MANCE

Preconditioning Saddle-Point Systems arising in a Stochastic Mixed Finite Element Problem

Catherine E. Powell

c.powell@manchester.ac.uk

School of Mathematics University of Manchester, UK MANCH

Joint work with:

• Darran Furnival, Howard Elman (U. of Maryland, USA)

Related work with:

• Elisabeth Ullmann, Oliver Ernst (U. of Freiberg), David Silvester (U. of Manchester)

Outline

• Mixed SFEM on: $\mathcal{A}(\boldsymbol{x},\omega)^{-1} \boldsymbol{u}(\boldsymbol{x},\omega) - \nabla p(\boldsymbol{x},\omega) = 0, \ -\nabla \cdot \boldsymbol{u}(\boldsymbol{x},\omega) = f(\boldsymbol{x})$

MANCHESTER

Mixed SFEM on:
$$\mathcal{A}(\boldsymbol{x},\omega)^{-1} \boldsymbol{u}(\boldsymbol{x},\omega) - \nabla p(\boldsymbol{x},\omega) = 0, \ -\nabla \cdot \boldsymbol{u}(\boldsymbol{x},\omega) = f(\boldsymbol{x})$$

• Solving stochastic saddle-point systems

$$\begin{pmatrix} \tilde{A} & \tilde{B}^T \\ \tilde{B} & 0 \end{pmatrix} \begin{pmatrix} \underline{u} \\ \underline{p} \end{pmatrix} = \begin{pmatrix} \underline{g} \\ \underline{f} \end{pmatrix}$$

- \triangleright Weak problem in $H(div; D) \otimes L^2(\Gamma)$ and $L^2(D) \otimes L^2(\Gamma)$
- ⊳ Inf-sup stability
- > Block-diagonal preconditioner
- > Multigrid implementation
- \triangleright Eigenvalue bounds
- > Numerical results

 $\label{eq:linear} \begin{tabular}{l} \label{eq:linear} \begin{tabular}{l} \label{eq:linear} \begin{tabular}{l} \begin{tabular$

MANCH

For $\boldsymbol{x} \in D$, $A(\omega)$ is a random variable with finite variance; for $\omega \in \Omega$, $\mathcal{A}(\boldsymbol{x}) \in L^{\infty}(D)$.

We seek random fields $p(\boldsymbol{x}, \omega), \ \boldsymbol{u}(\boldsymbol{x}, \omega)$ such that *P*-almost everywhere $\omega \in \Omega$:

$$\begin{array}{rcl} \mathcal{A}\left(\boldsymbol{x},\omega\right)^{-1}\boldsymbol{u}\left(\boldsymbol{x},\omega\right)-\nabla p\left(\boldsymbol{x},\omega\right)&=&0,\\ \nabla\cdot\boldsymbol{u}\left(\boldsymbol{x},\omega\right)&=&-f(\boldsymbol{x})\quad\boldsymbol{x}\ \text{in }D,\\ p\left(\boldsymbol{x},\omega\right)&=&g(\boldsymbol{x})\quad\boldsymbol{x}\ \text{on }\partial D_{D},\\ \boldsymbol{u}\left(\boldsymbol{x},\omega\right)\cdot\boldsymbol{n}&=&0\qquad\boldsymbol{x}\ \text{on }\partial D_{N}. \end{array}$$

Finite Noise Assumption

We assume that the input random field can be represented by a finite number of random variables.

Finite Noise Assumption

The University of Manchester

We assume that the input random field can be represented by a finite number of random variables.

Here, we consider a truncated Karhunen-Loève expansion :

$$A^{-1}(\boldsymbol{x},\omega) \approx A_M^{-1}(\boldsymbol{x},\boldsymbol{\xi}) = \mu(\boldsymbol{x}) + \sum_{i=1}^{\boldsymbol{M}} \sqrt{\lambda_i} c_i(\boldsymbol{x}) \xi_i,$$

where $\boldsymbol{\xi} = \{\xi_1(\omega), \dots, \xi_M(\omega)\}$ are independent random variables and $\{\lambda_i, c_i(\boldsymbol{x})\}$ are the eigenpairs of the correlation function $C_{A^{-1}}(\boldsymbol{x}_1, \boldsymbol{x}_2)$.

Finite Noise Assumption

The University of Manchester

We assume that the input random field can be represented by a finite number of random variables.

Here, we consider a truncated Karhunen-Loève expansion :

$$A^{-1}(\boldsymbol{x},\omega) \approx A_M^{-1}(\boldsymbol{x},\boldsymbol{\xi}) = \mu(\boldsymbol{x}) + \sum_{i=1}^{\boldsymbol{M}} \sqrt{\lambda_i} c_i(\boldsymbol{x}) \xi_i,$$

where $\boldsymbol{\xi} = \{\xi_1(\omega), \dots, \xi_M(\omega)\}$ are independent random variables and $\{\lambda_i, c_i(\boldsymbol{x})\}$ are the eigenpairs of the correlation function $C_{A^{-1}}(\boldsymbol{x}_1, \boldsymbol{x}_2)$.

Note that:

$$\int_{D} Var\left(A^{-1} - A_{M}^{-1}\right) = \int_{D} \sigma^{2}(\boldsymbol{x})dD - \sum_{i=1}^{M} \lambda_{i}$$

Consider the covariance function

$$C(\boldsymbol{x}, \boldsymbol{z}) = \sigma^2 \exp\left(-\frac{|x_1 - z_1|}{b_1} - \frac{|x_2 - z_2|}{b_2}\right),$$

 $D = [0,1] \times [0,1]$ and Gaussian random variables.

MANCHESTER

Consider the covariance function

$$C(\boldsymbol{x}, \boldsymbol{z}) = \sigma^2 \exp\left(-\frac{|x_1 - z_1|}{b_1} - \frac{|x_2 - z_2|}{b_2}\right),$$

 $D = [0,1] \times [0,1]$ and Gaussian random variables.

If $b_1 = 1 = b_2$ then 10 term KL expansion, yields relative error of 0.01

Two realisations of the resulting random field:

MANCHES

If $b_1 = \frac{1}{4} = b_2$ then a 200 term KL expansion, yields relative error of 0.08

Two realisations of the resulting random field:

Mixed Stochastic Galerkin Formulation

Let $y_i = \xi_i(\omega) \in \Gamma_i$, and write $\Gamma = \Gamma_1 \times \Gamma_2 \times \cdots \times \Gamma_M$.

If the random variables are independent then the joint density function has the form:

$$\rho(\boldsymbol{y}) = \prod_i \rho_i(y_i)$$

Mixed Stochastic Galerkin Formulation

Let $y_i = \xi_i(\omega) \in \Gamma_i$, and write $\Gamma = \Gamma_1 \times \Gamma_2 \times \cdots \times \Gamma_M$.

If the random variables are independent then the joint density function has the form:

$$\rho(\boldsymbol{y}) = \prod_i \rho_i(y_i)$$

and the expectation of a random function in \boldsymbol{y} is defined via:

$$< g(oldsymbol{y}) > = \int_{\Gamma}
ho(oldsymbol{y}) g(oldsymbol{y}) \, doldsymbol{y}.$$

Mixed Stochastic Galerkin Formulation

Let $y_i = \xi_i(\omega) \in \Gamma_i$, and write $\Gamma = \Gamma_1 \times \Gamma_2 \times \cdots \times \Gamma_M$.

If the random variables are independent then the joint density function has the form:

$$\rho(\boldsymbol{y}) = \prod_i \rho_i(y_i)$$

and the expectation of a random function in y is defined via:

$$< g(oldsymbol{y}) > = \int_{\Gamma}
ho(oldsymbol{y}) g(oldsymbol{y}) \, doldsymbol{y}.$$

We also define the space $L^2_{\rho}(\Gamma)$ of random functions which satisfy:

$$\int_{\Gamma}
ho(oldsymbol{y}) g(oldsymbol{y})^2 \, doldsymbol{y} < \infty.$$

Mixed Stochastic Galerkin Formulation

Consider the tensor product spaces

$$V = H_{0,N}(div; D) \otimes L^2_{\rho}(\Gamma) \qquad \qquad W = L^2(D) \otimes L^2_{\rho}(\Gamma)$$

We seek $\boldsymbol{u}(\boldsymbol{x},\boldsymbol{y})\in V$ and $p(\boldsymbol{x},\boldsymbol{y})\in W$ such that:

Mixed Stochastic Galerkin Formulation

Consider the tensor product spaces

$$V = H_{0,N}(div; D) \otimes L^2_{\rho}(\Gamma) \qquad \qquad W = L^2(D) \otimes L^2_{\rho}(\Gamma)$$

We seek $u(x, y) \in V$ and $p(x, y) \in W$ such that:

$$\begin{split} \int_{\Gamma} \rho\left(\boldsymbol{y}\right) \left(\boldsymbol{\mathcal{A}}_{M}^{-1}\boldsymbol{u},\boldsymbol{v}\right) d\boldsymbol{y} &+ \int_{\Gamma} \rho\left(\boldsymbol{y}\right) \left(p,\nabla\cdot\boldsymbol{v}\right) d\boldsymbol{y} &= \int_{\Gamma} \rho\left(\boldsymbol{y}\right) \left(g,\boldsymbol{v}\cdot\boldsymbol{n}\right)_{\partial\Gamma_{D}} d\boldsymbol{y}, \\ \\ \int_{\Gamma} \rho\left(\boldsymbol{y}\right) \left(w,\nabla\cdot\boldsymbol{u}\right) d\boldsymbol{y} &= -\int_{\Gamma} \rho\left(\boldsymbol{y}\right) \left(f,w\right) d\boldsymbol{y} \end{split}$$

 $\forall \ \boldsymbol{v}(\boldsymbol{x}, \boldsymbol{y}) \in V \text{ and } w(\boldsymbol{x}, \boldsymbol{y}) \in W.$

Mixed Stochastic Galerkin Formulation

Consider the tensor product spaces

$$V = H_{0,N}(div; D) \otimes L^2_{\rho}(\Gamma) \qquad \qquad W = L^2(D) \otimes L^2_{\rho}(\Gamma)$$

We seek $\boldsymbol{u}(\boldsymbol{x},\boldsymbol{y})\in V$ and $p(\boldsymbol{x},\boldsymbol{y})\in W$ such that:

$$igg \langle \left(\mathcal{A}_M^{-1}oldsymbol{u},oldsymbol{v}
ight)
ight
angle + \langle (p,
abla\cdotoldsymbol{v})
angle = - igg \langle (g,oldsymbol{v}\cdotoldsymbol{n})_{\partial\Gamma_D} igg
angle,$$
 $\langle (w,
abla\cdotoldsymbol{v}\cdotoldsymbol{u})
angle = - \langle (f,w)
angle$

 $\forall \ \boldsymbol{v}(\boldsymbol{x}, \boldsymbol{y}) \in V \text{ and } w(\boldsymbol{x}, \boldsymbol{y}) \in W.$

Find $\boldsymbol{u}_{hd}(\boldsymbol{x}, \boldsymbol{y}) \in V_h \otimes S_d$ and $p_{hd}(\boldsymbol{x}, \boldsymbol{y}) \in W_h \otimes S_d$ satisfying:

$$\left\langle \left(\mathcal{A}_{M}^{-1} \boldsymbol{u}_{hd}, \boldsymbol{v} \right) \right\rangle + \left\langle (p_{hd}, \nabla \cdot \boldsymbol{v}) \right\rangle = \left\langle (g, \boldsymbol{v} \cdot \boldsymbol{n})_{\partial \Gamma_{D}} \right\rangle,$$

$$\langle (w, \nabla \cdot \boldsymbol{u}_{hd}) \rangle = - \langle (f, w) \rangle$$

 $\forall \ \boldsymbol{v}(\boldsymbol{x}, \boldsymbol{y}) \in V_h \otimes S_d \text{ and } w(\boldsymbol{x}, \boldsymbol{y}) \in W_h \otimes S_d.$

MANCHES

The University of Manchester

Find $\boldsymbol{u}_{hd}(\boldsymbol{x}, \boldsymbol{y}) \in V_h \otimes S_d$ and $p_{hd}(\boldsymbol{x}, \boldsymbol{y}) \in W_h \otimes S_d$ satisfying:

$$\left\langle \left(\mathcal{A}_{M}^{-1} \boldsymbol{u}_{hd}, \boldsymbol{v} \right) \right\rangle + \left\langle \left(p_{hd}, \nabla \cdot \boldsymbol{v} \right) \right\rangle = \left\langle \left(g, \boldsymbol{v} \cdot \boldsymbol{n} \right)_{\partial \Gamma_{D}} \right\rangle,$$

$$\langle (w, \nabla \cdot \boldsymbol{u}_{hd}) \rangle = - \langle (f, w) \rangle$$

 $\forall \ \boldsymbol{v}(\boldsymbol{x}, \boldsymbol{y}) \in V_h \otimes S_d \text{ and } w(\boldsymbol{x}, \boldsymbol{y}) \in W_h \otimes S_d.$

• $V_h \subset H(div; D)$, $W_h \subset L^2(D)$ are a deterministic inf-sup stable pairing e.g. $RT_0(D)$ - $P_0(D)$.

MANCH

Find $\boldsymbol{u}_{hd}(\boldsymbol{x}, \boldsymbol{y}) \in V_h \otimes S_d$ and $p_{hd}(\boldsymbol{x}, \boldsymbol{y}) \in W_h \otimes S_d$ satisfying:

$$\left\langle \left(\mathcal{A}_{M}^{-1} \boldsymbol{u}_{hd}, \boldsymbol{v} \right) \right\rangle + \left\langle \left(p_{hd}, \nabla \cdot \boldsymbol{v} \right) \right\rangle = \left\langle \left(g, \boldsymbol{v} \cdot \boldsymbol{n} \right)_{\partial \Gamma_{D}} \right\rangle,$$

$$\langle (w, \nabla \cdot \boldsymbol{u}_{hd}) \rangle = - \langle (f, w) \rangle$$

 $\forall \ \boldsymbol{v}(\boldsymbol{x}, \boldsymbol{y}) \in V_h \otimes S_d \text{ and } w(\boldsymbol{x}, \boldsymbol{y}) \in W_h \otimes S_d.$

MANCH

The University of Manchester

- $V_h \subset H(div; D)$, $W_h \subset L^2(D)$ are a deterministic inf-sup stable pairing e.g. $RT_0(D)$ - $P_0(D)$.
- S_d ⊂ L²(Γ) is set of multivariate polynomials in M random variables. Choose from:
 1. total degree d (generalised polynomial chaos) of dimension N_ξ = (M+d)!/M!d!
 2. degree d in each random variable of dimension N_ξ = (d + 1)^M

Abstract Saddle-Point Problem

MANCH

We seek $u_{hd}(x, y) \in V_h \otimes S_d$, and $p_{hd}(x, y) \in W_h \otimes S_d$ s.t.:

$$\begin{aligned} a\left(\boldsymbol{u}_{hd},\boldsymbol{v}\right) + b\left(p_{hd},\boldsymbol{v}\right) &= \left\langle \left(g,\boldsymbol{v}\cdot\boldsymbol{n}\right)_{\partial\Gamma_{D}}\right\rangle, \\ b\left(w,\boldsymbol{u}_{hd}\right) &= -\left\langle \left(f,w\right)\right\rangle \end{aligned}$$

 $\forall \ m{v}(m{x},m{y}) \in V_h \otimes S_d \text{ and } w(m{x},m{y}) \in W_h \otimes S_d$

Abstract Saddle-Point Problem

The University of Manchester MANCH

We seek $u_{hd}(x, y) \in V_h \otimes S_d$, and $p_{hd}(x, y) \in W_h \otimes S_d$ s.t.:

$$a(\boldsymbol{u}_{hd}, \boldsymbol{v}) + b(p_{hd}, \boldsymbol{v}) = \left\langle (g, \boldsymbol{v} \cdot \boldsymbol{n})_{\partial \Gamma_D} \right\rangle,$$
$$b(w, \boldsymbol{u}_{hd}) = -\left\langle (f, w) \right\rangle$$

 $\forall \ \boldsymbol{v}(\boldsymbol{x}, \boldsymbol{y}) \in V_h \otimes S_d \text{ and } w(\boldsymbol{x}, \boldsymbol{y}) \in W_h \otimes S_d$

which leads to a symmetric indefinite system of the form:

$$\left(\begin{array}{cc} \tilde{A} & \tilde{B}^T \\ \tilde{B} & 0 \end{array}\right) \left(\begin{array}{c} \underline{u} \\ \underline{p} \end{array}\right) = \left(\begin{array}{c} \underline{g} \\ \underline{f} \end{array}\right)$$

of dimension $N_x \times N_{\xi}$ where $N_x = N_u + N_p$.

Matrix structure

MANCHESTER

The University of Manchester

$$V_h = \operatorname{span} \{ \varphi_i(x) \}_{i=1}^{Nu}, \quad W_h = \operatorname{span} \{ \phi_j(x) \}_{j=1}^{Np}, \quad S_d = \operatorname{span} \{ \psi_k(y) \}_{k=1}^{N\xi}$$

with $\{\psi_k(\boldsymbol{y})\}$ orthonormal w.r.t $\langle \cdot, \cdot \rangle$, the saddle-point matrix has the structure:

$$\left(\begin{array}{ccc} I \otimes A_0 + \sum_{k=1}^M G_k \otimes A_k & I \otimes B^T \\ & & & \\ I \otimes B & & 0 \end{array}\right)$$

Matrix structure

$$V_h = \operatorname{span} \{ \varphi_i(x) \}_{i=1}^{Nu}, \quad W_h = \operatorname{span} \{ \phi_j(x) \}_{j=1}^{Np}, \quad S_d = \operatorname{span} \{ \psi_k(y) \}_{k=1}^{N\xi}$$

with $\{\psi_k(\boldsymbol{y})\}$ orthonormal w.r.t $\langle \cdot, \cdot \rangle$, the saddle-point matrix has the structure:

$$\left(\begin{array}{ccc} I \otimes A_0 + \sum_{k=1}^M G_k \otimes A_k & I \otimes B^T \\ & & & \\ I \otimes B & & 0 \end{array}\right)$$

where

MANCHESTER

The University of Manchester

$$[A_0]_{ij} = \int_D \boldsymbol{\mu}(\boldsymbol{x}) \boldsymbol{\varphi}_i(\boldsymbol{x}) \cdot \boldsymbol{\varphi}_j(\boldsymbol{x}) \qquad [A_k]_{ij} = \sqrt{\lambda_k} \int_D \boldsymbol{c}_k(\boldsymbol{x}) \boldsymbol{\varphi}_i(\boldsymbol{x}) \cdot \boldsymbol{\varphi}_j(\boldsymbol{x})$$

and

$$[B]_{ij} = \int_D \nabla \cdot \boldsymbol{\varphi}_i(\boldsymbol{x}) \, \phi_j(\boldsymbol{x})$$

$$[G_k]_{rs} = \langle y_k \psi_r(\boldsymbol{y}) \psi_s(\boldsymbol{y}) \rangle$$

MANCHESTER

Well-posedness

The University of Manchester

The well-posedness of the stochastic saddle-point problem can be analysed using the standard Brezzi-Babuska stability criteria.

Define the following norms on the tensor product spaces:

$$\| \boldsymbol{q}_{hd} \|_{div\otimes L^2}^2 = \left\langle \| \boldsymbol{q}_{hd} \|_{div(D)}^2 \right\rangle, \qquad \boldsymbol{q}_{hd} \in V_h \otimes S_d$$
$$\| w_{hd} \|_{L^2\otimes L^2}^2 = \left\langle \| w_{hd} \|_{L^2(D)}^2 \right\rangle, \qquad w_{hd} \in W_h \otimes S_d$$

Well-posedness

The well-posedness of the stochastic saddle-point problem can be analysed using the standard Brezzi-Babuska stability criteria.

Define the following norms on the tensor product spaces:

$$\| \boldsymbol{q}_{hd} \|_{div\otimes L^2}^2 = \left\langle \| \boldsymbol{q}_{hd} \|_{div(D)}^2 \right\rangle, \qquad \boldsymbol{q}_{hd} \in V_h \otimes S_d$$
$$\| w_{hd} \|_{L^2 \otimes L^2}^2 = \left\langle \| w_{hd} \|_{L^2(D)}^2 \right\rangle, \qquad w_{hd} \in W_h \otimes S_d$$

If we choose:

- $V_h := RT_0(D)$ (lowest-order Raviart-Thomas elements)
- $W_h := P_0(D)$ (piecewise constants)

and assume that:

$$0 < a_{min} \leq A_M^{-1}(\boldsymbol{x}, \boldsymbol{y}) \leq a_{max} < +\infty, \quad \text{a.e. in } D \times \Pi$$

then, the following results can be proved independently of the choice of $S_d \subset L^2_\rho(\Gamma)$.

Well-posedness

• $a(\cdot, \cdot)$ and $b(\cdot, \cdot)$ are continuous bilinear forms

• Ellipticity

$$a\left(oldsymbol{v}_{hd},oldsymbol{v}_{hd}
ight)\geq oldsymbol{a}_{min}\paralleloldsymbol{v}_{hd}\parallel^2_{div\otimes L^2}\qquadorall\,oldsymbol{v}_{hd}\,\in Z_{hd}$$

where

$$Z_{hd} = \{ \boldsymbol{v}_h \in V_h \otimes S_d \text{ s.t. } b(\boldsymbol{v}_{hd}, w_{hd}) = 0, \quad \forall w_{hd} \in W_h \otimes S_d \}$$

• Theorem (inf-sup stability)

There exists a constant $\tilde{\beta} > 0$ depending only on the domain *D* and the Raviart-Thomas interpolation operator (and therefore independent of *h*, *M* and *d*) such that:

$$\sup_{\boldsymbol{v}_{hd} \in V_h \otimes S_d \setminus \{\boldsymbol{0}\}} \frac{b(\boldsymbol{v}_{hd}, w_{hd})}{\|\boldsymbol{v}_{hd}\|_{div \otimes L^2}} \geq \tilde{\beta} \|w_{hd}\|_{L^2 \otimes L^2} \qquad \forall w_{hd} \in W_h \otimes S_d.$$

Define deterministic matrices $D \in \mathbb{R}^{N_u \times N_u}$, and $M \in \mathbb{R}^{N_p \times N_p}$ via:

$$[D]_{ij} = \int_D \nabla \cdot \boldsymbol{\varphi}_i \nabla \cdot \boldsymbol{\varphi}_j, \qquad [M]_{rs} = \int_D \phi_r \phi_s.$$

We then have matrix representations of the following stochastic norms:

$$\| \boldsymbol{v}_{hd} \|_{div,\mathcal{A}^{-1}\otimes L^2}^2 = \underline{v}^T \left(\tilde{A} + \tilde{D} \right) \underline{v} \qquad \text{where } \tilde{D} = I \otimes D$$
$$\| w_h \|_{L^2 \otimes L^2}^2 = \underline{w}^T \tilde{M} \underline{w}, \qquad \text{where } \tilde{M} = I \otimes M.$$

MANCH

Define deterministic matrices $D \in \mathbb{R}^{N_u \times N_u}$, and $M \in \mathbb{R}^{N_p \times N_p}$ via:

$$[D]_{ij} = \int_D \nabla \cdot \boldsymbol{\varphi}_i \nabla \cdot \boldsymbol{\varphi}_j, \qquad [M]_{rs} = \int_D \phi_r \phi_s.$$

We then have matrix representations of the following stochastic norms:

$$\| \boldsymbol{v}_{hd} \|_{div,\mathcal{A}^{-1}\otimes L^2}^2 = \underline{v}^T \left(\tilde{A} + \tilde{D} \right) \underline{v} \qquad \text{where } \tilde{D} = I \otimes D$$
$$\| w_h \|_{L^2 \otimes L^2}^2 = \underline{w}^T \tilde{M} \underline{w}, \qquad \text{where } \tilde{M} = I \otimes M.$$

Note that the discrete inf-sup condition tells us that:

$$\tilde{\beta}^2 \min\left(1, \frac{1}{a_{max}}\right) \leq \frac{\underline{w}^T \tilde{B}\left(\tilde{A} + \tilde{D}\right)^{-1} \tilde{B}^T \underline{w}}{\underline{w}^T \tilde{M} \underline{w}} \qquad \forall \underline{w} \in \mathbb{R}^{N_p N_{\xi}} \setminus \{\underline{0}\}$$

MANCH

Eigenvalue bounds

Consider the 'ideal' preconditioner

$$P = \begin{pmatrix} \tilde{A} + \tilde{D} & 0 \\ 0 & \tilde{M} \end{pmatrix} = \begin{pmatrix} \tilde{A} + \tilde{B}^T \tilde{M}^{-1} \tilde{B} & 0 \\ 0 & \tilde{M} \end{pmatrix}$$

Eigenvalue bounds

Consider the 'ideal' preconditioner

$$P = \begin{pmatrix} \tilde{A} + \tilde{D} & 0 \\ 0 & \tilde{M} \end{pmatrix} = \begin{pmatrix} \tilde{A} + \tilde{B}^T \tilde{M}^{-1} \tilde{B} & 0 \\ 0 & \tilde{M} \end{pmatrix}$$

Theorem

The eigenvalues of

$$\begin{pmatrix} \tilde{A} & \tilde{B}^T \\ \tilde{B} & 0 \end{pmatrix} \begin{pmatrix} \underline{u} \\ \underline{p} \end{pmatrix} = \lambda \begin{pmatrix} \tilde{A} + \tilde{D} & 0 \\ 0 & \tilde{M} \end{pmatrix} \begin{pmatrix} \underline{u} \\ \underline{p} \end{pmatrix}$$

are bounded and lie in the union of the intervals,

$$\left[-1, \, -\frac{\tilde{\beta}^2}{a_{max}}\right] \cup \{1\}$$

MANCHESTER

Let $D = [0, 1] \times [0, 1]$, with mixed bcs. We choose an exponential covariance function for the random input with $\mu(\mathbf{x}) = 1$ and $\sigma(\mathbf{x}) = 0.2$.

u · n =0

Mean of numerical solution

Pressure (left), Flux (right)

Variance of numerical solution

Of Manchester of Manchester Anothester Anoth

(Exact) Preconditioned Minres iterations

In this example $a_{max} = O(1)$

			$h = \frac{1}{16}$			$h = \frac{1}{32}$
	d	N_{ξ}	lter	dimension	Iter	dimension
M=4	1	5	6	6,560	6	25,920
-	2	15	6	19,650	6	77,760
-	3	35	6	45,920	6	181,440
-	4	70	6	91,840	6	362,880
M=5	1	6	6	7,872	6	31,104
-	2	21	6	27,552	6	108,864
-	3	56	6	73,472	6	290,304
-	4	126	6	165,312	6	653,184
M=6	1	7	6	9,184	6	36,288
-	2	28	6	36,736	6	145,152
-	3	84	6	110,208	6	435,456
-	4	210	6	275,520	6	1,088,640

(Exact) Preconditioned Minres iterations

With $h = \frac{1}{32}$, M = 4 and d = 2 fixed and varying ratio $\frac{\sigma}{\mu}$

MANCHESTER

$rac{\sigma}{\mu}$	0.1	0.2	0.4	0.8
lter	6	6	6	6

With $h = \frac{1}{32}$, M = 4 and d = 2 and $\frac{\sigma}{\mu} = 0.1$ so that only a_{max} is varying

μ	10^{-2}	10^{-1}	10^{0}	10^{1}	10^{2}
lter	4	4	6	9	22

Practical Implementation

We need a fast solver for systems with the coefficient matrix:

$$\tilde{A} + \tilde{D} = I \otimes \left(A_0 + B^T M^{-1} B\right) + \left(\sum_{k=1}^M G_k \otimes A_k\right)$$

which represents a weighted stochastic $H(div; D) \otimes L^2_{\rho}(\Gamma)$ operator:

$$\tilde{\mathcal{H}}_{\mathcal{A}}: RT_0(D) \otimes S_d(\Gamma) \to RT_0(D) \otimes S_d(\Gamma)$$

defined via:

$$\left(\tilde{\mathcal{H}}_{\mathcal{A}}\boldsymbol{v}_{hd},\boldsymbol{v}_{hd}\right) = \int_{\Gamma} \rho(\boldsymbol{y}) \left(\int_{D} \mathcal{A}_{M}^{-1}\boldsymbol{v}_{hd}\cdot\boldsymbol{v}_{hd} + \nabla\cdot\boldsymbol{v}_{hd}\nabla\cdot\boldsymbol{v}_{hd}\,dD\right)\,d\,\boldsymbol{y}.$$

Note that this is not an elliptic operator.

Theorem: Suppose there exists a matrix \tilde{V} satisfying

$$\theta \leq \frac{\underline{v}^T \left(\tilde{A} + \tilde{D} \right) \underline{v}}{\underline{v}^T \tilde{V} \underline{v}} \leq \Theta \leq 1$$

with positive constants θ and Θ . The eigenvalues of:

$$\begin{pmatrix} \tilde{A} & \tilde{B}^T \\ \tilde{B} & 0 \end{pmatrix} \begin{pmatrix} \underline{u} \\ \underline{p} \end{pmatrix} = \lambda \begin{pmatrix} \tilde{V} & 0 \\ 0 & \tilde{M} \end{pmatrix} \begin{pmatrix} \underline{u} \\ \underline{p} \end{pmatrix}$$

lie in the union of the intervals,

MANCH

The University of Manchester

$$\left[-1, -\frac{1}{2}\left(\boldsymbol{\theta}\left(1-\alpha\right) - \sqrt{\boldsymbol{\theta}^{2}\left(\alpha-1\right)^{2} + 4\alpha\boldsymbol{\theta}}\right)\right] \cup \left[\boldsymbol{\theta}, 1\right]$$

where $\alpha = \frac{\tilde{\beta}^2}{a_{max}}$ is the corresponding bound for the ideal preconditioner.

Geometric H(div) Multigrid

The University of Manchester

We approximate the action of $\left(\tilde{A}+\tilde{D}\right)^{-1}$ via a specialised multigrid V-cycle.

Geometric H(div) Multigrid

We approximate the action of $\left(\tilde{A}+\tilde{D}\right)^{-1}$ via a specialised multigrid V-cycle.

We use a stochastic extension of the Arnold-Falk-Winther multigrid as discussed in 'Preconditioning in H(div) & Applications', Math. Comp., 66 (1998)

Geometric H(div) Multigrid

We approximate the action of $\left(\tilde{A} + \tilde{D}\right)^{-1}$ via a specialised multigrid V-cycle.

We use a stochastic extension of the Arnold-Falk-Winther multigrid as discussed in 'Preconditioning in H(div) & Applications', Math. Comp., 66 (1998)

The main idea is to only vary the spatial discretisation from grid to grid whilst keeping the stochastic discretisation fixed.

Geometric H(div) Multigrid

We approximate the action of $\left(\tilde{A} + \tilde{D}\right)^{-1}$ via a specialised multigrid V-cycle.

We use a stochastic extension of the Arnold-Falk-Winther multigrid as discussed in 'Preconditioning in H(div) & Applications', Math. Comp., 66 (1998)

The main idea is to only vary the spatial discretisation from grid to grid whilst keeping the stochastic discretisation fixed.

Key ingredients:

- Prolongation: $\tilde{P} = I \otimes P_H^h$ where P_H^h is a standard spatial prolongation operator
- Restriction operator $\tilde{R} = \tilde{P}^T = I \otimes R_h^H$
- Smoother: additive Schwarz method (block Jacobi)

MANCH

Let $\tilde{H}_h = \tilde{A} + \tilde{D}$ be the stochastic H(div) matrix associated with a fixed spatial mesh T_h , decomposed into vertex-based patches:

The smoothing operator (in matrix form) is defined via:

$$\tilde{S}_h = \eta \sum_k \tilde{P}_h^k \tilde{H}_h^{-1}$$

Then, for $\boldsymbol{v} \in \mathbb{R}^{N_u N_{\xi}}$ we have:

MANCH

where

The University of Manchester

$$\tilde{S}_{h}\boldsymbol{v} = \eta \sum_{k} (I \otimes R_{k}^{T}) \tilde{H}_{h,k}^{-1} (I \otimes R_{k}) \boldsymbol{v}$$

where $\tilde{H}_{h,k}$ represents a local 'patch-version' of the matrix \tilde{H}_h .

Additive Schwarz Smoothing

Then, for $\boldsymbol{v} \in \mathbb{R}^{N_u N_{\xi}}$ we have:

$$\tilde{S}_{h}\boldsymbol{v} = \eta \sum_{k} (I \otimes R_{k}^{T}) \tilde{H}_{h,k}^{-1} (I \otimes R_{k}) \boldsymbol{v}$$

where $\tilde{H}_{h,k}$ represents a local 'patch-version' of the matrix \tilde{H}_h .

Smoothing requires multiple decoupled solves with $\tilde{H}_{h,k}$. In the stochastic problem:

$$\tilde{H}_{h,k} = I \otimes \left(A_{0,k} + D_{0,k}\right) + \sum_{i=1}^{M} G_i \otimes A_{i,k}$$

and so the dimension of each local matrix is $N_{\xi}N_k$.

MANCH

where

Additive Schwarz Smoothing

$$\tilde{P}_h^k = (I \otimes R_k^T) \tilde{H}_{h,k}^{-1} (I \otimes R_k) \tilde{H}_h.$$

Then, for $\boldsymbol{v} \in \mathbb{R}^{N_u N_{\xi}}$ we have:

$$\tilde{S}_{h}\boldsymbol{v} = \eta \sum_{k} (I \otimes R_{k}^{T}) \tilde{H}_{h,k}^{-1} (I \otimes R_{k}) \boldsymbol{v}$$

where $\tilde{H}_{h,k}$ represents a local 'patch-version' of the matrix \tilde{H}_h .

Smoothing requires multiple decoupled solves with $\tilde{H}_{h,k}$. In the stochastic problem:

$$\tilde{H}_{h,k} = I \otimes \left(A_{0,k} + D_{0,k}\right) + \sum_{i=1}^{M} G_i \otimes A_{i,k}$$

and so the dimension of each local matrix is $N_{\xi}N_k$.

This is tractable for a few thousand stochastic degrees of freedom.

MANCH

where

Theorem

MANCHEST

Let \tilde{V} denote the matrix corresponding to the inverse of the multigrid V-cycle operator described above. Then,

$$\theta \leq \frac{\underline{v}^T \left(\tilde{A} + \tilde{D} \right) \underline{v}}{\underline{v}^T \tilde{V} \underline{v}} \leq 1$$

where

$$\theta = 1 - \frac{C}{C + 2\nu}$$

depends only on the number of smoothing steps ν and a_{min} and a_{max} .

Theorem

MANCH

Let \tilde{V} denote the matrix corresponding to the inverse of the multigrid V-cycle operator described above. Then,

$$\theta \leq \frac{\underline{v}^T \left(\tilde{A} + \tilde{D} \right) \underline{v}}{\underline{v}^T \tilde{V} \underline{v}} \leq 1$$

where

$$\theta = 1 - \frac{C}{C + 2\nu}$$

depends only on the number of smoothing steps ν and a_{min} and a_{max} .

Combining this result with eigenvalue bound for preconditioned saddle-point system, we have a solver that is optimal w.r.t all discretisation parameters.

Example 1

MANCHESTER

$$P = \left(\begin{array}{cc} \tilde{V} & 0\\ 0 & \tilde{M} \end{array}\right)$$

- 1 multigrid V-cycle per minres iteration; 1 pre and 1 post smoothing step;
- Uniform random variables; $\mu(\mathbf{x}) = 1, \sigma = 0.1 \ (\Rightarrow a_{max} = O(1))$

	d	M = 1	M = 2	M = 3	M = 4
$h = \frac{1}{32}$	1	17	17	17	17
-	2	17	17	17	17
-	3	17	17	17	17
-	4	17	17	17	17
$h = \frac{1}{64}$	1	17	17	17	17
-	2	17	17	17	17
-	3	17	17	17	17
-	4	17	17	17	17

Example 2

- Fixed discretisation parameters: $h = \frac{1}{16}, M = 4, p = 2.$
- Varying $\frac{\sigma}{\mu}$

MANCHESTER

Preconditioned minres iterations:

$\frac{\sigma}{\mu}$	0.1	0.2	0.3	0.4	0.5	0.6
Ideal	6	6	6	6	6	6
Multigrid version	17	17	17	17	17	17

Multigrid constants

$\frac{\sigma}{\mu}$	0.2	0.3	0.4	0.5	0.6
θ	0.4576	0.4564	0.4548	0.4527	0.4495
Θ	1.0000	1.0000	1.0000	1.0000	1.0000

Example 3

- Fixed discretisation parameters: $h = \frac{1}{16}, M = 4, p = 2.$
- Vary a_{max} by varying μ and setting $\sigma = \frac{\mu}{10}$.

Preconditioned minres iterations:

μ	10^{-3}	10^{-2}	10^{-1}	10^{0}	10^{1}	10^{2}	10^{3}
Ideal	3	3	4	5	8	16	46
Multigrid version	15	15	16	17	21	40	99

Multigrid constants

μ	10^{-3}	10^{-2}	10^{-1}	10^{0}	10^1	10^{2}	10^3
θ	0.4552	0.4550	0.4556	0.4587	0.4864	0.6453	0.9172
Θ	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

MANCHEST

- Solving well-posed stochastic saddle-point problem
- Stochastic inf-sup stability result leads to nice eigenvalue bounds for H(div) preconditioners
- Practical implementation based on deterministic Arnold-Falk-Winther multigrid
- Analysis of extended multigrid method available
- Preconditioner for saddle-point system is optimal w.r.t spatial and stochastic discretisation parameters
- Overall performance does depend on a_{min} and a_{max}
- Experiments with modified (cheaper) smoothers look promising

We know that optimal preconditioners mimic the mapping properties of the underlying saddle-point operator. Here, there are two options.

We know that optimal preconditioners mimic the mapping properties of the underlying saddle-point operator. Here, there are two options.

An alternative ideal preconditioner is given by:

$$P = \left(\begin{array}{cc} \tilde{A}_{diag} & 0 \\ 0 & \tilde{B}\tilde{A}_{diag}^{-1}\tilde{B}^T \end{array} \right)$$

We know that optimal preconditioners mimic the mapping properties of the underlying saddle-point operator. Here, there are two options.

An alternative ideal preconditioner is given by:

$$P = \left(\begin{array}{cc} \tilde{A}_{diag} & 0 \\ 0 & \tilde{B}\tilde{A}_{diag}^{-1}\tilde{B}^T \end{array} \right)$$

The blocks of this matrix represent norms in which an alternative inf-sup condition can be established. In particular,

$$\underline{w}^T \tilde{B} \tilde{A}_{diag}^{-1} \tilde{B}^T \underline{w} = \left\langle \| w_{h,d} \|_{1,h,\mathcal{A}}^2 \right\rangle$$

represents the expectation of a (weighted) mesh-dependent $H_1(D)$ norm.

We know that optimal preconditioners mimic the mapping properties of the underlying saddle-point operator. Here, there are two options.

An alternative ideal preconditioner is given by:

$$P = \left(\begin{array}{cc} \tilde{A}_{diag} & 0 \\ 0 & \tilde{B}\tilde{A}_{diag}^{-1}\tilde{B}^T \end{array} \right)$$

The blocks of this matrix represent norms in which an alternative inf-sup condition can be established. In particular,

$$\underline{w}^{T}\tilde{B}\tilde{A}_{diag}^{-1}\tilde{B}^{T}\underline{w} = \left\langle \parallel w_{h,d} \parallel_{1,h,\mathcal{A}}^{2} \right\rangle$$

represents the expectation of a (weighted) mesh-dependent $H_1(D)$ norm.

Pro: Standard multigrid methods can be used. Con: Obtaining \tilde{A}_{diag} that yields robustness w.r.t PDE coefficients is difficult.

$$P = \left(\begin{array}{cc} \tilde{A} + \tilde{D} & 0 \\ 0 & \tilde{M} \end{array} \right)$$

• H. Elman, D. Furnival, C.E. Powell, H(div) preconditioning for a mixed finite element formulation of the stochastic diffusion equation. Submitted.

$$P = \left(\begin{array}{cc} \tilde{A}_{diag} & 0 \\ 0 & \tilde{B}\tilde{A}_{diag}^{-1}\tilde{B}^T \end{array} \right)$$

 O.G. Ernst, C.E. Powell, D. Silvester and E. Ullmann, Efficient solvers for a Linear Stochastic Galerkin Mixed Formulation of the Steady-State Diffusion Equation, Under revision, SISC 2008.

MANCH