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Outline

• State estimation / Data assimilation
• Incremental 4D variational assimilation 
• Model reduction using balanced truncation
• Balanced truncation in incremental 4DVar
• Numerical experiments
• Conclusions



 State estimation / Data Assimilation

Aim:  Find the best estimate (analysis) of 
the expected states of a system, consistent 
with both observations and the system 
dynamics given:

•  Numerical prediction model
•  Observations of the system (over time)
•  Background state (prior estimate)
•  Estimates of the errors



Significant Properties:

•  Very large number of unknowns (107 – 108)
•  Few observations (105 – 106)
•  System nonlinear unstable/chaotic
•  Multi-scale dynamics
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Analysis

Aim:  Find the initial state x0 such that the distance between 
the state trajectory and the observations is minimized, 
subject to x0 remaining close to the prior estimate xb  .

        4DVar  Assimilation



4D-Var Nonlinear Problem
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- Observations
- Observation operator
- Background error covariance matrix
- Observation error covariance matrix
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Observation

Time

Temperature

Background
      xb

Incremental 4D-Var

Analysis

Solve by iteration a sequence of linear least squares problems 
 that approximate the nonlinear problem.



Incremental 4D-Var
Set           (usually equal to background)

For k = 0, …, K  find:
Solve inner loop linear minimization problem:
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    On each outer iteration the linear least squares problem 
is solved subject to the linearized dynamical system

    In practice this problem is too computationally expensive 
to solve.  Approximations to the inner minimization 
problem are therefore used.
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• Incremental 4D-Var without approximations is 
equivalent to a Gauss-Newton iteration for 
nonlinear least squares problems.

• In operational implementation the solution 
procedure is approximated:
–  Truncate inner loop iterations
–  Use approximate linear system model

• Theoretical convergence results obtained by 
reference to Gauss-Newton method (SIOPT, 07).

Previous Results



New Research
Aims:
• Find approximate linear system models 

using optimal reduced order modeling 
techniques from control theory to improve 
the efficiency of the incremental 4DVar 
method.

• Test feasibility of approach in comparison 
with low resolution models using a simple 
shallow water flow model.



Model Reduction via Oblique Projections
Given:

Find:     projections  U, V   with   UT V = Ir   ,  r << N, 
such that the output of the reduced order system

minimizes:

(over all inputs with expected norm equal to a constant) 



Balanced Truncation
Balanced truncation removes states that are least
affected by inputs and that have least effect on outputs
(in a statistical sense).  

There are 2 steps:
1. Balancing – Transform system to one in which these 

states are the same.
2. Truncation – Truncate states related to the smallest 

singular values of the transformed covariance matrices 
(Hankel singular values).

Projected system exactly matches the largest Hankel 
singular values of the full system.



Balanced Truncation
Find:          such that 

where           is diagonal and 

Then:   near optimal projections are given by



Reduced Order Assimilation Problem

subject to

The reduced order inner loop problem is to minimize

,

and set
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1D Shallow Water Model
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We discretize using a semi-implicit semi-Lagrangian 
scheme and linearize to get linear model (TLM).
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Methodology

• Define an initial random perturbation  δx0  from a 
distribution  B0.

• Calculate ‘true’ solution by solving full linear least 
squares problem.

• Calculate ‘observations’  di=H δxi  for 5 steps (t=0 to t=5)
• Compare solutions using

– Low resolution linear model.
– Reduced order model.

• Size of full dimension is  400. 



Numerical Experiments  -
Error Norms and Condition Numbers

, .



  

Error between exact and approximate analysis
for 1-D SWE model

Low Res Model of order = 200 
vs Reduced Model of order = 80

Low Res Model of order = 200
vs Reduced Model of order = 200

Component of state

Red (dotted) = Low Res Model       Green (dashed) = Reduced Rank Model 

Log Error

Component of state

Log Error
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Comparison of Error Norms
Low resolution  vs  Reduced order models
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Comparison of Error Norms
Low resolution  vs  Reduced order models



  

Comparison of Model Eigenvalues 
(a)

(b) (c)

Eigenvalues plotted on the complex plane for  (a) full resolution model;
(b) low resolution model of order 200;  (c) reduced rank model of order 200.



Importance of B Matrix

Red (dotted) = Low Res Model       Green (dashed) = Reduced Rank Model 

Low Res Model of order = 200  vs Reduced Model of order = 200

Log Error

Component of state

Errors where covariance B0 is not used in model reduction



Conclusions
•  Reduced rank linear models obtained by 
optimal reduction techniques give more 
accurate analyses than low resolution linear 
models that are currently used in practice.

•  Incorporating the background and 
observation error covariance information is 
necessary to achieve good results

•  Reduced order systems capture the 
optimal growth behaviour of the model more 
accurately than low resolution models

Monthly Weather Rev, 2008



• to obtain efficient model reduction techniques 
for use in data assimilation  

• to demonstrate convergence of the 
Incremental 4DVar method using low order 
models.

Work in progress:

 http://www.maths.rdg.ac.uk/
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