
Structure preservation in
eigenvalue computation:

a challenge and a chance

Volker Mehrmann
TU Berlin, Institut für Mathematik

DFG Research Center MATHEON
Mathematics for key technologies

16.07.08



Outline

1 Introduction
2 Applications
3 Linearization theory
4 Trimmed linearization
5 Numerical methods for structured pencils
6 Structured restarted Arnoldi for large even evp’s
7 Conclusions

Nonlinear evps with structure 2 / 53



Nonlinear evp’s with structure

Consider eigenvalue problem

P(λ) x = 0,

where
. P(λ) is polynomial or rational matrix valued function;
. x is a real or complex eigenvector;
. λ is a real or complex eigenvalue;
. and P(λ) has some further structure.
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Which structures?

Definition
A nonlinear matrix function P(λ) is called
. T-even (H-even) if P(λ) = P(−λ)T (P(λ) = P(−λ)H);
. T-palindromic (H-palindromic) if P(λ) = revP(λ)T

(P(λ) = revP(λ)H).

In the following we often drop the prefix T and H.
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Hamiltonians and symplectics

Let

J =

[
0 In
−In 0

]
.

. A matrix H is called Hamiltonian if (JH)H = JH and
skew-Hamiltonian if (JH)H = −JH.

. Hamiltonian matrices from a Lie algebra, skew-Hamiltonian
matrices form a Jordan algebra.

. A matrix S is called symplectic if SHJS = J.

. Symplectic matrices form a Lie group.

Nonlinear evps with structure 5 / 53



Properties of even matrix polynomials.

Proposition

Consider a T-even eigenvalue problem P(λ)x = 0. Then
P(λ)x = 0 if and only if xT P(−λ) = 0, i.e., the eigenvalues
occur in pairs λ, −λ.
Consider a H-even eigenvalue problem P(λ)x = 0. Then
P(λ)x = 0 if and only if xHP(−λ̄) = 0, i.e., the eigenvalues
occur in pairs λ, −λ̄

Even matrix polynomials have Hamiltonian spectrum, they
naturally generalize Hamiltonian problems λI + H, where H is
Hamiltonian.
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Properties of palindromic matrix functions.

Proposition

Consider a T-palindromic eigenvalue problem P(λ)x = 0.
Then P(λ)x = 0 if and only if xT P(1/λ) = 0, i.e., the
eigenvalues occur in pairs λ, 1/λ.
Consider a H-palindromic eigenvalue problem P(λ)x = 0.
Then P(λ)x = 0 if and only if xT P(1/λ̄) = 0, i.e., the
eigenvalues occur in pairs λ, 1/λ̄.
Palindromic matrix polynomials have symplectic spectrum,
they naturally generalize symplectic problems λI + S, where S
is a symplectic matrix.
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Cayley transformation

Definition
Let P(λ) be a matrix polynomial of degree k . Then the Cayley
transformation of P(λ) with pole at −1 is the matrix polynomial

C−1(P)(µ) := (µ + 1)kP
(

µ− 1
µ + 1

)
.

. The Cayley transformation creates a one-to-one map between
palindromic and even polynomials (as it does between
symplectic and Hamiltonian matrices).

. For the theory we only need to treat one structure, the results
for the other follow automatically.

. For numerical methods one has to be careful.
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Other structures

We will not discuss two other important structured classes.

. Real or complex symmetric nonlinear evp’s. P(λ) = P(λ)T

. Hermitian or real symmetric P(λ)H = P(λ̄).

. . . .

For more on these problems see work by Voss ’03, Schreiber ’08
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Excitation of rails and trains
Hilliges 04, Hilliges/Mehl/M. 04. Eigenvalues of
P(λ) = λ2A + λB + AT , B = BT , A low rank. Complex
T-palindromic problem.
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3D elastic field near crack
Apel/M./Watkins 02 P(λ) = λ2M(α) + λD(α)− K (α),
M = MT > 0, K = K T ≥ 0, D = −DT for α ∈ [a, b] real even
problem

Example: Crak in 3D Domain 

�

Nonlinear evps with structure 12 / 53



Discrete time optimal control

Minimize
∞∑

j=0

(
xH

j Qxj + xH
j Yuj + uH

j Y Hxj + uH
j Ruj

)
subject to the k th-order discrete-time control system

k∑
i=0

Mixj+i+1−k = Buj , j = 0, 1, . . . ,

with starting values x0, x−1, . . . , x1−k ∈ Rn and coefficients
Q = QH ∈ Rn,n, Y ∈ Rn,m, R = RH ∈ Rm,m, Mi ∈ Rn,n, B ∈ Rn,m.

Classical case: R̂ =

[
Q Y
Y H R

]
positive definite, Mk = I.

H∞ control: R̂ indef. or singular, descriptor case: Mk singular.
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Optimality system
Discrete bvp with palindromic matrix polynomial

P̂(λ) :=
2k−2∑
j=0

λjM̂j := λ2k−2

 0 Mk 0
0 0 0
0 0 0


+λ2k−3

 0 Mk−1 0
0 0 0
0 Y H 0

 + λ2k−4

 0 Mk−2 0
0 0 0
0 0 0

 + · · ·

+λk−1

 0 M1 −B
MH

1 Q 0
−BH 0 R

 + λk−2

 0 M0 0
MH

2 0 0
0 0 0

 + . . .

+λ2

 0 0 0
MH

k−2 0 0
0 0 0

 + λ

 0 0 0
MH

k−1 0 Y
0 0 0

 +

 0 0 0
MH

k 0 0
0 0 0

 .
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Further Applications

Even matrix Polynomials.
. Passivation of linear control systems arising from model

reduced semidisc. Maxwell equations Freund/Jarre ’02, Brüll
’08

. Optimal control of higher order DAEs M./Watkins ’02

. Gyroscopic systems Lancaster ’04, Hwang/Lin/M. ’03.

. Optimal Waveguide Design,
Schmidt/Friese/Zschiedrich/Deuflhard ’03.

. H∞ control for descriptor Benner/Byers/M./Xu ’04.

While Hamiltonian matrices cover only special cases, even
matrix polynomials cover all the cases.
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Further applications

Palindromic Matrix Polynomials.
. Periodic surface acoustic wave filters Zaglmeyer 02.
. Computation of the Crawford number Higham/Tisseur/Van

Dooren 02.
. H∞ control for discrete time descriptor systems

Losse/M./Poppe/Reis ’08
. Passivation of discrete linear control systems arising from

model reduced fully Maxwell equations Brüll ’08

While symplectic matrices cover only special cases,
palindromic matrix polynomials cover all the cases.
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Linearization

Definition
For a matrix polynomial P(λ) of degree k , a matrix pencil
L(λ) = (λE +A) is called linearization of P(λ), if there exist
nonsingular unimodular matrices (i.e., of constant nonzero
determinant) S(λ), T (λ) such that

S(λ)L(λ)T (λ) = diag(P(λ), I(n−1)k).

A linearization is called strong if also revL is a linearization of
revP.
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Companion form and structure.
Example The quadratic even eigenvalue problem

(λ2M + λG + K )x = 0

with M = MT , K = K T , G = −GT has Hamiltonian spectrum but
the companion linearization[

O I
−K −G

] [
x
y

]
= λ

[
I O
O M

] [
x
y

]
,

does not preserve this structure.
. Numerical methods destroy eigenvalue symmetries in finite

arithmetic !
. Perturbation theory requires structured perturbations for

stability near imaginary axis. Ran/Rodman 1988.
. Can we find structure preserving linearizations.
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Vector space of linearizations
Notation: Λ := [λk−1, λk−2, . . . , λ, 1]T , ⊗ - Kronecker product.

Definition (Mackey2/Mehl/M. ’06.)

For a given n × n matrix polynomial P(λ) of degree k define the
sets:

VP = {v ⊗ P(λ) : v ∈ Fk}, v is called right ansatz vector,
WP = {wT ⊗ P(λ) : w ∈ Fk}, w is called left ansatz vector,

L1(P) =
{

L(λ) = λE +A : E ,A ∈ Fkn×kn, L(λ) · (Λ⊗ In) ∈ VP

}
,

L2(P) =
{

L(λ) = λE +A : E ,A ∈ Fkn×kn,
(
ΛT ⊗ In

)
· L(λ) ∈ WP

}
,

DL(P) = L1(P) ∩ L2(P) .

Are there structured linearizations in these classes?
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Even linearization

Lemma
Consider an n × n even matrix polynomial P(λ) of degree k.
For an ansatz vector v = (v1, . . . , vk)

T ∈ Fk the linearization
L(λ) = λX + Y ∈ DL(P) is even, i.e. X = X T and Y = −Y T , (or
X = X H and Y = −Y H ,) if and only if the v-polynomial

p(v ; x) := v1xk−1 + . . . + vk−1x + vk

is even.

What are appropriate even polynomials p(v ; x).
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Real even quadratics

If P is real, quadratic, even and has ev ∞, then there is no even
linearization.
Example: Let

P(λ) = λ2M + λD + K

be even, i.e. M = MT , D = −DT , K = K T .
If M is singular, then the even linear pencil (obtained with v = e2)

λ

[
0 −M
M G

]
+

[
M 0
0 K

]
is not a linearization, since L(λ) is not regular.
We can alternatively look at odd problems, then the ev. 0 is ’bad’.
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Palindromic linearization

Lemma (Mackey/Mackey/Mehl/M. ’06)

Consider an n × n palindromic matrix polynomial P(λ) of degree
k.
Then, for a vector v = (v1, . . . , vk)

T ∈ Fk the linearization
L(λ) = λX + Y ∈ DL(P) is (the permutation of) a palindromic
pencil, if and only if p(v ; x) is palindromic, which is the case iff v
is a palindromic vector.

What are appropriate palindromic polynomials p(v ; x).
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Real palindromic quadratics

Example: For the palindromic polynomial

P(λ)y = (λ2A + λB + AT )y = 0, B = BT

all palindromic vectors have the form v = [α, α]T , α 6= 0 leads to
a palindromic pencil

κZ T + Z , Z =

[
A B − AT

A A

]
.

This is a linearization iff if −1 is not an eigenvalue of P(λ).
We can alternatively look at anti-palindromic linearizations, then
the ev. 1 is ’bad’.
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Trimmed linearization

To get good numerical results it is essential to deflate ’bad’
ev’s from the polynomial problem.
. Compute appropriate (structured) staircase form associated

with the eigenvalues 1,−1, 0,∞ and the singular part directly
for matrix polynomial.

. Remove parts associated with eigenvalues 1,−1, 0,∞ and
singular parts. This can (at least in principle) be done exactly.

. Perform (structured) linearization on the resulting ’trimmed’
matrix polynomial.

. ’Near bad’ eigenvalues, however, lead to ill-conditioning.
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Theorem (Byers/M./Xu 07)

Let Ai ∈ Cm,n i = 0, . . . , k. Then, the tuple (Ak , . . . , A0) is unitarily
equivalent to a matrix tuple (Âk , . . . , Â0) = (UAkV , . . . , UA0V ), all
terms Âi , i = 0, . . . , k have form266666666666666666666666666664

A A A . . . . . . . . . A A A(i)
l

A A A . . . . . . . . . . . .
A(i)

l−1 0

A A A . . . . . . . . .
. . .

0 0
.
.
.

.

.

.
.
.
. . . .

. . .
A(i)

1
. . . .

.

.
.
.
.

.

.

.
.
.
. . . .

. . .
A(i)

0 0 . . .

.

.

.
.
.
.

.

.

. . . .
. . .
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Properties of this staircase form

. Each of the blocks A(i)
j i = 0, . . . , k , j = 1, . . . , l either has the

form
[

Σ 0
]

or
[

0 0
]
,

. Each of the blocks Ã(i)
j i = 1, . . . , k , j = 1, . . . , l either has the

form
[

Σ
0

]
or

[
0
0

]
.

. For each j only of the A(i)
j and Ã(i)

j is nonzero.

. In the tuple of middle blocks (A(k)
0 , . . . , A(k)

0 ) (essentially) no k
of the coefficients have a common nullspace.
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Structured staircase forms

. Structured staircase forms for even and palindromic
polynomials and pencils under congruence Byers/M./Xu ’07.

. There exist exceptional cases where the ’bad’ ev’s cannot be
removed.

. In many cases exactly ’bad’ eigenvalues can be deflated
ahead in a structure preserving way. This leads to ’trimmed
linearizations’.

. In all the industrial examples the ev’s 0 and ∞, ±1 can be
removed without much computational effort, just using the
structure of the model.

. Singular parts can be removed altogether.
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Structured vs. unstructured

Example Consider a 3× 3 even pencil with matrices

N = Q

 0 1 0
−1 0 0
0 0 0

 QT , M = Q

 0 0 1
0 1 0
1 0 0

 QT ,

where Q is a random real orthogonal matrix. The pencil is
congruent to

λ

 0 1 0
0 0 1
0 0 0

−
 1 0 0

0 1 0
0 0 1


For different randomly generated orthogonal matrices Q the QZ
algorithm in MATLAB produced all variations of eigenvalues that
are possible in a general 3× 3 pencil.
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Structured Staircase

Example revisited Our implementation of the structured
staircase Algorithm determined that in the cloud of
rounding-error small perturbations of even λN + M, there is an
even pencil with structured staircase form

λ

 0 1 0
−1 0 0

0 0 0

−
 0 0 1

0 1 0
1 0 0

 .
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Numerical methods for even/palindromic
pencils

. Structure preserving QR/QZ like methods for even pencils
Benner/M./Xu ’97, ’98, Chu/Liu/M. ’04, Byers/Kressner ’07

. Structure preserving Arnoldi method and JD methods for even
pencils M./Watkins ’01, Apel/M./Watkins ’02,
Hwang/Lin/Mehrmann ’03

. Palindromic Jabobi and Laub trick Mackey2,Mehl,M. ’07;

. Palindromic QR/QZ algorithm and URV algorithm
Dissertation Schröder 07;

. Recursive doubling Chu/Lin/Wang/Wu ’05
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Even linearization for crack problem

For the even quadratic P(λ) = λ2M + λG − K with
M = MT > 0, K = K T > 0, G = −GT we have the even
linearization:

λN −W = λ

[
0 −M
M G

]
−

[
−M 0

0 K

]
with N = −NT , W = W T .
This can be transformed to a Hamiltonian matrix.

. N = Z1Z2, Z T
2 J = ±JZ1, sparse J-Cholesky factorization.

. Transform to λI −H = λI − Z−1
1 WZ−1

2 , where H = Z−1
1 WZ−1

2 is
Hamiltonian.
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Sparse Representation of H and H−1

H = Z−1
1 WZ−1

2

=

[
I −1

2G
0 I

] [
0 −K

M−1 0

] [
I −1

2G
0 I

]

H−1 =

[
I 1

2G
0 I

] [
0 M

(−K )−1 0

] [
I 1

2G
0 I

]
Multiplication with H or H−1 only needs solves with mass matrix
M or stiffness matrix K , respectively.
Note that ’bad’ eigenvalues are removed.
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General Arnoldi method
Form Krylov basis

[q1, Aq1, A2q1, . . . , A`q1]

and orthogonalize vectors.
Ordinary Arnoldi process

qj+1 = Aqj −
j∑

i=1

qihij .

With Q` = [q1, q2, . . . , q`] we have

AQ` = Q`H` + f`eT
`

and use eigenvalues of the Hessenberg matrix H` as
approximations to eigenvalues of A.
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Problems with Arnoldi iteration

. Loss of orthogonality in the process leads to spurious
eigenvalues, i.e. the same eigenvalues converge again and
again.

. To avoid this, we can reorthogonalize or restart. But this
expensive, so to make this feasible: Implicit restart. ARPACK,
Lehoucq, Sorensen Yang 1998.

. Typically we get convergence of exterior eigenvalues.

. Only in the symmetric case a complete convergence theory is
avaliable.

. To get interior eigenvalues we can use shift-and-invert

. Arnoldi does not respect the structure.
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Implicitly restarted Arnoldi
Start: Build a length l Arnoldi process.

AQ` = Q`H` + f`eT
`

For i = 1, 2, . . . until satisfied:
1. Compute eigenvalues of H` and split them into a wanted set

λ1, . . . , λk and an unwanted set λk+1, . . . , λ`.
2. Perform p = `− k steps of the QR-iteration with the unwanted

eigenvalues as shifts and obtain H`V` = V`H̃`.

3. Restart: Postmultiply by the matrix Vk consisting of the k
leading columns of V`.

AQ`Vk = Q`Vk H̃k + f̃keT
k ,

where H̃k is the leading k × k principal submatrix of H̃`.
4. Set Qk = Q`Vk and extend Arnoldi factorization to length `.
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Shift-and-invert

To obtain interior eigenvalues we use shift-and-invert, i.e., we
apply the implicitly restarted Arnoldi to a rational function of the
matrix.
Goals:
. Pick shift point near the region where the desired eigenvalues

are.
. Use a rational transformation that retains the eigenvalue

symmetry.
. Transformation must be cheaply computable.
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Exploitable Structures

. Hamiltonian
H−1

. skew-Hamiltonian
H−2

(H − τ I)−1(H + τ I)−1

(H − τ I)−1(H + τ I)−1(H − τ I)−1(H + τ I)−1

. symplectic
(H − τ I)−1(H + τ I)

(H − τ I)−1(H + τ I)(H − τ I)−1(H + τ I)

τ = target shift.
Three different structures, three different methods.
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Skew-Hamiltonian Approach

W = (H − τ I)−1(H + τ I)−1(H − τ I)−1(H + τ I)−1

Each factor has the form

(H − τ I)−1 =[
I 1

2G + τM
0 I

] [
0 −M

Q(τ)−1 0

] [
I 1

2G + τM
0 I

]
. Q(τ) = τ 2M + τG + K
. Q(τ) = PqLqUq (sparse LU decomposition)
. One decomposition for all four factors.
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Skew-Hamiltonian Arnoldi Process SHIRA

. Isotropic Arnoldi process

q̃j+1 = Wqj −
j∑

i=1

qihij −
j∑

i=1

Jqi tij

. produces isotropic subspaces:
Jq1, . . . , Jqk are orthogonal to q1, . . . , qk .

. Theory tij = 0. Practice tij = ε (roundoff)

. Enforcement of isotropy is crucial.

. Consequence: get each eigenvalue only once.
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Subspace extraction
Input: H and τ = α or τ = iα, α ∈ R.
Output: Approx. inv. subspace of H ass. with p ev’s near τ .
. Generate Arnoldi vectors Qk = [q1, . . . , qk ] and upper

Hessenberg Hk ∈ Rk×k such that (H2 − τ 2I)−1Qk = QkHk .
Compute Ωk = H−1

k + λ2
0I.

. Compute the real Schur decomposition Ωk = UkTkUT
k .

. Reorder the p desired stable eigenvalues of Tk to the top of

Tk , i.e.,Tk = Vk

[
T11 T12

0 T22

]
V T

k , where T11 ∈ Rp×p has

desired eigenvalues.

. Set Q̃p := QkUkVk

[
Ip
0

]
.

. Compute the unique positive square root T11
1/2 of T11.

. Compute the stable invariant subspace Vp = HQ̃p − Q̃pT11
1/2.
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Numerical Results: Fichera Corner
Discretized Problem n = 2223, asking for 6 ev’s in right half-pl.

λ1 = 0.96269644895
λ2 = 0.98250961158 + 0.00066849814i
λ3 = 0.98250961158− 0.00066849814i
λ4 = 1.35421843051
λ5 = 1.39562564903
λ6 = 1.49830518846.

flops (107)
τ SHIRA unstructured
0 32.6 140.1

0.3 32.6 79.6
0.6 25.7 69.8
0.9 23.0 50.7
1.2 17.5 31.5
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Computing times
Crack example: CPU in s for 15 ev’s in [0, 2), h = π/120; τ = 0,
solid line: SHIRA, dashed line: IRA with (H − τ I)−1;
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Example: Fichera Corner
Eigenvalues for various material parameters
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Results of SHIRA for Crack problem
Ev’s with real part in (0.1, 2.1). Dashed: nonreal eigenvalues.
Triple ev’s α = 0 and α = 1, 3 simple real ev’s.
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Summary second talk

. Palindromic and even polynomial eigenvalue problems are
important in many applications.

. Structured linearization methods are available.

. Structured staircase forms are available.

. New trimmed linearization techniques are available.

. Structure preserving numerical methods for small even and
palindromic pencils have been constructed.

. Structure preserving numerical methods for large sparse even
and palindromic pencils have been constructed (provided we
can still factor).
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Thank you very much
for your attention.

information, papers, codes etc
http://www.math.tu-berlin.de/˜mehrmann
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