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The 3 lectures

Lecture 1: Basic ideas of bifurcation/stability in time dependent PDEs;
The Taylor-Couette problem - a comparison of experimental results
with numerics; Numerical linear algebra of bordered matrices

Lecture 2: Hopf bifurcations and periodic orbits in large systems; some
open questions; The Taylor problem again

Lecture 3: Inexact Inverse Iteration and Jacobi-Davidson with
preconditioning; numerical results from Navier-Stokes and other
problems

“Cliffe, Spence & Tavener”, review in Acta Numerica (2000)

“Spence & Graham”, introductory notes from 1998 Leicester Summer
School
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Stability and Bifurcation: the basics

The Taylor-Couette Problem: Benjamin & Mullin experiments
(1978,1981,...)

(Linearised) Stability for time dependent discretised PDEs

Bordered matrices

Numerical continuation and bifurcations

The Taylor problem again: comparison of numerics with experiments

Conclusions
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The Taylor Problem (Benjamin & Mullin)

Figure: The Taylor problem showing 4-cell and 6-cell flows

Two parameters: R, Reynold’s number (speed of inner cylinder) and α,
the aspect ratio (height/gap)
Experiment:

1 Fix α
2 Increase R slowly from zero, or start up suddenly with large R

Alastair Spence University of Bath
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Taylor problem: photos

Alastair Spence University of Bath
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The Taylor Problem: Schematic of experimental results

Figure: Parameter space plot showing loss of stability of 4 and 6 cell flows
Alastair Spence University of Bath
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The Taylor Problem: Anomalous modes (Benjamin & Mullin)

Figure: 4 and 6 cell anomalous modes: sequence of bifurcation diagrams as aspect
ratio varies

Question

Can we reproduce these experimental results using numerical methods?

Alastair Spence University of Bath
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Linearised Stability

ẋ = F (x, λ), x(t) ∈ Rn

Bifurcation Theory: change of stability of solutions (steady, periodic,
homoclinic,...) as λ varies

Steady solution: 0 = F (x, λ)

Linearised Stability
1 Perturbation: x→ x + δ

2 δ̇ = A(λ)δ A(λ) = Fx(x, λ), Jacobian

3 δ = eµ tφ

4 A(λ)φ = µφ

As λ varies, µ varies in C. Loss of stability arises:
1 µ passes through 0, so Fx is singular
2 a complex pair crosses imaginary axis: in this case Fx is non-singular

(Lecture 2 on Hopf bifurcation.)

left-half plane is “stable”; right-half plane is “unstable”

Pseudo-eigenvalues?

Alastair Spence University of Bath
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Incompressible Navier-Stokes

Discretisation of linearised equations using mixed finite elements leads to
the following eigenvalue problem:

�
K(λ) C
CT O

� �
u
p

�
= µ

�
M O
O O

� �
u
p

�

A(λ)φ = µBφ

“Saddle point” A(λ), but K(λ) nonsymmetric

µ could be complex

B positive semidefinite: µ =“∞”�
K(λ) γC
γCT O

� �
u
p

�
= µ

�
M C
CT O

� �
u
p

�
“∞” mapped to γ
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Strategy for Stability Analysis

Compute steady state diagram: F (x, λ) = 0 Task 1

Detect existence of bifurcation points (i.e. where real or complex
eigenvalues of Fx = A(λ) cross imaginary axis), and then locate them

accurately Task 2

In two parameter problems (e.g. Reynold’s number and aspect ratio):

Compute paths of bifurcation points Task 3

Key tool: Bordered matrices

Alastair Spence University of Bath
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Background on Bordered matrices

A ∈ Rn×n, b, c ∈ Rn

M =

�
A b
cT d

�
∈ R(n+1)×(n+1)

If Rank(A) = n and (d− cTA−1b) 6= 0, then M is nonsingular

If Rank(A) < n− 1 then M is singular

If Rank(A) = n− 1 with Aφ = 0, ψTA = 0T then

ψT b 6= 0, cTφ 6= 0 ⇐⇒ M nonsingular

Bordering is important

Example: Assume A has singular values σ1 ≥ · · · ≥ σn−1 > 0. Then

M =

�
A ψ
φT 0

�

has singular values σ1 ≥ · · · ≥ σn−1, 1, 1

Alastair Spence University of Bath
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Solving bordered systems: A nearly singular

Assume A has structure

Consider �
A b
cT d

� �
x
y

�
=

�
f
g

�

Doolittle (D)

�
A b
cT d

�
=

�
I 0
wT 1

� �
A b
0 δ

�

Forward/back substitutions use 1 solve with AT , (ATw = c), and 1
solve with A

Crout (C) �
A b
cT d

�
=

�
A 0
cT δ

� �
I v
0 1

�

Forward/back substitutions use 2 solves with A

Alastair Spence University of Bath
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Block Elimination Algorithm for A nearly singular: Govaerts&Pryce

Consider �
A b
cT d

� �
x
y

�
=

�
f
g

�

Crout (C) and Doolittle (D) both fail when A is nearly singular

BUT:
1 (D) computes y well
2 If y is known accurately, (C) computes x well

Method: Use (D) to get ỹ. Apply iterative refinement on (C) with
starting guess (0, ỹ)

Govaerts&Pryce: Backward stable

Cost: 1 solve with AT , 2 solves with A

Alastair Spence University of Bath
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Bordered matrices and Iterative solvers

Calvetti&Reichel (2000)

A symmetric

monitor eigenvalues of Fx along F (x, λ) = 0 using Implicitly Restarted
Block Lanczos

solve bordered systems using FOM with basis from Block Lanczos

No preconditioning?

Extension to nonsymmetric problems -OK for real eigenvalues but
complex eigenvalues?

LOCA “Library of Continuation Algorithms”, Sandia

Alastair Spence University of Bath
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Bordered Matrices

We shall see that bordered matrices arise naturally in the following 3 tasks:

1 Numerical Continuation (i.e. computing F (x, λ) = 0)

2 (i) Detecting when Det(Fx) changes sign, and
(ii) accurate calculation of singular points

3 Numerical continuation of paths of singular points in 2-parameter
problems

4 Requirement: Efficient algorithms for bordered matrices with structure

Alastair Spence University of Bath
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To compute F (x, λ) = 0; Pseudo-arclength continuation (Keller)

Implicit Function Theorem (IFT):

F (x0, λ0) = 0, and Fx(x0, λ0) nonsingular ⇒,

F (x(λ), λ) = 0 near λ = λ0

(x0, λ0) is regular. IFT⇒ ∃ path of regular points near (x0, λ0)

Numerical continuation is merely the computational version of IFT

To “pass over” singular points add an extra normalisation:

G(y, t) =

�
F (x, λ)

cT (x− x0) + d(λ− λ0)− t

�
=

�
0
0

�
, y =

�
x
λ

�

Gy(y, t) =

�
Fx Fλ

cT d

�

cT , d?

Key tool: Efficient treatment of bordered matrices near points where
Fx is nearly singular

Alastair Spence University of Bath
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Pseudo-arclength continuation

The “normalisation”= equation of the plane ⊥ tangent

t is the “length along the tangent” (“pseudo-arclength”)

G(y, t) = 0 represents the point where curve intersects the plane

Method: compute tangent; form G(y, t) = 0; solve using Newton

Aside: DAETS - F (x, λ) = 0, ẋT ẋ+ λ̇2 = 1

Alastair Spence University of Bath
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Generic bifurcations in 1-parameter problems

Figure: Generic behaviour for singular points in 1-parameter problems

Lecture 2: Complex pair crosses Imaginary axis
Two cases: (a) Turning Point
(b) If a symmetry is broken (i.e eigenvector φ ‘breaks’ the symmetry)
then Symmetric Pitchfork
Taylor problem has a reflectional symmetry
In both cases: F (x(t), λ(t)) = 0: µ(t) is eigenvalue of Fx(x(t), λ(t))
then

µ(t) = 0,
d

dt
µ(t) 6= 0 at the singular point

That is, an eigenvalue of Fx passes through zero “smoothly”
loss of stability at the singular points

Alastair Spence University of Bath
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Detection then accurate calculation
Seek (x, λ) such that Fx(x, λ) is singular
Consider �

Fx(x, λ) Fλ(x, λ)
cT d

� �
∗
g

�
=

�
0
1

�

g = g(x, λ)
Cramer’s Rule: Det(Fx) = 0 ⇐⇒ g = 0.

Accurate calculation: Consider the pair

F (x, λ) = 0, g(x, λ) = 0

Newton’s Method:�
Fx(x, λ) Fλ(x, λ)
gx(x, λ)T gλ(x, λ)

� �
∆x
∆λ

�
= −

�
F
g

�

System nonsingular if d
dt
µ 6= 0 at singular point

Extended Systems:

F (x, λ) = 0, Fx(x, λ)φ = 0, cTφ = 1

Also reduces to solving 1-bordered systems ( numerics for Taylor
problem)
Adapt for symmetry-breaking

Alastair Spence University of Bath
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2-parameter problems (e.g. The Taylor Problem)

Use system that is nonsingular at a bifurcation point (Fx singular)

Use pseudo-arclength to follow paths bifurcation points. For example:

F (x, λ, α) = 0, g(x, λ, α) = 0, n(x, λ, α, t) = 0

where n(x, λ, α, t) = 0 is the “normalisation” (2-bordered systems)

detect singular points on path of bifurcations?

Alastair Spence University of Bath
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Transcritical bifurcation

Figure: The sequence to a transcritical bifurcation for F (x, λ, α) = 0

solid lines represent stable solutions

Transcritical bifurcations should not occur in 1-parameter problems

A Transcritical bifurcation, and a Cusp are Turning points in a path of
Turning points

Transcritical and Cusp bifurcations are “codimension 1”

Multi-parameter problems?

High codimension points are called Organising Centres

Alastair Spence University of Bath
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Recall the Taylor Problem: Schematic of experimental results

Figure: Parameter space plot showing loss of stability of 4 and 6 cell flows
Alastair Spence University of Bath
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Recall the Taylor Problem

Figure: 4 and 6 cell anomalous modes: sequence of bifurcation diagrams as aspect
ratio varies

Alastair Spence University of Bath
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Numerical results for the 4-6 cell interchange (Cliffe)

Alastair Spence University of Bath
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The 4-6 cell interchange including symmetry-breaking (Cliffe)

Alastair Spence University of Bath
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Conclusions

Numerical methods work!

Excellent agreement between numerics and experiment

Eigenvalues work! (Problem isn’t very “non-normal”)

The numerical methods gave extra insight via symmetry-breaking

Efficient methods for bordered systems are crucial

Iterative methods for bordered sytems in continuation and bifurcation
analysis?

Lecture 2: Hopf bifurcations and periodic orbits

Alastair Spence University of Bath
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