Difficulties in computing the fundamental distortion mode in Coriolis mass flow meters CLAPDE 2008

\author{
Simon Shaw
 ```
people.brunel.ac.uk/~icsrsss
 simon.shaw@brunel.ac.uk

```
}

BICOM and Mathematical Sciences, Brunel University, England

\section*{Focus}
- The Coriolis effect
- Coriolis mass flow meters
- Collaboration and background
- Eigenvalue problem \& results

\section*{Coriolis}

Gaspard-Gustave de Coriolis (Gustave Coriolis, May 21, 1792 - September 19, 1843) published the paper that described the effect that now bears his name in 1835: Sur les équations du mouvement relatif des systèmes de corps (On the equations of relative motion of a system of bodies).
```

Source:
en.wikipedia.org/wiki/Gaspard-Gustave_Coriolis

```

\section*{The Coriolis effect}

Imagine rolling a ball radially outward at constant velocity \(V_{s} \mathrm{~m} / \mathrm{s}\) from the centre of a roundabout/carousel that is rotating at \(\omega \mathrm{rad} / \mathrm{sec}\).

The ball will experience:
- a radial centripetal acceleration
- a tangential Coriolis acceleration

Consider the change in velocity during \(d t . .\).

\section*{Derivation I}


Sketch the velocity vectors at \(t\)
And those at \(t+d t\)

Hence obtain accelerations.

\section*{Derivation II}


Change in tangential velocity
\[
V_{s} d \theta+\omega d r
\]

Change in radial velocity
\[
r \omega d \theta
\]

Divide by \(d t\) to get acceleration:
tangential: \(2 \omega V_{s} \quad\) Coriolis radial: \(r \omega^{2} \quad\) Centripetal

Pipe meter physics I


CLAMPED BOUNDAEY CONDITIONS
- Metal pipe carries a plug flow of fluid at velocity \(V\).
- Pipe also vibrated by electromagnetic sine
- Bending theory applies

\section*{Pipe meter physics II}

RIGAT END

- Right end: fluid particle = ball on roundabout.
- Coriolis acceleration implies force implies deformation.
- Left end: Coriolis force is in opposite direction.

\section*{Pipe meter physics III}

No flow on the left, flow at \(V \mathrm{~m} / \mathrm{s}\) on the right:

- Overall effect: antisymetric Coriolis distortion superimposed on symmetric bending profile.
- Phase difference at quarter-points proportional to mass flow

\section*{So what?}

Why does this matter?
- Coriolis distortion is an inertial effect and is proportional to the mass (not volume) flow rate.
- Mass flow is measured directly not by the indirect conversion of volume flow (e.g. bubbles).
- Important for accuracy:
- Custodial transfers
- medical drug dosing
- Meters range from over 1 metre diameter to micro-machined (fits on a thumb).

\section*{Example from wikipedia}

An illustrative example:
- No flow
- With flow

Courtesy wikipedia.

\section*{The mathematical model}

Incorporating the fluid flow (plug flow) into a Timoshenko beam model leads to,
\[
\begin{gathered}
\left(m_{p}+m_{f}\right) \frac{\partial^{2} u}{\partial t^{2}}+m_{f}\left[2 V \frac{\partial^{2} u}{\partial x \partial t}+V^{2} \frac{\partial^{2} u}{\partial x^{2}}\right] \\
-\kappa G A_{p}\left(\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial \theta}{\partial x}\right)=0 \\
\left(\varrho_{p} I_{p}+\varrho_{f} I_{f}\right) \frac{\partial^{2} \theta}{\partial t^{2}}-E I_{p} \frac{\partial^{2} \theta}{\partial x^{2}}-\kappa G A_{p}\left(\frac{\partial u}{\partial x}-\theta\right)=0
\end{gathered}
\]
where \(V=\) fluid velocity, and the boundaries are clamped.

\section*{FEM}

Finite element discretization leads to,
\[
\boldsymbol{M} \frac{d^{2} \boldsymbol{U}}{d t^{2}}+\boldsymbol{E} \frac{d \boldsymbol{U}}{d t}+\boldsymbol{A} \boldsymbol{U}=\mathbf{0}
\]
and setting \(U=V e^{i \omega t}\) we get the complex eigenvalue problem,
\[
\left(\boldsymbol{A}+i \omega \boldsymbol{E}-\omega^{2} \boldsymbol{M}\right) \boldsymbol{V}=0 .
\]

Here \(\boldsymbol{E}=-\boldsymbol{E}^{T}, \boldsymbol{M}>0\) and \(\boldsymbol{A}>0\) (if \(m_{f} V^{2}\) is small enough).

It follows that: all \(\omega \in \mathbb{R}\) and if
\((\omega, \boldsymbol{V})\) is an eigenpair then so is \((\omega, \overline{\boldsymbol{V}})\).

\section*{Three solution techniques}

We are looking for the Coriolis distortion:

\section*{imaginary part of an eigenvector associated with the smallest-in-magnitude eigenvalue}

Three methods are used:
- Matlab's polyeig routine.
- Matlab's eig routine.
- Inverse iteration.

All with and without shift.
\[
\text { polyeig for }\left(\boldsymbol{A}+i \omega \boldsymbol{E}-\omega^{2} \boldsymbol{M}\right) \boldsymbol{V}=\mathbf{0}
\]

The MATLAB fragment
[X, e] = polyeig(A, i*E, -M);
solves the quadratic eigenvalue problem in terms of a column of eigenvalues, e, and a matrix of eigenvectors, x . (Recall that \(\boldsymbol{A}\) and \(M\) are invertible.)

\section*{eig for \(\left(\boldsymbol{A}+i \omega \boldsymbol{E}-\omega^{2} \boldsymbol{M}\right) \boldsymbol{V}=\mathbf{0}\)}

Set \(\boldsymbol{W}=\omega \boldsymbol{V}\) so that \(-\omega^{2} \boldsymbol{M} \boldsymbol{V}=-\omega \boldsymbol{M} \boldsymbol{W}\). Then:
\[
\left(\begin{array}{cc}
\boldsymbol{0} & \boldsymbol{I} \\
\boldsymbol{M}^{-1} \boldsymbol{A} & i \boldsymbol{M}^{-1} \boldsymbol{E}
\end{array}\right)\binom{\boldsymbol{V}}{\boldsymbol{W}}=\omega\binom{\boldsymbol{V}}{\boldsymbol{W}} .
\]

Hence: \(\boldsymbol{B} \boldsymbol{X}=\boldsymbol{X} \boldsymbol{L}\), with \(\boldsymbol{L}=\) diagonal of eigenvalues and \(\boldsymbol{X}=\) eigenvectors. Solve in MATLAB via the fragment,

B = [ zeros (N,N) eye(N) ; \(\mathrm{M} \backslash \mathrm{A} \quad \mathrm{i}\) ( \(\mathrm{M} \backslash \mathrm{E}]\);
[ X L] = eig(B);
(where \(\boldsymbol{A}, \boldsymbol{E}\) and \(M\) are \(N \times N\) ).

\section*{Inverse iteration}

Given \(\boldsymbol{D}>0\) and \(x_{0}\) the iteration:
- \(\boldsymbol{z}_{n+1}=\boldsymbol{D}^{-1} \boldsymbol{x}_{n}\) for \(n=0,1,2, \ldots\)
- \(\boldsymbol{x}_{n+1}=\boldsymbol{z}_{n+1}\left\|\boldsymbol{z}_{n+1}\right\|_{\infty}^{-1}\)
converges to the eigenvector of the eigenvalue of least modulus of \(\boldsymbol{D}\) (if this is well-defined).

For our system this is,
\[
\begin{gathered}
\boldsymbol{W}_{n+1}=\boldsymbol{V}_{n} \\
\boldsymbol{V}_{n+1}=\boldsymbol{A}^{-1}\left(\boldsymbol{M} \boldsymbol{W}_{n}-i \boldsymbol{E} \boldsymbol{W}_{n+1}\right)
\end{gathered}
\]
and we take \(\left(1+10^{-5} i, 1+10^{-5} i, \ldots\right)\) as the initial guess.

\section*{Summary}

These methods were used with and without shift.
The physical constants in the PDEs are 'real life' and correspond to a real straight-tube meter.

Most meters are far more complicated in terms of design and geometry.

Before the numerics here is the background.

\section*{Collaboration and background}

Robert Cheesewright (Engineering, Brunel) was getting incorrect eigenvectors from ANSYS.

He asked for my help and advice in terms of FEM and 'locking'.

My independent C++ and matlab computations still gave incorrect results. . .

The Timoshenko beam results are shown
The Euler-Bernoulli results are essentially the same
The results for a straight tube meter are...

\section*{Centrifugal distortion (by analysis)}


Distortion (in millimetres) due to centrifugal forces as a function of distance (in meters) along the tube, as predicted by analysis.

\section*{Coriolis distortion (by analysis)}


Distortion (in millimetres) due to Coriolis forces as a function of distance (in meters) along the tube, as predicted by analysis.

\section*{Centrifugal distortion (by ANSYS)}


Distortion due to Coriolis forces as a function of distance along the tube, as predicted by FE modelling using ANSYS.

\section*{My efforts...}

The coriolis distortion is wrong and not physical.
My efforts:
- C++ code to generate FE matrices
- Data read by matlab for eigen-computations
- The results were...

\section*{Eigenvalues (no shift)}
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{\(|\omega|_{\text {min }}\) by technique... } \\
\(N_{e}\) & 1 & 2 & 3 \\
\hline 16 & 940.1753 & 940.1753 & \(\approx 1 \leftrightarrow 13000\) \\
32 & 938.9266 & 938.9266 & \(\approx 1 \leftrightarrow 13000\) \\
64 & 938.8359 & 938.8359 & \(\approx 1 \leftrightarrow 13000\) \\
128 & 938.8298 & 938.8300 & \(\approx 1 \leftrightarrow 13000\) \\
256 & 938.8296 & 938.8296 & \(\approx 1 \leftrightarrow 13000\) \\
\hline
\end{tabular}

Computed \(|\omega|_{\text {min }}\) for the Timoshenko beam (quadratic elements) with no shift, \(p=0\).

\section*{Eigenvalues (with shift)}
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{\(|\omega|_{\text {min }}\) by technique... } \\
\(N_{e}\) & 1 & 2 & 3 \\
\hline 16 & 940.1753 & 940.1753 & 940.1753 \\
\(\mathbf{3 2}\) & 938.9266 & 938.9266 & 938.9266 \\
\(\mathbf{6 4}\) & 938.8359 & 938.8359 & 938.8359 \\
\(\mathbf{1 2 8}\) & 938.8300 & 938.8300 & 938.8300 \\
\(\mathbf{2 5 6}\) & 938.8296 & 938.8296 & 938.8296 \\
\hline
\end{tabular}

Computed \(|\omega|_{\text {min }}\) for the Timoshenko beam (quadratic elements) with shift \(p=900\).

\section*{Eigenvectors}

What about the eigenvectors?
We are expecting to see...


\section*{polyeig without shift}


\(\operatorname{Re} V\) and \(\operatorname{Im} V\) from Matlab's eig routine. No shift (32 elements).

\section*{polyeig with shift}



Re \(V\) and \(\operatorname{Im} V\) from Matlab's eig routine. Shift \(=900\) (32 elements).

\section*{eig without shift}



Re \(V\) and Im \(V\) from Matlab's eig routine. No shift (32 elements).

\section*{eig with shift}



Re \(V\) and \(\operatorname{Im} V\) from Matlab's eig routine. Shift \(=900\) (32 elements).

\section*{Inverse iteration without shift}



Re \(V\) and \(\operatorname{Im} V\) from inverse iteration. No shift (32 elements).

\section*{Inverse iteration with shift}



Re \(V\) and \(\operatorname{Im} V\) from inverse iteration. Shift \(=900\) (32 elements).

\section*{Conclusion}
- Shifted inverse iteration is most robust (given a good initial guess).
- ANSYS and matlab seem to struggle.
- Problem is due to rounding error (a hunch!)
- \(\omega^{2} r\) and \(2 \omega V\) are different orders of magnitude.
- A challenge for eigen-solvers?
- ... or is there an 'easy' remedy?

\section*{FIAM}

I'll leave you with the fundamental inequality of applied mathematics:
\[
\|T-P\|_{T} \ll\|T-P\|_{P}
\]

\section*{FIAM}

I'll leave you with the fundamental inequality of applied mathematics:
\[
\|T-P\|_{T} \ll\|T-P\|_{P}
\]

The difference between theory and practice in theory is less than
the difference between theory and practice in practice.
Anon, circa 20th Century

\section*{FIAM}

I'll leave you with the fundamental inequality of applied mathematics:
\[
\|T-P\|_{T} \ll\|T-P\|_{P}
\]

The difference between theory and practice in theory is less than
the difference between theory and practice in practice.
Anon, circa 20th Century
The End. . .```

