Lecture 1: Stability and Bifurcations for the Discretised Incompressible Navier-Stokes Equations

Alastair Spence
Department of Mathematical Sciences University of Bath
CLAPDE, Durham, July 2008

(1) Introduction
(2) The Taylor-Couette Problem
(3) Stability in time-dependent PDEs

4 Bordered Matrices
(5) Numerical Continuation and Bifurcations
(6) The Taylor problem again: Numerics
(7) Conclusions

Outline

(1) Introduction
(2) The Taylor-Couette Problem
(3) Stability in time-dependent PDEs

4 Bordered Matrices
(5) Numerical Continuation and Bifurcations

6 The Taylor problem again: Numerics
(7) Conclusions

- Lecture 1: Basic ideas of bifurcation/stability in time dependent PDEs; The Taylor-Couette problem - a comparison of experimental results with numerics; Numerical linear algebra of bordered matrices
- Lecture 2: Hopf bifurcations and periodic orbits in large systems; some open questions; The Taylor problem again
- Lecture 3: Inexact Inverse Iteration and Jacobi-Davidson with preconditioning; numerical results from Navier-Stokes and other problems
- "Cliffe, Spence \& Tavener", review in Acta Numerica (2000)
- "Spence \& Graham", introductory notes from 1998 Leicester Summer School

Stability and Bifurcation: the basics

- The Taylor-Couette Problem: Benjamin \& Mullin experiments (1978,1981,...)
- (Linearised) Stability for time dependent discretised PDEs
- Bordered matrices
- Numerical continuation and bifurcations
- The Taylor problem again: comparison of numerics with experiments
- Conclusions
cunarroo

Outline

(1) Introduction
(2) The Taylor-Couette Problem
(3) Stability in time-dependent PDEs

4 Bordered Matrices
(5) Numerical Continuation and Bifurcations
(6) The Taylor problem again: Numerics
(7) Conclusions

The Taylor Problem (Benjamin \& Mullin)

Figure: The Taylor problem showing 4-cell and 6-cell flows

- Two parameters: R, Reynold's number (speed of inner cylinder) and α, the aspect ratio (height/gap)
- Experiment:
(1) Fix α
(2) Increase R slowly from zero, or start up suddenly with large R

Taylor problem: photos

The Taylor Problem: Schematic of experimental results

Figure: Parameter space plot showing loss of stability of 4 and 6 cell flows

The Taylor Problem: Anomalous modes (Benjamin \& Mullin)

Figure: 4 and 6 cell anomalous modes: sequence of bifurcation diagrams as aspect ratio varies

Question

Can we reproduce these experimental results using numerical methods?

Outline

(1) Introduction
(2) The Taylor-Couette Problem
(3) Stability in time-dependent PDEs

4 Bordered Matrices

5 Numerical Continuation and Bifurcations
(6) The Taylor problem again: Numerics
(7) Conclusions

Linearised Stability

- $\dot{x}=F(x, \lambda), x(t) \in \mathbb{R}^{n}$
- Bifurcation Theory: change of stability of solutions (steady, periodic, homoclinic,...) as λ varies
- Steady solution: $0=F(x, \lambda)$

Linearised Stability

- $\dot{x}=F(x, \lambda), x(t) \in \mathbb{R}^{n}$
- Bifurcation Theory: change of stability of solutions (steady, periodic, homoclinic, ...) as λ varies
- Steady solution: $0=F(x, \lambda)$
- Linearised Stability
(1) Perturbation: $x \rightarrow x+\delta$
(2) $\dot{\delta}=A(\lambda) \delta \quad A(\lambda)=F_{x}(x, \lambda)$, Jacobian
(3) $\delta=e^{\mu t} \phi$
(1) $A(\lambda) \phi=\mu \phi$

Linearised Stability

- $\dot{x}=F(x, \lambda), x(t) \in \mathbb{R}^{n}$
- Bifurcation Theory: change of stability of solutions (steady, periodic, homoclinic, ...) as λ varies
- Steady solution: $0=F(x, \lambda)$
- Linearised Stability
(1) Perturbation: $x \rightarrow x+\delta$
(2) $\dot{\delta}=A(\lambda) \delta \quad A(\lambda)=F_{x}(x, \lambda)$, Jacobian
(3) $\delta=e^{\mu t} \phi$
(1) $A(\lambda) \phi=\mu \phi$
- As λ varies, μ varies in \mathbb{C}. Loss of stability arises:
() μ passes through 0 , so F_{x} is singular
(2) a complex pair crosses imaginary axis: in this case F_{x} is non-singular (Lecture 2 on Hopf bifurcation.)
- left-half plane is "stable"; right-half plane is "unstable"
- Pseudo-eigenvalues?

Incompressible Navier-Stokes

Discretisation of linearised equations using mixed finite elements leads to the following eigenvalue problem:

$$
\left[\begin{array}{cc}
K(\lambda) & C \\
C^{T} & O
\end{array}\right]\left[\begin{array}{l}
u \\
p
\end{array}\right]=\mu\left[\begin{array}{cc}
M & O \\
O & O
\end{array}\right]\left[\begin{array}{l}
u \\
p
\end{array}\right]
$$

-

$$
A(\lambda) \phi=\mu B \phi
$$

- "Saddle point" $A(\lambda)$, but $K(\lambda)$ nonsymmetric
- μ could be complex
- B positive semidefinite: $\mu=" \infty$ "
- $\left[\begin{array}{cc}K(\lambda) & \gamma C \\ \gamma C^{T} & O\end{array}\right]\left[\begin{array}{l}u \\ p\end{array}\right]=\mu\left[\begin{array}{cc}M & C \\ C^{T} & O\end{array}\right]\left[\begin{array}{l}u \\ p\end{array}\right] \quad " \infty "$ mapped to γ

Strategy for Stability Analysis

- Compute steady state diagram: $F(x, \lambda)=0 \quad$ Task 1
- Detect existence of bifurcation points (i.e. where real or complex eigenvalues of $F_{x}=A(\lambda)$ cross imaginary axis), and then locate them accurately Task 2
- In two parameter problems (e.g. Reynold's number and aspect ratio):

Compute paths of bifurcation points Task 3

- Key tool: Bordered matrices

Outline

(1) Introduction
(2) The Taylor-Couette Problem
(3) Stability in time-dependent PDEs

4 Bordered Matrices

5 Numerical Continuation and Bifurcations
(6) The Taylor problem again: Numerics
(7) Conclusions

Background on Bordered matrices

- $A \in \mathbb{R}^{n \times n}, \quad b, c \in \mathbb{R}^{n}$
- $M=\left[\begin{array}{cc}A & b \\ c^{T} & d\end{array}\right] \in \mathbb{R}^{(n+1) \times(n+1)}$

Background on Bordered matrices

- $A \in \mathbb{R}^{n \times n}, \quad b, c \in \mathbb{R}^{n}$
- $M=\left[\begin{array}{cc}A & b \\ c^{T} & d\end{array}\right] \in \mathbb{R}^{(n+1) \times(n+1)}$
- If $\operatorname{Rank}(A)=n$ and $\left(d-c^{T} A^{-1} b\right) \neq 0$, then M is nonsingular
- If $\operatorname{Rank}(A)<n-1$ then M is singular
- If $\operatorname{Rank}(A)=n-1$ with $A \phi=0, \quad \psi^{T} A=0^{T}$ then

$$
\psi^{T} b \neq 0, \quad c^{T} \phi \neq 0 \Longleftrightarrow M \text { nonsingular }
$$

Background on Bordered matrices

- $A \in \mathbb{R}^{n \times n}, \quad b, c \in \mathbb{R}^{n}$
- $M=\left[\begin{array}{cc}A & b \\ c^{T} & d\end{array}\right] \in \mathbb{R}^{(n+1) \times(n+1)}$
- If $\operatorname{Rank}(A)=n$ and $\left(d-c^{T} A^{-1} b\right) \neq 0$, then M is nonsingular
- If $\operatorname{Rank}(A)<n-1$ then M is singular
- If $\operatorname{Rank}(A)=n-1$ with $A \phi=0, \quad \psi^{T} A=0^{T}$ then

$$
\psi^{T} b \neq 0, \quad c^{T} \phi \neq 0 \Longleftrightarrow M \text { nonsingular }
$$

- Bordering is important
- Example: Assume A has singular values $\sigma_{1} \geq \cdots \geq \sigma_{n-1}>0$. Then

$$
M=\left[\begin{array}{cc}
A & \psi \\
\phi^{T} & 0
\end{array}\right]
$$

has singular values $\sigma_{1} \geq \cdots \geq \sigma_{n-1}, 1,1$

Solving bordered systems: A nearly singular

- Assume A has structure
- Consider

$$
\left[\begin{array}{cc}
A & b \\
c^{T} & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
f \\
g
\end{array}\right]
$$

- Doolittle (D)

$$
\left[\begin{array}{ll}
A & b \\
c^{T} & d
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
w^{T} & 1
\end{array}\right]\left[\begin{array}{ll}
A & b \\
0 & \delta
\end{array}\right]
$$

Forward/back substitutions use 1 solve with $A^{T},\left(A^{T} w=c\right)$, and 1 solve with A

- Crout (C)

$$
\left[\begin{array}{cc}
A & b \\
c^{T} & d
\end{array}\right]=\left[\begin{array}{cc}
A & 0 \\
c^{T} & \delta
\end{array}\right]\left[\begin{array}{ll}
I & v \\
0 & 1
\end{array}\right]
$$

Forward/back substitutions use 2 solves with A

Block Elimination Algorithm for A nearly singular: Govaerts\&Pryce

Consider

$$
\left[\begin{array}{cc}
A & b \\
c^{T} & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
f \\
g
\end{array}\right]
$$

- Crout (C) and Doolittle (D) both fail when A is nearly singular
- BUT:
(1) (D) computes y well
(2) If y is known accurately, (C) computes x well

Block Elimination Algorithm for A nearly singular: Govaerts\&Pryce

Consider

$$
\left[\begin{array}{cc}
A & b \\
c^{T} & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
f \\
g
\end{array}\right]
$$

- Crout (C) and Doolittle (D) both fail when A is nearly singular
- BUT:
(1) (D) computes y well
(2) If y is known accurately, (C) computes x well
- Method: Use (D) to get \tilde{y}. Apply iterative refinement on (C) with starting guess $(0, \tilde{y})$
- Govaerts\&Pryce: Backward stable
- Cost: 1 solve with $A^{T}, 2$ solves with A

Bordered matrices and Iterative solvers

- Calvetti\&Reichel (2000)
- A symmetric
- monitor eigenvalues of F_{x} along $F(x, \lambda)=0$ using Implicitly Restarted Block Lanczos
- solve bordered systems using FOM with basis from Block Lanczos
- No preconditioning?
- Extension to nonsymmetric problems -OK for real eigenvalues but complex eigenvalues?
- LOCA "Library of Continuation Algorithms", Sandia

Bordered Matrices

We shall see that bordered matrices arise naturally in the following 3 tasks:
(1) Numerical Continuation (i.e. computing $F(x, \lambda)=0$)
(2) (i) Detecting when $\operatorname{Det}\left(F_{x}\right)$ changes sign, and
(ii) accurate calculation of singular points
(3) Numerical continuation of paths of singular points in 2-parameter problems
(9) Requirement: Efficient algorithms for bordered matrices with structure

Outline

(1) Introduction
(2) The Taylor-Couette Problem
(3) Stability in time-dependent PDEs

4 Bordered Matrices
(5) Numerical Continuation and Bifurcations
(6) The Taylor problem again: Numerics
(7) Conclusions

To compute $F(x, \lambda)=0$; Pseudo-arclength continuation (Keller)

- Implicit Function Theorem (IFT):

$$
\begin{gathered}
F\left(x_{0}, \lambda_{0}\right)=0, \text { and } F_{x}\left(x_{0}, \lambda_{0}\right) \text { nonsingular } \Rightarrow, \\
F(x(\lambda), \lambda)=0 \quad \text { near } \lambda=\lambda_{0}
\end{gathered}
$$

- $\left(x_{0}, \lambda_{0}\right)$ is regular. IFT $\Rightarrow \exists$ path of regular points near $\left(x_{0}, \lambda_{0}\right)$
- Numerical continuation is merely the computational version of IFT

To compute $F(x, \lambda)=0$; Pseudo-arclength continuation (Keller)

- Implicit Function Theorem (IFT):

$$
\begin{gathered}
F\left(x_{0}, \lambda_{0}\right)=0, \text { and } F_{x}\left(x_{0}, \lambda_{0}\right) \text { nonsingular } \Rightarrow, \\
F(x(\lambda), \lambda)=0 \quad \text { near } \lambda=\lambda_{0}
\end{gathered}
$$

- $\left(x_{0}, \lambda_{0}\right)$ is regular. IFT $\Rightarrow \exists$ path of regular points near $\left(x_{0}, \lambda_{0}\right)$
- Numerical continuation is merely the computational version of IFT
- To "pass over" singular points add an extra normalisation:

$$
G(y, t)=\left[\begin{array}{c}
F(x, \lambda) \\
c^{T}\left(x-x_{0}\right)+d\left(\lambda-\lambda_{0}\right)-t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad y=\left[\begin{array}{l}
x \\
\lambda
\end{array}\right]
$$

$$
G_{y}(y, t)=\left[\begin{array}{cc}
F_{x} & F_{\lambda} \\
c^{T} & d
\end{array}\right]
$$

- c^{T}, d ?
- Key tool: Efficient treatment of bordered matrices near points whe F_{x} is nearly singular

Pseudo-arclength continuation

- The "normalisation" = equation of the plane \perp tangent
- t is the "length along the tangent" ("pseudo-arclength")
- $G(y, t)=0$ represents the point where curve intersects the plane
- Method: compute tangent; form $G(y, t)=0$; solve using Newton

Pseudo-arclength continuation

- The "normalisation" $=$ equation of the plane \perp tangent
- t is the "length along the tangent" ("pseudo-arclength")
- $G(y, t)=0$ represents the point where curve intersects the plane
- Method: compute tangent; form $G(y, t)=0$; solve using Newton
- Aside: DAETS $-F(x, \lambda)=0, \quad \dot{x}^{T} \dot{x}+\dot{\lambda}^{2}=1$

Generic bifurcations in 1-parameter problems

Figure: Generic behaviour for singular points in 1-parameter problems

- Lecture 2: Complex pair crosses Imaginary axis
- Two cases: (a) Turning Point
(b) If a symmetry is broken (i.e eigenvector ϕ 'breaks' the symmetry) then Symmetric Pitchfork
- Taylor problem has a reflectional symmetry
- In both cases: $F(x(t), \lambda(t))=0: \mu(t)$ is eigenvalue of $F_{x}(x(t), \lambda(t))$ then

$$
\mu(t)=0, \frac{d}{d t} \mu(t) \neq 0 \quad \text { at the singular point }
$$

That is, an eigenvalue of F_{x} passes through zero "smoothly"

- loss of stability at the singular points

Detection then accurate calculation

- Seek (x, λ) such that $F_{x}(x, \lambda)$ is singular
- Consider

$$
\left[\begin{array}{cc}
F_{x}(x, \lambda) & F_{\lambda}(x, \lambda) \\
c^{T} & d
\end{array}\right]\left[\begin{array}{l}
* \\
g
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

- $g=g(x, \lambda)$
- Cramer's Rule: $\operatorname{Det}\left(F_{x}\right)=0 \Longleftrightarrow g=0$.

Detection then accurate calculation

- Seek (x, λ) such that $F_{x}(x, \lambda)$ is singular
- Consider

$$
\left[\begin{array}{cc}
F_{x}(x, \lambda) & F_{\lambda}(x, \lambda) \\
c^{T} & d
\end{array}\right]\left[\begin{array}{l}
* \\
g
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

- $g=g(x, \lambda)$
- Cramer's Rule: $\operatorname{Det}\left(F_{x}\right)=0 \Longleftrightarrow g=0$.
- Accurate calculation: Consider the pair

$$
F(x, \lambda)=0, \quad g(x, \lambda)=0
$$

- Newton's Method:

$$
\left[\begin{array}{cc}
F_{x}(x, \lambda) & F_{\lambda}(x, \lambda) \\
g_{x}(x, \lambda)^{T} & g_{\lambda}(x, \lambda)
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta \lambda
\end{array}\right]=-\left[\begin{array}{c}
F \\
g
\end{array}\right]
$$

- System nonsingular if $\frac{d}{d t} \mu \neq 0$ at singular point

Detection then accurate calculation

- Seek (x, λ) such that $F_{x}(x, \lambda)$ is singular
- Consider

$$
\left[\begin{array}{cc}
F_{x}(x, \lambda) & F_{\lambda}(x, \lambda) \\
c^{T} & d
\end{array}\right]\left[\begin{array}{l}
* \\
g
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

- $g=g(x, \lambda)$
- Cramer's Rule: $\operatorname{Det}\left(F_{x}\right)=0 \Longleftrightarrow g=0$.
- Accurate calculation: Consider the pair

$$
F(x, \lambda)=0, \quad g(x, \lambda)=0
$$

- Newton's Method:

$$
\left[\begin{array}{cc}
F_{x}(x, \lambda) & F_{\lambda}(x, \lambda) \\
g_{x}(x, \lambda)^{T} & g_{\lambda}(x, \lambda)
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta \lambda
\end{array}\right]=-\left[\begin{array}{c}
F \\
g
\end{array}\right]
$$

- System nonsingular if $\frac{d}{d t} \mu \neq 0$ at singular point
- Extended Systems:

$$
F(x, \lambda)=0, \quad F_{x}(x, \lambda) \phi=0, \quad c^{T} \phi=1
$$

Also reduces to solving 1-bordered systems (numerics for Taylor problem)

- Adapt for symmetry-breaking

2-parameter problems (e.g. The Taylor Problem)

- Use system that is nonsingular at a bifurcation point (F_{x} singular)
- Use pseudo-arclength to follow paths bifurcation points. For example:

$$
F(x, \lambda, \alpha)=0, \quad g(x, \lambda, \alpha)=0, \quad n(x, \lambda, \alpha, t)=0
$$

where $n(x, \lambda, \alpha, t)=0$ is the "normalisation" (2-bordered systems)

- detect singular points on path of bifurcations?

Transcritical bifurcation

Figure: The sequence to a transcritical bifurcation for $F(x, \lambda, \alpha)=0$

- solid lines represent stable solutions
- Transcritical bifurcations should not occur in 1-parameter problems
- A Transcritical bifurcation, and a Cusp are Turning points in a path of Turning points
- Transcritical and Cusp bifurcations are "codimension 1"
- Multi-parameter problems?
- High codimension points are called Organising Centres

Outline

(1) Introduction
(2) The Taylor-Couette Problem
(3) Stability in time-dependent PDEs

4 Bordered Matrices

5 Numerical Continuation and Bifurcations
(6) The Taylor problem again: Numerics
(7) Conclusions

Recall the Taylor Problem: Schematic of experimental results

Figure: Parameter space plot showing loss of stability of 4 and 6 cell flows

Recall the Taylor Problem

Figure: 4 and 6 cell anomalous modes: sequence of bifurcation diagrams as aspect ratio varies

Numerical results for the 4-6 cell interchange (Cliffe)

The 4-6 cell interchange including symmetry-breaking (Cliffe)

Outline

(1) Introduction
(2) The Taylor-Couette Problem
(3) Stability in time-dependent PDEs

4 Bordered Matrices
(5) Numerical Continuation and Bifurcations
(6) The Taylor problem again: Numerics
(7) Conclusions

Conclusions

- Numerical methods work!
- Excellent agreement between numerics and experiment
- Eigenvalues work! (Problem isn't very "non-normal")
- The numerical methods gave extra insight via symmetry-breaking
- Efficient methods for bordered systems are crucial
- Iterative methods for bordered sytems in continuation and bifurcation analysis?
- Lecture 2: Hopf bifurcations and periodic orbits

