Lecture 2: Numerical Methods for Hopf bifurcations and periodic orbits in large systems

Alastair Spence

Department of Mathematical Sciences University of Bath

CLAPDE, Durham, July 2008

Alastair Spence

Outline			

1 Introduction

- 2 Calculation of Hopf points
- **③** Hopf detection using bifurcation theory
- 4 Hopf detection using Complex Analysis
- **(5)** Hopf detection using the Cayley Transform
- 6 Stable and unstable periodic orbits

Alastair Spence

Outline			

2 Calculation of Hopf points

3 Hopf detection using bifurcation theory

4 Hopf detection using Complex Analysis

Hopf detection using the Cayley Transform

Alastair Spence

Ð			

Recap and plan for today

• Lecture 1:

- **(**) Compute paths of $F(x, \lambda) = 0$ using pseudo-arclength
- 2 Detect singular points $Det(F_x(x,\lambda)) = 0$
- Ompute paths of singular points in two-parameter problems
- Isordered systems
- **•** 4-6 cell interchange in the Taylor problem

• Lecture 2:

- Accurate calculation of Hopf points
- Detection of Hopf bifurcations (find pure imaginary eigenvalues in a large sparse parameter-dependent matrix)
 - In Bifurcation theory
 - Omplex analysis
 - Output: Cayley transform
- Stable and unstable periodic orbits

Lecture 1: Compute singular points

- Seek (x, λ) such that $F_x(x, \lambda)$ is singular
- Consider

$$\begin{bmatrix} F_x(x,\lambda) & F_\lambda(x,\lambda) \\ c^T & d \end{bmatrix} \begin{bmatrix} * \\ g \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

- $\operatorname{Det}(F_x) = 0 \iff g = 0.$
- Accurate calculation: Consider the pair

$$F(x,\lambda) = 0, \quad g(x,\lambda) = 0$$

• Newton's Method:

$$\begin{bmatrix} F_x(x,\lambda) & F_\lambda(x,\lambda) \\ g_x(x,\lambda)^T & g_\lambda(x,\lambda) \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta \lambda \end{bmatrix} = -\begin{bmatrix} F \\ g \end{bmatrix}$$

• System nonsingular if $\frac{d}{dt}\mu \neq 0$ at singular point

	$_{\rm Hopf}$		
Outline			

1 Introduction

2 Calculation of Hopf points

3 Hopf detection using bifurcation theory

Hopf detection using Complex Analysis

Hopf detection using the Cayley Transform

Alastair Spence

	Hopf		

Accurate calculation of Hopf points

- Assume $A(\lambda) = F_x(x, \lambda)$ is real and nonsingular
- At Hopf point: $A(\lambda)$ has eigenvalues $\pm i\omega$
- $\operatorname{Rank}(A(\lambda)^2 + \omega^2 I) = n 2$

Alastair Spence

	Hopf		

Accurate calculation of Hopf points

- Assume $A(\lambda) = F_x(x, \lambda)$ is real and nonsingular
- At Hopf point: $A(\lambda)$ has eigenvalues $\pm i\omega$
- Rank $(A(\lambda)^2 + \omega^2 I) = n 2$
- Calculate Hopf point using 2-bordered matrix: set up

$$F(x,\lambda) = 0, \quad g(x,\lambda,\omega) = 0, \quad h(x,\lambda,\omega) = 0$$

where

$$\begin{bmatrix} A(\lambda)^2 + \omega^2 I & B \\ C^T & D \end{bmatrix} \begin{bmatrix} * \\ g \\ h \end{bmatrix} = \begin{bmatrix} 0 \\ r_1 \\ r_2 \end{bmatrix}$$

- Newton system, $(n+2) \times (n+2)$, needs $g_x, g_\lambda, g_\omega, h_x, \ldots$
- Block version of (D)+iterative refinement on (C)
- 2-bordered matrix is nonsingular if complex pair cross imaginary axis "smoothly"

		$_{\rm Hopf}$		
Hopf co	ntinued			

- $A(\lambda) = F_x(x,\lambda)$
- If you don't want to form $A(\lambda)^2$: split complex eigenvector/eigenvalue into Real and Imaginary parts and work with $(2n + 2) \times (2n + 2)$ matrices involving $A(\lambda)$
- Extensions for N-S: $A(\lambda)\phi = \mu B\phi$
- $\bullet\,$ BUT: Whatever system is used, accurate estimates for λ and ω are needed
- Compute paths of Hopf points in 2-parameter problems (3-bordered matrices)
- Summary of methods: Govaerts (2000)

Alastair Spence

		Bif Theory		
Outline				

3 Hopf detection using bifurcation theory

Hopf detection using Complex Analysis

Hopf detection using the Cayley Transform

Alastair Spence

Bifurcation Theory: Takens-Bogdanov (TB) point

At a TB point, F_x has a 2-dim Jordan block, i.e. $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. A typical picture is:

University of Bath

Alastair Spence

				Bi	if Theory				
 	a		 						

"Organising Centre" Algorithm

- Two parameter problem $F(x, \lambda, \alpha) = 0$
- Fix α . Compute a Turning point in (x, λ) (Easy!). Remember:

$$F_x \phi = 0, \quad (F_x)^T \psi = 0$$

- For the 2-parameter problem: Compute path of Turning points looking for $\psi^T \phi = 0$ (TB point) (Easy)
- Jump onto path of Hopf points (symmetry-breaking) (Easy)
- Compute path of Hopf points (pseudo-arclength) (Easy)
- In parameter space the paths of Hopf and Turning points are tangential at TB

	Bif Theory		

5 cell anomalous flows in the Taylor Problem

Figure: Two different 5-cell flows

Alastair Spence

	Bif Theory		

5-cell flows experimental results

Figure: parameter space plots of 5-cell flows

	Bif Theory		

5-cell flows numerical results (Anson)

Figure: parameter space plots of 5-cell flows

Alastair Spence

	Bif Theory		

"Organising Centre" approach

Figure: 5-cell flows: Sequence of Bifurcation diagrams as aspect ratio changes

This understanding wouldn't be possible without the numerical results

		Complex	
Outline			

2 Calculation of Hopf points

3 Hopf detection using bifurcation theory

4 Hopf detection using Complex Analysis

Hopf detection using the Cayley Transform

Alastair Spence

		Complex	

The "idea": Govaerts/Spence (1996)

Figure: For each point on $F(x, \lambda) = 0$ can we calculate the **number** of eigenvalues in the unstable half plane?

Why Nice?

(a) Seek an integer, and (b) Estimate for $Im(\mu)$ not needed.

Alastair Spence

		$\operatorname{Complex}$	
~ .			

Complex Analysis

Algorithm

• "Counting Sectors": Ying/Katz (1988) (based on Henrici (1974))

Alastair Spence

		$\operatorname{Complex}$	
~ .			

Complex Analysis

Algorithm

- "Counting Sectors": Ying/Katz (1988) (based on Henrici (1974))
- If g changes so that a real pole crosses Left to Right, W(g) decreases by π . (real zero crosses L to R then W(g) increases)
- If g changes so that a complex pole crosses Left to Right, W(g) decreases by 2π

		$\operatorname{Complex}$	
~ .			

Complex Analysis

Algorithm

- "Counting Sectors": Ying/Katz (1988) (based on Henrici (1974))
- If g changes so that a real pole crosses Left to Right, W(g) decreases by π . (real zero crosses L to R then W(g) increases)
- If g changes so that a complex pole crosses Left to Right, W(g) decreases by 2π
- Need to evaluate g(iy)) on Γ

		Complex	

How to choose g(z)?

• Don't choose $g(z) = \text{Det}(A(\lambda) - zI)$

•
$$g(z) = c^T (A(\lambda) - zI)^{-1}b$$

• Schur complement of
$$M = \begin{bmatrix} A(\lambda) - zI & b \\ c^T & 0 \end{bmatrix}$$

- poles are eigenvalues of $A(\lambda)$; zeros depend on choices of b and c. Choose b and c so that the zeros "cancel" the poles to keep W(g)"small"
- Need to evaluate

$$g(iy) = c^{T} (A(\lambda) - iyI)^{-1} b$$

as y moves up Imaginary axis (Ying/Katz algorithm chooses y's)

		Complex	

The Tubular Reactor problem (Govaerts/Spence, 1996)

- Coupled pair of nonlinear parabolic PDEs for Temperature and Concentration
- Scaling: for a complex pole crossing Imag axis W(g) reduces by 4

Alastair Spence

		Complex	

The Tubular Reactor problem (Govaerts/Spence, 1996)

- Coupled pair of nonlinear parabolic PDEs for Temperature and Concentration
- Scaling: for a complex pole crossing Imag axis W(g) reduces by 4
- \bullet Winding numbers for 3 choices of g

point on path	$W(g_1)$	$W(g_2)$	$W(g_3)$
1	3	5	1
2	3	5	1
3	3	5	3^{*}
4	3	5	3
5	-1^{\dagger}	1^{\dagger}	-1^{\dagger}
6	-1	3^{\ddagger}	1^{\ddagger}

$$\begin{array}{l} \bullet & * = \text{zero of } g_3 \\ \bullet & \dagger & = \text{Hopf!} \\ \bullet & \dagger & = \text{zero of } g_2 \text{ and } g_3. \end{array}$$

		Complex	

Final comments on "Winding Number" algorithm

- Govaerts/Spence was "proof of concept": tested on a "not too difficult" problem
- Work is to evaluate

$$g(iy) = c^{T} (A(\lambda) - iyI)^{-1}b$$

as y moves up Imaginary axis

- For PDE matrices Krylov solvers/model reduction?
- Ideas from yesterday's lectures by Strakos (scattering amplitude) and Ernst (frequency domain).
- Also: Stoll, Golub, Wathen (2007)
- Note: you choose b and c!

			Cayley	
Outline				

2 Calculation of Hopf points

3 Hopf detection using bifurcation theory

Hopf detection using Complex Analysis

5 Hopf detection using the Cayley Transform

Alastair Spence

		Cayley	

The Cayley Transform

Figure: The mapping of μ to θ

- $A\phi = \mu B\phi$
- Choose α and β and form:

 $C = (A - \alpha B)^{-1}(A - \beta B)$ The Cayley transform

• As λ varies, if μ crosses the line $\operatorname{Re}(\alpha + \beta)/2$ then θ moves outside **BATH** unit ball

Alastair Spence

		Cayley	

Hopf detection using the Cayley Transform

• Mapping

$$\theta = (\mu - \alpha)^{-1}(\mu - \beta)$$

- So $\beta = -\alpha$ maps left-half plane ("stable") into unit circle
- Algorithm: At each point on $F(x, \lambda) = 0$:
 - $\textcircled{0} Choose \alpha, \beta$
 - 2 monitor dominant eigenvalues of $C = (A \alpha B)^{-1}(A \beta B)$
- Don't need to know $\text{Im}(\mu)$
- Successfully computed Hopf bifurcations in Taylor problem and Double-diffusive convection
- BUT: "large" eigenvalues, μ , "cluster" at $\theta = 1$

			Periodic
Outline			

2 Calculation of Hopf points

3 Hopf detection using bifurcation theory

In the section of the section of

Hopf detection using the Cayley Transform

Alastair Spence

				Periodic
D · 1	orbita			

Theory

• $\dot{x} = F(x, \lambda), \ x(t) \in \mathbb{R}^n$

- x(0) = x(T), T=period
- Solution ("flow"): $\phi(x(0), t, \lambda)$
- Periodic: $\phi(x(0), T, \lambda) = x(0)$
- Phase condition: s(x(0)) = 0
- Stability: Monodromy matrix

$$\phi_x = \frac{\partial \phi}{\partial x(0)}(x(0), T, \lambda)$$

- $\mu_i \in \sigma(\phi_x)$: Floquet multipliers
- Stability: $|\mu_i| < 1, i = 2...n$ $(\mu_1 = 1)$
- Monodromy matrix is FULL

Alastair Spence

			Periodic

Stability of periodic orbits

Figure: Plot of Floquet multipliers for a stable periodic orbit

- Loss of stability: multiplier crosses unit circle (e.g. real eigenvalue crosses through -1 then "period-doubling bifurcation")
- If solution is stable just integrate in time: OK if μ_i not near unit circle.
- "Integrate in time" is no good for unstable orbits

			Periodic

- Unknowns: initial condition, x(0), and period, T, $(drop \lambda)$
- Fixed point problem + phase condition

 $\phi(x(0),T) = x(0), \quad s(x(0)) = 0$

Alastair Spence

			Periodic

- Unknowns: initial condition, x(0), and period, T, $(drop \lambda)$
- Fixed point problem + phase condition

 $\phi(x(0),T) = x(0), \quad s(x(0)) = 0$

• Picard Iteration: Guess $(x^{(0)}(0), T^{(0)})$ and compute $x^{(1)}(0)$

 $\phi(x^{(0)}(0), T^{(0)}) = x^{(1)}(0)$

Alastair Spence

			$\mathbf{Periodic}$

- Unknowns: initial condition, x(0), and period, T, $(drop \lambda)$
- Fixed point problem + phase condition

 $\phi(x(0),T) = x(0), \quad s(x(0)) = 0$

• Picard Iteration: Guess $(x^{(0)}(0), T^{(0)})$ and compute $x^{(1)}(0)$

 $\phi(x^{(0)}(0), T^{(0)}) = x^{(1)}(0)$

• Newton's Method: Guess $(x(0)^{(0)}, T^{(0)})$ and compute corrections

$$\begin{bmatrix} \phi_x - I & \phi_T \\ s_x & 0 \end{bmatrix} \begin{bmatrix} \Delta x(0) \\ \Delta T \end{bmatrix} = - \begin{bmatrix} r_1 \\ r_2 \end{bmatrix}$$

lastair Spence

			$\mathbf{Periodic}$

- Unknowns: initial condition, x(0), and period, T, $(drop \lambda)$
- Fixed point problem + phase condition

 $\phi(x(0),T) = x(0), \quad s(x(0)) = 0$

• Picard Iteration: Guess $(x^{(0)}(0), T^{(0)})$ and compute $x^{(1)}(0)$

 $\phi(x^{(0)}(0), T^{(0)}) = x^{(1)}(0)$

• Newton's Method: Guess $(x(0)^{(0)}, T^{(0)})$ and compute corrections

$$\begin{bmatrix} \phi_x - I & \phi_T \\ s_x & 0 \end{bmatrix} \begin{bmatrix} \Delta x(0) \\ \Delta T \end{bmatrix} = - \begin{bmatrix} r_1 \\ r_2 \end{bmatrix}$$

- Newton-Picard Method: Split \mathbb{R}^n into "stable" and "unstable" subspaces. Convergence? Modified Newton
 - Picard on "stable" subspace (large)
 - Newton on "unstable" subspace (small)
 - Schroff&Keller: "Recursive Projection Method" computing stable and unstable steady states using initial value codes

		i erioure

Newton-Picard Method for periodic orbits

Figure: Splitting of Floquet multipliers into "stable" and "unstable" subsets

- Pick $\rho < 1$
- "Stable": $|\mu_i| < \rho$ (hopefully dimension $\approx n$)
- "Unstable": $|\mu_i| \ge \rho$ (hopefully dimension very small)

Alastair Spence

			Periodic

Floquet multipliers for the Brusselator

m of the Brusselator model, solution on branch vt at L = 1.9, with er left), 31 (upper right), 63 (lower left) and 127 (lower right) sation points.

			$\mathbf{Periodic}$
-	 		

Lots of Numerical Linear Algebra!

- 0 Find (orthogonal) basis for "unstable" space, called V
- ② Construct projectors onto "unstable" and "stable" spaces
- **③** need the action of ϕ_x on V (implemented by a small number of ODE solves)
- 0 need to increase /decrease dimension of V as Floquet multipliers enter or leave the "unstable" space
- need to compute paths of periodic orbits: use pseudo-arclength (bordered matrices)

Outline Introduction Hopf Bif Theory Complex Cayley **Periodic**

Taylor problem with counter-rotating cylinders: Grande/Tavener/Thomas (2008)

Alastair Spence

				Periodic
Conclus	ions			

- An efficient method to roughly "detect" a Hopf bifurcation in large systems is still an open problem
- Methods exist for accurate calculation once good starting values are known
- Look again at the winding number algorithm?
- Computation of stable and unstable periodic solutions for discretised PDEs (e.g. Navier-Stokes) is wide open!
- Software:
 - LOCA "Library of Continuation Algorithms" Sandia (PDEs)
 - Ø MATCONT "Continuation software in Matlab": W Govaerts
 - AUTO

