# An Eulerian finite element method for elliptic equations on moving surfaces



levitated drop fluid/fluid



transport of surfactants

RWTH Aachen, Germany

Maxim Olshanskii Jörg Grande Sven Groß Arnold Reusken







Motivation: Two-phase fluid dynamics + surfactants

- Standard model for two-phase flow.
- Level set for interface capturing.
- Treatment of surface tension.
- Special FE space for pressure.

An Eulerian FEM for elliptic equations on moving surfaces

• FEM for transport equation on the interface







$$\begin{cases} \rho_i (\mathbf{u}_t + (\mathbf{u} \cdot \nabla) \mathbf{u}) = \operatorname{div} (\sigma) + \rho_i \mathbf{g} \\ = -\nabla p + \operatorname{div} (\mu_i \mathbf{D}(\mathbf{u})) + \rho_i \mathbf{g} & \text{in } \Omega_i & \text{for } i = 1, 2 \\ \operatorname{div} \mathbf{u} = 0 & \text{in } \Omega_i \\ [\sigma \mathbf{n}]_{\Gamma} = \tau \mathcal{K} \mathbf{n} - \nabla_{\Gamma} \tau, \quad [\mathbf{u}]_{\Gamma} = 0 . \end{cases}$$

 $D(\mathbf{u}) = \nabla \mathbf{u} + \nabla \mathbf{u}^T$ :deformation tensor $\mathcal{K}$ :curvature of  $\Gamma$  $\sigma = -p \mathbf{I} + \mu \mathbf{D}(\mathbf{u})$ :stress tensorAssumption:  $\tau$  constantAppropriate model for a large class of two-phase flow problems.





**Idea:**(Sethian, Osher)  $\Gamma(t) =$  zero-level of a scalar function The level set function  $\varphi(x,t)$ 

$$\varphi(x,t) = \begin{cases} < 0 & \text{for } x \text{ in phase } \Omega_1 \\ > 0 & \text{for } x \text{ in phase } \Omega_2 \\ = 0 & \text{at the interface} \end{cases}$$



should be an *"approximate signed distance function"*.

$$x(t) \in \Gamma(t) \Rightarrow \varphi(x(t), t) = 0.$$

Level set equation

$$\varphi_t + \mathbf{u} \cdot \nabla \varphi = 0$$





Navier-Stokes equations coupled with level set equation:

$$\rho(\varphi) \Big( \mathbf{u}_t + (\mathbf{u} \cdot \nabla) \mathbf{u} \Big) - \operatorname{div} \Big( \mu(\varphi) \, \mathbf{D}(\mathbf{u}) \Big) + \nabla p = \rho(\varphi) \, g - \tau \, \mathcal{K}(\varphi) \, \delta_{\Gamma} \mathbf{n}_{\Gamma}$$
$$\nabla \cdot \mathbf{u} = 0$$
$$\varphi_t + \mathbf{u} \cdot \nabla \varphi = 0$$

where  $\rho, \mu$  and  $\mathcal{K}, \delta_{\Gamma}, \mathbf{n}_{\Gamma}$  depend on  $\varphi$ , e.g.:

$$\mathcal{K}(\varphi) = \nabla \cdot \left( \frac{\nabla \varphi}{||\nabla \varphi||} \right)$$
 second derivatives.

Localized force term in weak formulation:

$$f_{\Gamma}(\mathbf{v}) = \tau \int_{\Gamma} \mathcal{K} \mathbf{n}_{\Gamma} \cdot \mathbf{v} \, ds$$

$$f_{\Gamma} \in H^{-1}(\Omega)$$





Discretization:

- Weak formulation + FE methods; velocity space:  $P_2$ .
- Discretization of localized force term  $f_{\Gamma}$ : Laplace-Beltrami.
- Finite element space for discontinuous pressure: XFEM  $P_1 \rightsquigarrow Q_h^{\Gamma}$ .
- Level set equation:  $P_2$  FE + SDFEM stabilization.
- Time integration:  $\theta$ -schema / fractional step.

Iterative solvers:

- Multigrid. Krylov subspace methods.
- Preconditioners: robustness w.r.t.  $\mu$ ,  $\rho$ ,  $\Delta t$ , h.
- XFEM  $\longrightarrow$  modified iterative solvers?





 $\Gamma$  = zero level of  $\phi$  (= level set function = signed distance function)  $\phi_h$  = piecewise quadratic FE approximation of  $\phi$ .

Our strategy:

 $\phi \approx \phi_h$  (piecewise  $P_2$ )  $\rightarrow I(\phi_h)$  (piecewise  $P_1$  on refined mesh).

 $\Gamma \approx \Gamma_h :=$  zero level of  $I(\phi_h)$  (planar segments).



Under reasonable assumptions: dist( $\Gamma$ ,  $\Gamma_h$ )  $\leq c h^2$ .





Belytschko (1999) for elasticity problems. Hansbo (2002) for interface problems.

**Idea:** Enrich FE space (e.g.  $P_1$  FE) by additional discontinuous basis functions near  $\Gamma$ :

$$p_j^{\Gamma}(\mathbf{x}) := p_j(\mathbf{x}) H_{\Gamma}(\mathbf{x})$$

where 
$$H_{\Gamma}(\mathbf{x}) = \begin{cases} 1 & x \in \Omega_2, \\ 0 & \text{else.} \end{cases}$$

#### (Technical) difficulties:

• Integration over sub-elements  $T \cap \Omega_2$ :

$$\int_{T} p_{j}^{\Gamma}(\mathbf{x}) \cdot f(\mathbf{x}) \, d\mathbf{x} = \int_{T \cap \Omega_{2}} p_{j}(\mathbf{x}) \cdot f(\mathbf{x}) \, d\mathbf{x}$$

- $Q_h^{\Gamma}$  depends on  $\Gamma!$  (in practice:  $\Gamma_h$ )
- Reference: [Groß, R., JCP 07].











 $f_{\Gamma}(\mathbf{v}) = \tau \int_{\Gamma} \mathcal{K} \mathbf{n}_{\Gamma} \cdot \mathbf{v} \, ds$  with  $\tau = 1$ . Note  $\mathcal{K} = 2/r = 3$ .

Solution: 
$$u^* = 0$$
,  $p^* = \begin{cases} C & \text{in } \Omega_2, \\ C + \tau \mathcal{K} & \text{in } \Omega_1. \end{cases}$ 







 $Q_h^1$  FE (standard  $P_1$ )  $Q_h^{\Gamma}$  FE (XFEM space)





| ref. | $p_h \in Q_h^1$ |       | $p_h \in Q_h^{{\sf \Gamma}_h}$ |       |
|------|-----------------|-------|--------------------------------|-------|
|      | $\ e_p\ _{L^2}$ | order | $\ e_p\ _{L^2}$                | order |
| 0    | 1.60E+00        | _     | 1.64E-01                       | _     |
| 1    | 1.07E+00        | 0.57  | 4.97E-02                       | 1.73  |
| 2    | 8.23E-01        | 0.38  | 1.66E-02                       | 1.58  |
| 3    | 5.80E-01        | 0.51  | 7.16E-03                       | 1.22  |
| 4    | 4.13E-01        | 0.49  | 2.83E-03                       | 1.34  |

Pressure errors for the  $P_2 - Q_h^1$  and  $P_2 - Q_h^{\Gamma}$  pair.





## An Eulerian FEM for elliptic equations on moving surfaces





Convection-diffusion equation for c(x,t),  $x \in \Gamma(t)$ :

$$\partial_{t,n}c - D_{\Gamma}\Delta_{\Gamma}c + \nabla_{\Gamma}\cdot(c\mathbf{u}_{\Gamma}) - \mathcal{K}u_{\perp}c = 0,$$

How can we discretize this equation on  $\Gamma$  ?.

Obvious idea: use a FE space induced by the "outer" triangulation  $T_h$ .



Define

 $\omega_h := \cup_{T \in \mathcal{F}_h} S_T : \text{ tetrahedra in } \mathcal{T}'_h \text{ intersected by } \Gamma_h$  $V_h := \{ v_h \in C(\omega_h) \mid v_{|S_T} \in P_1 \text{ for all } T \in \mathcal{F}_h \} : \text{ outer space}$ 

$$V_h^{\mathsf{\Gamma}} := \{\psi_h \in H^1(\mathsf{\Gamma}_h) \mid \exists v_h \in V_h : \psi_h = v_h|_{\mathsf{\Gamma}_h}\}: \text{ interface space}$$

13





Laplace-Beltrami equation

$$-\Delta_{\Gamma} u + u = f \quad \text{on } \Gamma,$$

with  $\Gamma=\{\mathbf{x}\in\mathbb{R}^3\mid\|\mathbf{x}\|_2=1\}$  and  $\Omega=(-2,\,2)^3.$ 

Solution:

$$u(\mathbf{x}) = a \frac{\|\mathbf{x}\|^2}{12 + \|\mathbf{x}\|^2} \left( 3x_1^2 x_2 - x_2^3 \right).$$

Tetrahedral triangulations:  $\{T_l\}_{l\geq 0}$  constructed by local refinement close to  $\Gamma$ . Mesh size  $h_l \sim \sqrt{3} 2^{-l}$ .

Level set function  $\phi(\mathbf{x}) = \|\mathbf{x}\|^2 - 1$ ;  $\phi_h := I(\phi)$  piecewise linear on  $\mathcal{T}_h$ .

 $\Gamma_h := \{ \mathbf{x} \in \Omega \mid I(\phi_h)(\mathbf{x}) = \mathbf{0} \}$ 

### Note: the interface triangulation $\Gamma_h$ is not shape-regular:



Solution u:





RWTH

Determine  $u_h \in V_h^{\Gamma}$  such that

$$\int_{\Gamma_h} \nabla_{\Gamma_h} u_h \nabla_{\Gamma_h} \psi_h + u_h \psi_h d\mathbf{s}_h = \int_{\Gamma_h} f_h \psi_h d\mathbf{s}_h \quad \text{for all } \psi_h \in V_h^{\Gamma},$$

with  $f_h$  an extension of f.

#### Results:

| level l | $\ u-u_h\ _{L^2({\sf \Gamma}_h)}$ | factor |  |
|---------|-----------------------------------|--------|--|
| 1       | 0.1124                            | —      |  |
| 2       | 0.03244                           | 3.47   |  |
| 3       | 0.008843                          | 3.67   |  |
| 4       | 0.002186                          | 4.05   |  |
| 5       | 0.0005483                         | 3.99   |  |
| 6       | 0.0001365                         | 4.02   |  |
| 7       | 0.0000341                         | 4.00   |  |





Error analysis [Olshanskii, AR., submitted]:

**Theorem.** For each  $u \in H^2(\Gamma)$  the following holds

$$\inf_{v_h \in V_h^{\Gamma}} \|u^e - v_h\|_{L^2(\Gamma_h)} \le \|u^e - (I_h u^e)_{|\Gamma_h}\|_{L^2(\Gamma_h)} \le C h^2 \|u\|_{H^2(\Gamma)},$$
$$\inf_{v_h \in V_h^{\Gamma}} \|u^e - v_h\|_{H^1(\Gamma_h)} \le \|u^e - (I_h u^e)_{|\Gamma_h}\|_{H^1(\Gamma_h)} \le C h \|u\|_{H^2(\Gamma)}.$$

Implementation very easy:

$$\int_{\Gamma_h} \nabla_{\Gamma_h} \phi_i \cdot \nabla_{\Gamma_h} \phi_j + \phi_i \phi_j \mathrm{ds}_h = \sum_{T \in \mathcal{F}_h} \int_T \dots \mathrm{ds}_h$$

Furthermore:

- No data structure for triangulation of  $\Gamma_h$  needed.
- No shape regularity of triangulation of  $\Gamma_h$  required.



RNTH

Let  $(\phi_i)_{1 \le i \le m}$  be all nodal basis functions in  $V_h$  with support intersected by  $\Gamma_h$ . Then

$$\operatorname{span}\{(\phi_i)_{|\Gamma_h} \mid 1 \leq i \leq m\} = V_h^{\Gamma},$$

but  $(\phi_i)_{|\Gamma_h}$  are not necessarily independent. Mass matrix:

$$M_{i,j} = \int_{\Gamma_h} \phi_i \phi_j \,\mathrm{d}\mathbf{s}_h, \quad \mathbf{1} \le i, j \le m, \quad \tilde{M} := D_M^{-\frac{1}{2}} M D_M^{-\frac{1}{2}}.$$

Spectrum of  $\tilde{M}$ :

| level l | m    | $\lambda_1$ | $\lambda_2$ | $\lambda_m$ | $\lambda_m/\lambda_2$ |
|---------|------|-------------|-------------|-------------|-----------------------|
| 1       | 112  | 3.8 e-17    | 0.0261      | 2.86        | 109                   |
| 2       | 472  | 4.0 e-17    | 0.0058      | 2.83        | 488                   |
| 3       | 1922 | 1.0 e-17    | 0.0012      | 2.83        | 2358                  |
| 4       | 7646 | 3.6 e-17    | 0.00029     | 2.83        | 9660                  |

Remarks:

- Scaling with  $D_M$  is essential.
- Analysis: in progress.
- Similar results for stiffness matrix.





## More information:

### www.igpm.rwth-aachen.de/DROPS/