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Introduction

Recap and plan for today

o Lecture 1:
@ Compute paths of F(z,\) = 0 using pseudo-arclength
@ Detect singular points Det(Fy(z,A)) =0
© Compute paths of singular points in two-parameter problems
@ bordered systems
@ 4-6 cell interchange in the Taylor problem

Lecture 2:

Accurate calculation of Hopf points

Detection of Hopf bifurcations (find pure imaginary eigenvalues in a
large sparse parameter-dependent matrix)

@ Bifurcation theory

@ Complex analysis

@ Cayley transform

Stable and unstable periodic orbits
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Introduction

Lecture 1: Compute singular points

o Seek (z,A) such that F,(z, \) is singular
o Consider
Fy(z,\) Fi(z,N) « | [0
& 2]
@ Det(Fy) =0 < ¢g=0.
o Accurate calculation: Consider the pair

F(:C,)\):O, g(IE,/\) =0
e Newton’s Method:

mor menla]=-17]

System nonsingular if d% 1 # 0 at singular point
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Accurate calculation of Hopf points

o Assume A(\) = Fy(z, ) is real and nonsingular
o At Hopf point: A()\) has eigenvalues +iw
o Rank(A(N\)? + w?l) =n —2
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Accurate calculation of Hopf points

o Assume A(\) = Fy(z, ) is real and nonsingular
o At Hopf point: A()\) has eigenvalues +iw
o Rank(A(N\)? + w?l) =n —2

o Calculate Hopf point using 2-bordered matrix: set up

F(m7 A) = 07 g(x7 A? w) = 07 h(m7 A7 UJ) = O

where
AN +w?l B * 0
CT D g = T1
h T2

o Newton system, (n + 2) X (n + 2), needs gz, gx, gu, Rz, - - -
@ Block version of (D)+iterative refinement on (C)

@ 2-bordered matrix is nonsingular if complex pair cross imaginary axis
“smoothly”
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Hopf continued

AN) = Fu(z, )
If you don’t want to form A(X)?: split complex eigenvector/eigenvalue

into Real and Imaginary parts and work with (2n + 2) x (2n + 2)
matrices involving A(\)

Extensions for N-S: A(\)¢ = uB¢

BUT: Whatever system is used, accurate estimates for A and w are
needed

Compute paths of Hopf points in 2-parameter problems (3-bordered
matrices)

Summary of methods: Govaerts (2000)
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Bif Theory

Bifurcation Theory: Takens-Bogdanov (TB) point

0

At a TB point, F, has a 2-dim Jordan block, i.e. [ L ] . A typical

0 0

picture is:
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Bif Theory

“Organising Centre” Algorithm

o Two parameter problem F(z,\, ) =0
o Fix a. Compute a Turning point in (z, A)(Easy!). Remember:
Fp9=0, (F)"4=0
o For the 2-parameter problem: Compute path of Turning points looking
for T ¢ = 0 (TB point) (Easy)
e Jump onto path of Hopf points (symmetry-breaking) (Easy)
o Compute path of Hopf points (pseudo-arclength) (Easy)

o In parameter space the paths of Hopf and Turning points are
tangential at TB
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Bif Theory

5 cell anomalous flows in the Taylor Problem
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Figure: Two different 5-cell flows
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Bif Theory

5-cell flows experimental results

A3

zeof
] sTp8LE 5-cell Hows

250%

x i

20

EEU'E
1 NO STABLE
1 5-cell flows

w0l T T T : T T T
3.6 3.8 4.0 4.2 4.4 4.8 4.8 5.0

A3

UNIVERSITY OF

Figure: parameter space plots of 5-cell flows
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5-cell flows numerical results (Anson)

/
#
T,
1
1
200~
L B B B g 1 G
3.6 3.8 4.0 a2 4.4 4.8 4.8
a1

Alastair Spence

Figure: parameter space plots of 5-cell flows
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Bif Theory

“Organising Centre” approach
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The “idea”: Govaerts/Spence (1996)

x F(x, =0

3

Figure: For each point on F'(z, ) = 0 can we calculate the number of eigenvalues
in the unstable half plane?

Why Nice?
(a) Seek an integer, and (b) Estimate for Im(x) not needed.
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Complex Analysis

Winding number Contour for real matrices
If g(2) is analytic in T’ Im(z)
N-P = largg(2)]
T 2 el
= Winding Number r
——
= W)
Re(z)
| I ,
Algorithm

e “Counting Sectors”: Ying/Katz (1988) (based on Henrici (1974) )
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Complex Analysis

Winding number Contour for real matrices
If g(2) is analytic in T’ Im(z)
N-P = largg(2)]
T 2 el
= Winding Number r
——
= W)
Re(z)
| I ,
Algorithm

e “Counting Sectors”: Ying/Katz (1988) (based on Henrici (1974) )

o If g changes so that a real pole crosses Left to Right, W (g) decreases
by m. (real zero crosses L to R then W (g) increases)

o If g changes so that a complex pole crosses Left to Right, W (g)
decreases by 27
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Complex Analysis

Winding number Contour for real matrices
If g(2) is analytic in T’ Im(z)
N-P = largg(2)]
T 2 el
= Winding Number r
——
= W)
Re(z)
| I ,
Algorithm

e “Counting Sectors”: Ying/Katz (1988) (based on Henrici (1974) )

o If g changes so that a real pole crosses Left to Right, W (g) decreases
by m. (real zero crosses L to R then W (g) increases)

o If g changes so that a complex pole crosses Left to Right, W (g)
decreases by 27
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o Need to evaluate g(iy)) on T'
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How to choose g(z)?

e Don’t choose g(z) = Det(A(X) — zI)
o |g(z) = (AN — 21) b |
o Schur complement of M = [ A(/\‘):T_ o 8

@ poles are eigenvalues of A(\); zeros depend on choices of b and c.
Choose b and ¢ so that the zeros “cancel” the poles to keep W (g)
“small”

Need to evaluate

g(iy) = " (AN) —iyl)~"b

as y moves up Imaginary axis (Ying/Katz algorithm chooses y’s)
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The Tubular Reactor problem (Govaerts/Spence, 1996)

o Coupled pair of nonlinear parabolic PDEs for Temperature and
Concentration

@ Scaling: for a complex pole crossing Imag axis W (g) reduces by 4
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The Tubular Reactor problem (Govaerts/Spence, 1996)

o Coupled pair of nonlinear parabolic PDEs for Temperature and
Concentration

@ Scaling: for a complex pole crossing Imag axis W (g) reduces by 4
o Winding numbers for 3 choices of g
| point on path || W(g1) | W(g2) | W(gs) |

1 3 5 1
2 3 5 1
3 3 5 3*
4 3 5 3
5 —1f 1t —1f
6 =l 3t 1*
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Final comments on “Winding Number” algorithm

o Govaerts/Spence was “proof of concept”: tested on a “not too
difficult” problem

o Work is to evaluate
gliy) = " (AN —iyD)~'b

as y moves up Imaginary axis

e For PDE matrices - Krylov solvers/model reduction?

Ideas from yesterday’s lectures by Strakos (scattering amplitude) and
Ernst (frequency domain).

e Also: Stoll, Golub, Wathen (2007)

Note: you choose b and c!
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The Cayley Transform

Tm(u ) Im(® )

(o BY2

. ; Re(n) T Re(0)

Figure: The mapping of u to 6

o Ap = puBo
@ Choose a and (8 and form:

C =(A—aB) '(A—p3B) The Cayley transform

., UNIVERSITY OF

o As A varies, if p crosses the line Re(a + 3)/2 then 6 moves outside
unit ball
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Hopf detection using the Cayley Transform

o Mapping
0= (n—0)" (u=0)
@ So B = —« maps left-half plane (“stable”) into unit circle
o Algorithm: At each point on F(z,\) = 0:
@ Choose a, g

© monitor dominant eigenvalues of C' = (A — aB)~!(A — 3B)
Don’t need to know Im(u)

o Successfully computed Hopf bifurcations in Taylor problem and
Double-diffusive convection

o BUT: “large” eigenvalues, pu, “cluster” at § =1
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© Stable and unstable periodic orbits
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Introduction

Periodic orbits

Theory

T = F(x,\), z(t) € R"®

z(0) = z(T), T=period
Solution (“How”): ¢(z(0),¢, \)
Periodic: ¢(z(0),T,\) = z(0)
Phase condition: s(z(0)) =0
Stability: Monodromy matrix

_ %
b = oy @O TN

wi € 0(¢z): Floquet multipliers
Stability: |u| <1,i=2...n
(m1=1)

Monodromy matrix is FULL

Phase plane

Phase plane

x(0)

px(O)t, R )
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Stability of periodic orbits

Im{u )
X X x
x R
=1 S a e( L)
bt x x

Figure: Plot of Floquet multipliers for a stable periodic orbit

o Loss of stability: multiplier crosses unit circle (e.g. real eigenvalue
crosses through -1 then “period-doubling bifurcation”)

o If solution is stable just integrate in time: OK if p; not near unit ¢

Comvnsiry or

o “Integrate in time” is no good for unstable orbits
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Newton-Picard Method for periodic orbits (Lust et. al.)

e Unknowns: initial condition, z(0), and period, T, (drop \)

o Fixed point problem + phase condition

¢(2(0), T) = z(0), s(z(0)) =0
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Newton-Picard Method for periodic orbits (Lust et. al.)

e Unknowns: initial condition, z(0), and period, T, (drop \)

o Fixed point problem + phase condition

¢(2(0), T) = z(0), s(z(0)) =0
o Picard Iteration: Guess ((®(0), 7®) and compute z* (0)

$(=(0),7) = 2 (0)
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Newton-Picard Method for periodic orbits (Lust et. al.)

e Unknowns: initial condition, z(0), and period, T, (drop \)

o Fixed point problem + phase condition
¢(2(0), T) = z(0), s(z(0)) =0
o Picard Iteration: Guess ((®(0), 7®) and compute z* (0)
(=@ (0), ) = 2V (0)

o Newton’s Method: Guess (2(0)?, T®) and compute corrections

[~ w2 ]-- ]
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Newton-Picard Method for periodic orbits (Lust et. al.)

e Unknowns: initial condition, z(0), and period, T, (drop \)

o Fixed point problem + phase condition

¢(2(0), T) = z(0), s(z(0)) =0

Picard Tteration: Guess (z(*)(0), 7®)) and compute z)(0)

$(=(0),7) = 2 (0)

Newton’s Method: Guess (z(0)(®,T(®) and compute corrections
qﬁm -1 ¢T Am(O) _ T1
Sz 0 AT B T2

Newton-Picard Method: Split R" into “stable” and “unstable”
subspaces. Convergence? - Modified Newton
@ Picard on “stable” subspace (large)
@ Newton on “unstable” subspace (small)
@ Schroff&Keller: “Recursive Projection Method” - computing stable
unstable steady states using initial value codes
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Newton-Picard Method for periodic orbits

Im(p )

Re(p )

radius= p

Figure: Splitting of Floquet multipliers into “stable” and “unstable” subsets

e Pick p<1
e “Stable”: |u;i| < p (hopefully dimension ~ n)
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o “Unstable”:|u;| > p (hopefully dimension very small)
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Floquet multipliers for the Brusselator
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Lots of Numerical Linear Algebra!

@ Find (orthogonal) basis for “unstable” space, called V'

©

Construct projectors onto “unstable” and “stable” spaces

@ need the action of ¢, on V' (implemented by a small number of ODE
solves)

@ need to increase /decrease dimension of V' as Floquet multipliers enter
or leave the “unstable” space

@ need to compute paths of periodic orbits: use pseudo-arclength
(bordered matrices)
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Taylor problem with counter-rotating cylinders:
Grande/Tavener/Thomas (2008)
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Conclusions

o An efficient method to roughly “detect” a Hopf bifurcation in large
systems is still an open problem

Methods exist for accurate calculation once good starting values are
known

o Look again at the winding number algorithm?

o Computation of stable and unstable periodic solutions for discretised
PDEs (e.g. Navier-Stokes) is wide open!
o Software:

@ LOCA “Library of Continuation Algorithms” Sandia (PDEs)
@ MATCONT “Continuation software in Matlab”: W Govaerts
@ AUTO
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