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Outline

• Mixed SFEM on: A (x, ω)−1 u(x, ω) −∇p (x, ω) = 0, −∇ · u(x, ω) = f (x)
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Outline

• Mixed SFEM on: A (x, ω)−1 u(x, ω) −∇p (x, ω) = 0, −∇ · u(x, ω) = f (x)

• Solving stochastic saddle-point systems
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⊲ Weak problem in H(div; D) ⊗ L2(Γ) and L2(D) ⊗ L2(Γ)

⊲ Inf-sup stability

⊲ Block-diagonal preconditioner

⊲ Multigrid implementation

⊲ Eigenvalue bounds

⊲ Numerical results
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Model Problem

Let A(x, ω) : D × Ω → R be a random field.

For x ∈ D, A(ω) is a random variable with finite variance; for ω ∈ Ω, A(x) ∈ L∞(D).

We seek random fields p(x, ω), u(x, ω) such that P -almost everywhere ω ∈ Ω:

A (x, ω)−1 u(x, ω) −∇p (x, ω) = 0,

∇ · u(x, ω) = −f(x) x in D,

p (x, ω) = g(x) x on ∂DD,

u(x, ω) · n = 0 x on ∂DN .
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Finite Noise Assumption

We assume that the input random field can be represented by a finite number of random
variables.

Preconditioning Saddle-Point Systems arising in a Stochastic Mixed Finite Element Problem – p. 5/35



Finite Noise Assumption

We assume that the input random field can be represented by a finite number of random
variables.

Here, we consider a truncated Karhunen-Loève expansion :

A−1(x, ω) ≈ A−1
M (x, ξ) = µ(x) +

M
∑

i=1

√

λici(x)ξi,

where ξ = {ξ1(ω), . . . ξM (ω)} are independent random variables and {λi, ci(x)} are the
eigenpairs of the correlation function CA−1 (x1, x2).
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Finite Noise Assumption

We assume that the input random field can be represented by a finite number of random
variables.

Here, we consider a truncated Karhunen-Loève expansion :

A−1(x, ω) ≈ A−1
M (x, ξ) = µ(x) +

M
∑

i=1

√

λici(x)ξi,

where ξ = {ξ1(ω), . . . ξM (ω)} are independent random variables and {λi, ci(x)} are the
eigenpairs of the correlation function CA−1 (x1, x2).

Note that:
∫

D

V ar
(

A−1 − A−1
M

)

=

∫

D

σ2(x)dD −

M
∑

i=1

λi
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Example

Consider the covariance function

C(x, z) = σ2 exp

(

−
|x1 − z1|

b1
−

|x2 − z2|

b2

)

,

D = [0, 1] × [0, 1] and Gaussian random variables.
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Example

Consider the covariance function

C(x, z) = σ2 exp

(

−
|x1 − z1|

b1
−

|x2 − z2|

b2

)

,

D = [0, 1] × [0, 1] and Gaussian random variables.

If b1 = 1 = b2 then 10 term KL expansion, yields relative error of 0.01

Two realisations of the resulting random field:
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Example

If b1 = 1
4

= b2 then a 200 term KL expansion, yields relative error of 0.08

Two realisations of the resulting random field:
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Mixed Stochastic Galerkin Formulation

Let yi = ξi(ω) ∈ Γi, and write Γ = Γ1 × Γ2 × · · · × ΓM .

If the random variables are independent then the joint density function has the form:

ρ(y) =
∏

i

ρi(yi)
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Mixed Stochastic Galerkin Formulation

Let yi = ξi(ω) ∈ Γi, and write Γ = Γ1 × Γ2 × · · · × ΓM .

If the random variables are independent then the joint density function has the form:

ρ(y) =
∏

i

ρi(yi)

and the expectation of a random function in y is defined via:

< g(y) >=

∫

Γ
ρ(y)g(y) dy.
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Mixed Stochastic Galerkin Formulation

Let yi = ξi(ω) ∈ Γi, and write Γ = Γ1 × Γ2 × · · · × ΓM .

If the random variables are independent then the joint density function has the form:

ρ(y) =
∏

i

ρi(yi)

and the expectation of a random function in y is defined via:

< g(y) >=

∫

Γ
ρ(y)g(y) dy.

We also define the space L2
ρ(Γ) of random functions which satisfy:

∫

Γ
ρ(y)g(y)2 dy < ∞.
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Mixed Stochastic Galerkin Formulation

Consider the tensor product spaces

V = H0,N (div; D) ⊗ L2
ρ(Γ) W = L2(D) ⊗ L2

ρ(Γ)

We seek u(x, y) ∈ V and p(x, y) ∈ W such that:
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Mixed Stochastic Galerkin Formulation

Consider the tensor product spaces

V = H0,N (div; D) ⊗ L2
ρ(Γ) W = L2(D) ⊗ L2

ρ(Γ)

We seek u(x, y) ∈ V and p(x, y) ∈ W such that:

∫

Γ ρ (y)
(

A−1
M u, v

)

dy +
∫

Γ ρ (y) (p,∇ · v) dy =
∫

Γ ρ (y) (g, v · n)∂ΓD
dy,

∫

Γ ρ (y) (w,∇ · u) dy = −
∫

Γ ρ (y) (f, w) dy

∀ v(x, y) ∈ V and w(x, y) ∈ W.
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Mixed Stochastic Galerkin Formulation

Consider the tensor product spaces

V = H0,N (div; D) ⊗ L2
ρ(Γ) W = L2(D) ⊗ L2

ρ(Γ)

We seek u(x, y) ∈ V and p(x, y) ∈ W such that:

〈(

A−1
M u, v

)〉

+ 〈(p,∇ · v)〉 =
〈

(g, v · n)∂ΓD

〉

,

〈(w,∇ · u)〉 = −〈(f, w)〉

∀ v(x, y) ∈ V and w(x, y) ∈ W.
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Finite-Dimensional Problem

Find uhd(x, y) ∈ Vh ⊗ Sd and phd(x, y) ∈ Wh ⊗ Sd satisfying:
〈(

A−1
M uhd, v

)〉

+ 〈(phd,∇ · v)〉 =
〈

(g, v · n)∂ΓD

〉

,

〈(w,∇ · uhd)〉 = −〈(f, w)〉

∀ v(x, y) ∈ Vh ⊗ Sd and w(x, y) ∈ Wh ⊗ Sd.
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Finite-Dimensional Problem

Find uhd(x, y) ∈ Vh ⊗ Sd and phd(x, y) ∈ Wh ⊗ Sd satisfying:
〈(

A−1
M uhd, v

)〉

+ 〈(phd,∇ · v)〉 =
〈

(g, v · n)∂ΓD

〉

,

〈(w,∇ · uhd)〉 = −〈(f, w)〉

∀ v(x, y) ∈ Vh ⊗ Sd and w(x, y) ∈ Wh ⊗ Sd.

• Vh ⊂ H(div; D), Wh ⊂ L2(D) are a deterministic inf-sup stable pairing e.g.
RT0(D)-P0(D).
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Finite-Dimensional Problem

Find uhd(x, y) ∈ Vh ⊗ Sd and phd(x, y) ∈ Wh ⊗ Sd satisfying:
〈(

A−1
M uhd, v

)〉

+ 〈(phd,∇ · v)〉 =
〈

(g, v · n)∂ΓD

〉

,

〈(w,∇ · uhd)〉 = −〈(f, w)〉

∀ v(x, y) ∈ Vh ⊗ Sd and w(x, y) ∈ Wh ⊗ Sd.

• Vh ⊂ H(div; D), Wh ⊂ L2(D) are a deterministic inf-sup stable pairing e.g.
RT0(D)-P0(D).

• Sd ⊂ L2(Γ) is set of multivariate polynomials in M random variables. Choose from:

1. total degree d (generalised polynomial chaos) of dimension Nξ =
(M+d)!

M !d!

2. degree d in each random variable of dimension Nξ = (d + 1)M
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Abstract Saddle-Point Problem

We seek uhd(x, y) ∈ Vh ⊗ Sd, and phd(x, y) ∈ Wh ⊗ Sd s.t.:

a (uhd, v) + b (phd, v) =
〈

(g, v · n)∂ΓD

〉

,

b (w, uhd) = −〈(f, w)〉

∀ v(x, y) ∈ Vh ⊗ Sd and w(x, y) ∈ Wh ⊗ Sd
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Abstract Saddle-Point Problem

We seek uhd(x, y) ∈ Vh ⊗ Sd, and phd(x, y) ∈ Wh ⊗ Sd s.t.:

a (uhd, v) + b (phd, v) =
〈

(g, v · n)∂ΓD

〉

,

b (w, uhd) = −〈(f, w)〉

∀ v(x, y) ∈ Vh ⊗ Sd and w(x, y) ∈ Wh ⊗ Sd

which leads to a symmetric indefinite system of the form:





Ã B̃T

B̃ 0









u

p



 =





g

f





of dimension Nx × Nξ where Nx = Nu + Np.
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Matrix structure

Vh = span {ϕi(x)}Nu
i=1 , Wh = span {φj(x)}Np

j=1 , Sd = span {ψk(y)}Nξ
k=1

with {ψk(y)} orthonormal w.r.t 〈·, ·〉, the saddle-point matrix has the structure:









I ⊗ A0 +
∑M

k=1 Gk ⊗ Ak I ⊗ BT

I ⊗ B 0









Preconditioning Saddle-Point Systems arising in a Stochastic Mixed Finite Element Problem – p. 13/35



Matrix structure

Vh = span {ϕi(x)}Nu
i=1 , Wh = span {φj(x)}Np

j=1 , Sd = span {ψk(y)}Nξ
k=1

with {ψk(y)} orthonormal w.r.t 〈·, ·〉, the saddle-point matrix has the structure:









I ⊗ A0 +
∑M

k=1 Gk ⊗ Ak I ⊗ BT

I ⊗ B 0









where

[A0]ij =
∫

D
µ(x)ϕi(x) · ϕj(x) [Ak]ij =

√

λk

∫

D

ck(x)ϕi(x) · ϕj(x)

and

[B]ij =
∫

D
∇ · ϕi(x) φj(x) [Gk]rs = 〈 ykψr(y)ψs(y) 〉
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Examples

M = 2, d = 2 (left) and M = 4, d = 2 (right)
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Well-posedness

The well-posedness of the stochastic saddle-point problem can be analysed using the
standard Brezzi-Babuska stability criteria.

Define the following norms on the tensor product spaces:

‖ qhd ‖2
div⊗L2 =

〈

‖ qhd ‖2
div(D)

〉

, qhd ∈ Vh ⊗ Sd

‖ whd ‖2
L2⊗L2 =

〈

‖ whd ‖2
L2(D)

〉

, whd ∈ Wh ⊗ Sd
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Well-posedness

The well-posedness of the stochastic saddle-point problem can be analysed using the
standard Brezzi-Babuska stability criteria.

Define the following norms on the tensor product spaces:

‖ qhd ‖2
div⊗L2 =

〈

‖ qhd ‖2
div(D)

〉

, qhd ∈ Vh ⊗ Sd

‖ whd ‖2
L2⊗L2 =

〈

‖ whd ‖2
L2(D)

〉

, whd ∈ Wh ⊗ Sd

If we choose:

• Vh := RT0(D) (lowest-order Raviart-Thomas elements)

• Wh := P0(D) (piecewise constants)

and assume that:

0 < amin ≤ A−1
M (x, y) ≤ amax < +∞, a.e. in D × Γ

then, the following results can be proved independently of the choice of Sd ⊂ L2
ρ(Γ).
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Well-posedness

• a(·, ·) and b(·, ·) are continuous bilinear forms

• Ellipticity

a (vhd, vhd) ≥ amin ‖ vhd ‖2
div⊗L2 ∀vhd ∈ Zhd

where

Zhd = {vh ∈ Vh ⊗ Sd s.t. b (vhd, whd) = 0, ∀whd ∈ Wh ⊗ Sd }

• Theorem (inf-sup stability)

There exists a constant β̃ > 0 depending only on the domain D and the Raviart-Thomas
interpolation operator (and therefore independent of h, M and d) such that:

sup
vhd ∈ Vh⊗Sd\{0}

b (vhd, whd)

‖ vhd ‖div⊗L2

≥ β̃ ‖ whd ‖L2⊗L2 ∀whd ∈ Wh ⊗ Sd.
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Ideal ‘Hdiv’ Preconditioner

Define deterministic matrices D ∈ R
Nu×Nu , and M ∈ R

Np×Np via:

[D]ij =

∫

D

∇ · ϕi∇ · ϕj , [M ]rs =

∫

D

φrφs.

We then have matrix representations of the following stochastic norms:

‖ vhd ‖2
div,A−1⊗L2 = vT

(

Ã + D̃
)

v where D̃ = I ⊗ D

‖ wh ‖2
L2⊗L2 = wT M̃w, where M̃ = I ⊗ M.
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Ideal ‘Hdiv’ Preconditioner

Define deterministic matrices D ∈ R
Nu×Nu , and M ∈ R

Np×Np via:

[D]ij =

∫

D

∇ · ϕi∇ · ϕj , [M ]rs =

∫

D

φrφs.

We then have matrix representations of the following stochastic norms:

‖ vhd ‖2
div,A−1⊗L2 = vT

(

Ã + D̃
)

v where D̃ = I ⊗ D

‖ wh ‖2
L2⊗L2 = wT M̃w, where M̃ = I ⊗ M.

Note that the discrete inf-sup condition tells us that:

β̃2 min

(

1,
1

amax

)

≤
wT B̃

(

Ã + D̃
)−1

B̃T w

wT M̃w
∀w ∈ R

NpNξ \ {0}
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Eigenvalue bounds

Consider the ‘ideal’ preconditioner

P =





Ã + D̃ 0

0 M̃



 =





Ã + B̃T M̃−1B̃ 0

0 M̃
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Eigenvalue bounds

Consider the ‘ideal’ preconditioner

P =





Ã + D̃ 0

0 M̃



 =





Ã + B̃T M̃−1B̃ 0

0 M̃





Theorem

The eigenvalues of




Ã B̃T

B̃ 0









u

p



 = λ





Ã + D̃ 0

0 M̃









u

p





are bounded and lie in the union of the intervals,

[

−1, −
β̃2

amax

]

∪ {1}
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Example

Let D = [0, 1] × [0, 1], with mixed bcs. We choose an exponential covariance function for the
random input with µ(x) = 1 and σ(x) = 0.2.

p=1 p=0

u ⋅ n =0

u ⋅ n =0
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Mean of numerical solution

Pressure (left), Flux (right)
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Variance of numerical solution

Pressure (left), y component (middle) and x component (right) of the Flux
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1
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(Exact) Preconditioned Minres iterations

In this example amax = O(1)

h =
1

16
h =

1

32

d Nξ Iter dimension Iter dimension

M=4 1 5 6 6,560 6 25,920

- 2 15 6 19,650 6 77,760

- 3 35 6 45,920 6 181,440

- 4 70 6 91,840 6 362,880

M=5 1 6 6 7,872 6 31,104

- 2 21 6 27,552 6 108,864

- 3 56 6 73,472 6 290,304

- 4 126 6 165,312 6 653,184

M=6 1 7 6 9,184 6 36,288

- 2 28 6 36,736 6 145,152

- 3 84 6 110,208 6 435,456

- 4 210 6 275,520 6 1,088,640
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(Exact) Preconditioned Minres iterations

With h = 1
32

, M = 4 and d = 2 fixed and varying ratio σ
µ

σ
µ

0.1 0.2 0.4 0.8

Iter 6 6 6 6

With h =
1

32
, M = 4 and d = 2 and σ

µ
= 0.1 so that only amax is varying

µ 10
−2

10
−1

10
0

10
1

10
2

Iter 4 4 6 9 22
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Practical Implementation

We need a fast solver for systems with the coefficient matrix:

Ã + D̃ = I ⊗
(

A0 + BT M−1B
)

+

(

M
∑

k=1

Gk ⊗ Ak

)

which represents a weighted stochastic H(div; D) ⊗ L2
ρ(Γ) operator:

H̃A : RT0(D) ⊗ Sd(Γ) → RT0(D) ⊗ Sd(Γ)

defined via:

(

H̃Avhd, vhd

)

=

∫

Γ
ρ(y)

(∫

D

A−1
M vhd · vhd + ∇ · vhd ∇ · vhd dD

)

d y.

Note that this is not an elliptic operator.

Preconditioning Saddle-Point Systems arising in a Stochastic Mixed Finite Element Problem – p. 24/35



Eigenvalue bounds

Theorem: Suppose there exists a matrix Ṽ satisfying

θ ≤
vT

(

Ã + D̃
)

v

vT Ṽ v
≤ Θ ≤ 1

with positive constants θ and Θ. The eigenvalues of:




Ã B̃T

B̃ 0









u

p



 = λ





Ṽ 0

0 M̃









u

p





lie in the union of the intervals,

[

−1,−
1

2

(

θ (1 − α) −

√

θ2 (α − 1)2 + 4αθ

)]

∪ [θ, 1]

where α = β̃2

amax
is the corresponding bound for the ideal preconditioner.
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Geometric H(div) Multigrid

We approximate the action of
(

Ã + D̃
)−1

via a specialised multigrid V-cycle.
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Geometric H(div) Multigrid

We approximate the action of
(

Ã + D̃
)−1

via a specialised multigrid V-cycle.

We use a stochastic extension of the Arnold-Falk-Winther multigrid as discussed in
‘Preconditioning in H(div) & Applications’, Math. Comp., 66 (1998)
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Geometric H(div) Multigrid

We approximate the action of
(

Ã + D̃
)−1

via a specialised multigrid V-cycle.

We use a stochastic extension of the Arnold-Falk-Winther multigrid as discussed in
‘Preconditioning in H(div) & Applications’, Math. Comp., 66 (1998)

The main idea is to only vary the spatial discretisation from grid to grid whilst keeping the
stochastic discretisation fixed.

Preconditioning Saddle-Point Systems arising in a Stochastic Mixed Finite Element Problem – p. 26/35



Geometric H(div) Multigrid

We approximate the action of
(

Ã + D̃
)−1

via a specialised multigrid V-cycle.

We use a stochastic extension of the Arnold-Falk-Winther multigrid as discussed in
‘Preconditioning in H(div) & Applications’, Math. Comp., 66 (1998)

The main idea is to only vary the spatial discretisation from grid to grid whilst keeping the
stochastic discretisation fixed.

Key ingredients:

• Prolongation: P̃ = I ⊗ P h
H where P h

H is a standard spatial prolongation operator

• Restriction operator R̃ = P̃ T = I ⊗ RH
h

• Smoother: additive Schwarz method (block Jacobi)
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Additive Schwarz Smoothing

Let H̃h = Ã + D̃ be the stochastic H(div) matrix associated with a fixed spatial mesh Th,

decomposed into vertex-based patches:

k

The smoothing operator (in matrix form) is defined via:

S̃h = η
∑

k

P̃ k
h H̃−1

h
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Additive Schwarz Smoothing

where

P̃ k
h = (I ⊗ RT

k )H̃−1
h,k

(I ⊗ Rk)H̃h.

Then, for v ∈ R
NuNξ we have:

S̃hv = η
∑

k

(I ⊗ RT
k )H̃−1

h,k
(I ⊗ Rk)v

where H̃h,k represents a local ‘patch-version’ of the matrix H̃h.
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Additive Schwarz Smoothing

where

P̃ k
h = (I ⊗ RT

k )H̃−1
h,k

(I ⊗ Rk)H̃h.

Then, for v ∈ R
NuNξ we have:

S̃hv = η
∑

k

(I ⊗ RT
k )H̃−1

h,k
(I ⊗ Rk)v

where H̃h,k represents a local ‘patch-version’ of the matrix H̃h.

Smoothing requires multiple decoupled solves with H̃h,k. In the stochastic problem:

H̃h,k = I ⊗
(

A0,k + D0,k

)

+

M
∑

i=1

Gi ⊗ Ai,k

and so the dimension of each local matrix is NξNk.
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Additive Schwarz Smoothing

where

P̃ k
h = (I ⊗ RT

k )H̃−1
h,k

(I ⊗ Rk)H̃h.

Then, for v ∈ R
NuNξ we have:

S̃hv = η
∑

k

(I ⊗ RT
k )H̃−1

h,k
(I ⊗ Rk)v

where H̃h,k represents a local ‘patch-version’ of the matrix H̃h.

Smoothing requires multiple decoupled solves with H̃h,k. In the stochastic problem:

H̃h,k = I ⊗
(

A0,k + D0,k

)

+

M
∑

i=1

Gi ⊗ Ai,k

and so the dimension of each local matrix is NξNk.

This is tractable for a few thousand stochastic degrees of freedom.
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Multigrid Convergence

Theorem

Let Ṽ denote the matrix corresponding to the inverse of the multigrid V-cycle operator
described above. Then,

θ ≤
vT

(

Ã + D̃
)

v

vT Ṽ v
≤ 1

where

θ = 1 −
C

C + 2ν

depends only on the number of smoothing steps ν and amin and amax.
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Multigrid Convergence

Theorem

Let Ṽ denote the matrix corresponding to the inverse of the multigrid V-cycle operator
described above. Then,

θ ≤
vT

(

Ã + D̃
)

v

vT Ṽ v
≤ 1

where

θ = 1 −
C

C + 2ν

depends only on the number of smoothing steps ν and amin and amax.

Combining this result with eigenvalue bound for preconditioned saddle-point system, we
have a solver that is optimal w.r.t all discretisation parameters.
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Example 1

P =





Ṽ 0

0 M̃





• 1 multigrid V-cycle per minres iteration; 1 pre and 1 post smoothing step;

• Uniform random variables; µ(x) = 1, σ = 0.1 (⇒ amax = O(1))

d M = 1 M = 2 M = 3 M = 4

h =
1

32
1 17 17 17 17

- 2 17 17 17 17

- 3 17 17 17 17

- 4 17 17 17 17

h =
1

64
1 17 17 17 17

- 2 17 17 17 17

- 3 17 17 17 17

- 4 17 17 17 17
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Example 2

• Fixed discretisation parameters: h = 1
16

, M = 4, p = 2.

• Varying σ
µ

Preconditioned minres iterations:

σ
µ

0.1 0.2 0.3 0.4 0.5 0.6

Ideal 6 6 6 6 6 6

Multigrid version 17 17 17 17 17 17

Multigrid constants

σ
µ

0.2 0.3 0.4 0.5 0.6

θ 0.4576 0.4564 0.4548 0.4527 0.4495

Θ 1.0000 1.0000 1.0000 1.0000 1.0000

Preconditioning Saddle-Point Systems arising in a Stochastic Mixed Finite Element Problem – p. 31/35



Example 3

• Fixed discretisation parameters: h = 1
16

, M = 4, p = 2.

• Vary amax by varying µ and setting σ = µ
10

.

Preconditioned minres iterations:

µ 10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Ideal 3 3 4 5 8 16 46

Multigrid version 15 15 16 17 21 40 99

Multigrid constants

µ 10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

θ 0.4552 0.4550 0.4556 0.4587 0.4864 0.6453 0.9172

Θ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Summary

• Solving well-posed stochastic saddle-point problem

• Stochastic inf-sup stability result leads to nice eigenvalue bounds for H(div)

preconditioners

• Practical implementation based on deterministic Arnold-Falk-Winther multigrid

• Analysis of extended multigrid method available

• Preconditioner for saddle-point system is optimal w.r.t spatial and stochastic
discretisation parameters

• Overall performance does depend on amin and amax

• Experiments with modified (cheaper) smoothers look promising
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Alternative Preconditioning Scheme

We know that optimal preconditioners mimic the mapping properties of the underlying
saddle-point operator. Here, there are two options.
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Alternative Preconditioning Scheme

We know that optimal preconditioners mimic the mapping properties of the underlying
saddle-point operator. Here, there are two options.

An alternative ideal preconditioner is given by:

P =





Ãdiag 0

0 B̃Ã−1
diag

B̃T
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Alternative Preconditioning Scheme

We know that optimal preconditioners mimic the mapping properties of the underlying
saddle-point operator. Here, there are two options.

An alternative ideal preconditioner is given by:

P =





Ãdiag 0

0 B̃Ã−1
diag

B̃T





The blocks of this matrix represent norms in which an alternative inf-sup condition can be
established. In particular,

wT B̃Ã−1
diag

B̃T w =
〈

‖ wh,d ‖2
1,h,A

〉

represents the expectation of a (weighted) mesh-dependent H1(D) norm.
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Alternative Preconditioning Scheme

We know that optimal preconditioners mimic the mapping properties of the underlying
saddle-point operator. Here, there are two options.

An alternative ideal preconditioner is given by:

P =





Ãdiag 0

0 B̃Ã−1
diag

B̃T





The blocks of this matrix represent norms in which an alternative inf-sup condition can be
established. In particular,

wT B̃Ã−1
diag

B̃T w =
〈

‖ wh,d ‖2
1,h,A

〉

represents the expectation of a (weighted) mesh-dependent H1(D) norm.

Pro: Standard multigrid methods can be used. Con: Obtaining Ãdiag that yields robustness
w.r.t PDE coefficients is difficult.
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P =





Ã + D̃ 0

0 M̃
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P =





Ãdiag 0

0 B̃Ã−1
diag

B̃T
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