(0), and period, T , (drop λ)

Fixed point problem + phase condition

φ(x(0), T ) = x(0), s(x(0)) = 0

Picard Iteration: Guess (x(0)(0), T (0)) and compute x(1)(0)

φ(x(0)(0), T (0)) = x(1)(0)

Newton’s Method: Guess (x(0)(0), T (0)) and compute corrections

�
φx − I φT

sx 0

� �
∆x(0)
∆T

�
= −

�
r1
r2

�

Newton-Picard Method: Split Rn into “stable” and “unstable”
subspaces. Convergence? - Modified Newton

1 Picard on “stable” subspace (large)
2 Newton on “unstable” subspace (small)
3 Schroff&Keller: “Recursive Projection Method” - computing stable and

unstable steady states using initial value codes

Alastair Spence University of Bath

Hopf bifurcations and periodic orbits



Outline Introduction Hopf Bif Theory Complex Cayley Periodic

Newton-Picard Method for periodic orbits

Figure: Splitting of Floquet multipliers into “stable” and “unstable” subsets

Pick ρ < 1

“Stable”: |µi| < ρ (hopefully dimension ≈ n)

“Unstable”:|µi| ≥ ρ (hopefully dimension very small)

Alastair Spence University of Bath

Hopf bifurcations and periodic orbits



Outline Introduction Hopf Bif Theory Complex Cayley Periodic

Floquet multipliers for the Brusselator

Figure: Floquet multipliers

Alastair Spence University of Bath

Hopf bifurcations and periodic orbits



Outline Introduction Hopf Bif Theory Complex Cayley Periodic

Lots of Numerical Linear Algebra!

1 Find (orthogonal) basis for “unstable” space, called V

2 Construct projectors onto “unstable” and “stable” spaces

3 need the action of φx on V (implemented by a small number of ODE
solves)

4 need to increase /decrease dimension of V as Floquet multipliers enter
or leave the “unstable” space

5 need to compute paths of periodic orbits: use pseudo-arclength
(bordered matrices)

Alastair Spence University of Bath
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Taylor problem with counter-rotating cylinders:
Grande/Tavener/Thomas (2008)

Figure: 4-cell symmetric flow Figure: 4-cell asymmetric flows
Alastair Spence University of Bath
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Conclusions

An efficient method to roughly “detect” a Hopf bifurcation in large
systems is still an open problem

Methods exist for accurate calculation once good starting values are
known

Look again at the winding number algorithm?

Computation of stable and unstable periodic solutions for discretised
PDEs (e.g. Navier-Stokes) is wide open!

Software:
1 LOCA “Library of Continuation Algorithms” Sandia (PDEs)
2 MATCONT “Continuation software in Matlab”: W Govaerts
3 AUTO

Alastair Spence University of Bath
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