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Nonlinear eigenvalue problems, a basis of modern engineering

The analysis of the dynamical/acoustic behavior of
structures, vehicles, or molecules
needs the numerical solution of nonlinear eigenvalue problems.

. Such systems have been solved for decades!

. The mathematics is well-known and used in industrial
engineering every day!

. The numerical methods are available in (commercial)
software!

. We just buy bigger computers to handle the higher
complexity?

. Do we still need to talk about it?

. Do we need improved numerical methods?

. What are the challenges?
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Optimality through mathematics

. Society is increasingly sensitive to inconveniences that come
with modern technologies such as pollution and noise.

. There is an increasing demand for optimal solutions. Minimal
energy consumption, minimal noise, pollution, waste.

. Optimal solutions need mathematical techniques, such as
model based optimization/optimal control.

. We need better mathematical models, faster and more
accurate numerical methods, robust implementations on
modern computer architectures.

. The progress through better methods exceeds the
progress through better hardware by large factors.
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Excitation of rails and trains (with company SFE 04/05)
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FEM in space
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Infinite dimensional second order system
Under the assumption of an infinite rail, FEM in space leads to
the second order system

Mz̈ +Dż +Kz = F ,

with symmetric infinite block tridiagonal coefficient matrices
(operators) M,D,K, where

M =



. . . . . . 0 . . . 0

. . . Mj−1,0 Mj,1 0 . . .
0 MT

j,1 Mj,0 Mj+1,1 0
... . . . MT

j+1,1 Mj+1,0 Mj+2,1

0 . . . 0 . . . . . .


z =


...

zj−1

zj

zj+1
...

 ,

Operators D,K have the same structure. Furthermore, Mj,0 > 0,
Dj,0, Kj,0 ≥ 0.

Nonlinear eigenvalue problems in practice 8 / 66



Classical solution ansatz

Fourier expansion

Fj = F̂jeiωt , zj = ẑjeiωt ,

where ω is the excitation frequency.
Using periodicity and combining ` parts into one vector

yj =
[

ẑT
j ẑT

j+1 . . . ẑT
j+`

]T
gives a (singular) difference equation

A1(ω)yj+1 + A0(ω)yj + A1(ω)T yj−1 = Gj .

with A0(ω) = AT
0 (ω) block tridiagonal and A1(ω) singular of rank

smaller than n/2.
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The associated eigenvalue problem

Ansatz yj+1 = κyj , leads to the large scale rational eigenvalue
problem

R(κ)x = (κA1(ω) + A0(ω) +
1
κ

A1(ω)T )x = 0.

Alternative representation as so called palindromic polynomial
eigenvalue problem

P(λ)x = (λ2A1(ω) + λA0(ω) + A1(ω)T )x = 0.
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Summary of railtrack problem

. Large scale nonlinear structured eigenvalue problem.

. All (commercial/non-commercial) methods failed (no correct
digits in double precision).

. Many infinite and zero eigenvalues, structured deflation
necessary (second talk).

. Effective use of structure (second talk).

. → film.
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Acoustic in car interior (with company SFE 07/08)

SFE GmbH, Berlin
CEO: Hans Zimmer
h.zimmer@sfe-berlin.de
http://www.sfe-berlin.de

© SFE GmbH 2007

SFE AKUSMOD

��������	��
��
�
���

DLOAD 1 = symmetrical excitation
DLOAD 2 = antimetrical excitation

Unit force = 1 N mm

grid-ID 31010

grid-ID 31011
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Optimization problem

SFE GmbH, Berlin
CEO: Hans Zimmer
h.zimmer@sfe-berlin.de
http://www.sfe-berlin.de

© SFE GmbH 2007

SFE AKUSMOD

��������	���������
������������������
����

SPL #1

grid-ID ?

SPL #2
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Mathematical tasks

. Parameterized FEM model for car body, as well as air in car.

. Geometry and topology changes lead ad hoc to new linear
systems/eigenvalue problems (up to size 10, 000, 000).

. Goal: Minimize noise in important regions in car interior.

Tasks: Numerical methods for large scale (complex symmetric)
linear systems (frequency response) and eigenvalue problems
(model reduction, modal analysis, optimization of frequencies).

Nonlinear eigenvalue problems in practice 15 / 66



Math. model: Linear system
Solve P(ω)u(ω) = f (ω), for ω = 0− 1000hz, where

P(ω) := −ω2
[

Ms 0
0 Mf

]
+ ıω

[
Ds DT

as
Das Df

]
+

[
Ks(ω) 0

0 Kf

]
,

is complex symmetric of dimension up to 10, 000, 000 and
. Ms, Mf , Kf are real symm. pos. semidef. mass/stiffness

matrices of structure and air, Ms is singular and diagonal, Mf

is sparse.
. Ks(ω) = Ks(ω)T = K1(ω) + ıK2.
. Ds is a real damping matrix, Df is complex symmetric.
. Das is real coupling matrix between structure and air.
. All matrices depend on geometry, topology and material

parameters.
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Sparsity of fluid mass matrix Mf
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Sparsity of K1(ω)
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Sparsity of K2
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Math. model: Eigenvalue problem

Compute smallest real eigenvalues and associated eigenvectors
of P(λ)x = 0, where the matrix polynomial

P(λ) := λ2
[

Ms 0
0 Mf

]
+ λ

[
Ds DT

as
Das Df

]
+

[
Ks 0
0 Kf

]
,

is complex symmetric and has dimension up to 10, 000, 000.
Tasks:
. Project the problem into the subspace spanned by these

eigenvectors.
. Solve the second order differential-algebraic system (DAE).
. Optimize the eigenfrequencies w.r.t. the set of parameters.
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Summary of car acoustic problem

. Large scale nonlinear (complex symmetric) eigenvalue
problem arising from coupled FEM models for structure/fluid.

. Problem contains parameters to be optimized.

. Eigenvalue path following.

. Homotopy from undamped to damped problem.

. Shift-and-invert Lanczos/Arnoldi/Jacobi Davidson.

. Subspace recycling (warm restarts).

. Model reduction for optimization (third talk).

. We should really use adaptive FEM for eigenvalue problem.
(Not much theory and no code for non-elliptic problems).
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3D elastic field near crack, project: Apel/M./Watkins 00/04

Near a singularity, the displacement field U of an elastic body
can be expanded (Kondrat’ev 1967), as

γrαu(φ, θ),

where γ is the stress intensity factor and u(φ, θ) is angular part
of U in spherical coordinates.

Example: Cra
k in 3D Domain 

�
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The Operator Eigenvalue Problem

The singular exponent α, (changed to λ = α + 1/2) satisfies the
operator evp:

λ2m(u, v) + λg(u, v)− k(u, v) = 0,

with sesquilinear forms

m(u, v) = m(v , u),

g(u, v) = −g(v , u),

k(u, v) = k(v , u).
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Finite element subspace V0h.

Take continuous functions from V0 which are piecewise linear on
a triangular finite element mesh Th. With

λh ∈ C, uh ∈ V0h \ {0}

we have a finite dimensional problem

λ2
h m(uh, vh) + λh g(uh, vh)− k(uh, vh) = 0 ∀vh ∈ V0h

and with appropriate FEM bases, a so called even quadratic evp

P(λ)u = λ2Mu + λGu − Ku = 0,

with M = MT > 0, G = −GT , K = K T > 0.
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Approximation results I

Theorem (Karma 1996)

Consider an eigenpair (λ, u).
Let κ be the maximal size of an associated Jordan block. For a
sequence of eigenpairs {(λh, uh)}h→0 with λh → λ0 the estimates

|λ0 − λh| ≤ Ch2/κ,

‖u0 − uh‖V ≤ Chν , ν = min{1, 2/κ}

hold.
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Approximation results II

Theorem (Karma 1996)

For an eigenvalue λ0 with algebraic multiplicity m there exist m
disjoint sequences {λh,i} with λh,i → λ0, i = 1, . . . , m. Then for
the arithmetic mean λ̂h := 1

m

∑m
i=1 λh,i the improved estimate

|λ0 − λ̂h| ≤ Ch2

holds.

Nonlinear eigenvalue problems in practice 27 / 66



Results of structured method SHIRA
Ev’s with real part in (0.1, 2.1). Dashed: nonreal eigenvalues.
Triple ev’s α = 0 and α = 1, 3 simple real ev’s.
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Numerical methods for nonlinear evps

. For polynomial/rational eigenvalue problems, use
linearization to turn problem into a larger linear evp.

. Apply the known methods for the linear evp, Lanczos, Arnoldi,
Jacobi-Davidson, inverse iteration, . . .

. For genuine nonlinear problems there are several approaches,
all variations of Newton’s method. None of them is global and
robust.

. Many open problems

For surveys see M./Voss 2005 or Dissertation Schreiber 2008.
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Methods directly for nonlinear problem

. Second order Arnoldi method Bai 2006

. Rational Krylov method Ruhe 1998, 2000

. Residual iteration method Neumaier 1985

. Newton methods Schreiber/Schwetlick 2006, 2008,

. Rayleigh quotient iterations Schreiber 2008, Freitag/Spence
2007, 2008

. Jacobi-Davidson method Sleijpen/Van der Vorst et al 1996,
Betcke/Voss 2004, Hochstenbach 2007

. Arnoldi type methods Voss 2003

. . . .

Only few of these methods make use of structure (second talk),
convergence theory and preconditioning needs more analysis.
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Newton’s method
For nonlinear EVP F(λ)x = 0 consider nonlinear problem[

F(λ)x
vHx − 1

]
= 0,

with some normalization vector v . One Newton step gives[
F(λk) F ′(λk)xk

vH 0

] [
xk+1 − xk

λk+1 − λk

]
= −

[
F(λk)xk

vHxk − 1

]
.

The first component yields

xk+1 = −(λk+1 − λk)F(λk)
−1F ′(λk)xk ,

i.e. the direction of the new approximation is
uk+1 := F(λk)

−1F ′(λk)xk . Assuming that vHxk = 1, we get

λk+1 = λk −
vHxk

vHuk+1
.
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Analysis of Newton’s method

. For simple eigenvalues Newton’s method converges locally
quadratically Anselone/Rall 68,Osborne 64.

. One needs very good starting values.

. No guarantee that one gets the desired eigenvalues.

. No direct use of special structures.

. Many matrix factorizations are needed.
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Variation of Newton’s method
Change normalization vector v in each step to vk = F(λk)

Hyk ,
where yk is an approximation of a left eigenvector. Then one gets

λk+1 = λk −
yH

k F(λk)xk

yH
k F ′(λk)xk

,

which is a generalized Rayleigh functional Lancaster 2002. This
is a Newton step for

fk(λ) := yH
k F(λ)xk = 0.

. For linear Hermitian eigenproblems, cubic convergence
Crandall 51, Ostrowski 58.

. Analysis for nonlinear symmetric eigenproblems Rothe 1989.

. More analysis in Schreiber 2008, Schreiber/Schwetlick 2008.
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Residual inverse iteration

To avoid large number of factorizations, Neumaier 1995
suggested the residual inverse iteration.
If F(λ) is twice continuously differentiable, then

xk − xk+1 = xk + (λk+1 − λk)F(λk)
−1F ′(λk)xk

= F(λk)
−1(F(λk) + (λk+1 − λk)F ′(λk))xk

= F(λk)
−1F(λk+1)xk +O(|λk+1 − λk |2).

Neglect second order term and replace λk by fixed shift σ:

xk+1 = xk −F(σ)−1F(λk+1)xk .

Another variation of this idea is the method of successive linear
problems of Ruhe 1973 which converges locally quadratically.
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Nonlinear Jacobi-Davidson
Set U1 = [u] for starting vector u.

For k = 1, 2, . . .,
Solve nonlinear evp UH

k F (λ)Ukc = 0 for (λ, c).
Set u = Ukc, r = F (λ)u.

If ‖r‖
‖u‖ < ε STOP

Compute s orthogonal to u from correction eq.(
I − Ḟ (λ)uuH

uH Ḟ (λ)u

)
F (λ)

(
I − uuH) s = −r .

Set Uk+1 to be the result of modified Gram-Schmidt applied to
span(Uk , s).

The advantage of JD is that it is often sufficient to solve the
correction equation approximately.
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Evaluation of Newton type methods

. No guarantee that all desired eigenvalues are obtained.

. No guarantee to obtain desired relative residual?

. Methods are very sensitive to changes of parameters.

. Erratic convergence behavior?

. Locking and purging or deflation of converged eigenvalues?

. Code implementation ?

Detailed analysis and comparison: Dissertation Schreiber 2008.

In general, the situation is not satisfactory! If at all possible,
linearization seems to be a more robust approach.
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Linearization

The classical companion linearization for polynomial eigenvalue
problems

P(λ)x =
k∑

i=0

λiAix

is to introduce new variables

yT =
[

y1, y2, . . . , yk
]T

=
[

x , λx , . . . , λk−1x
]T

and to turn it into a generalized linear eigenvalue problem

L(λ)y := (λE +A)y = 0

of size nk × nk .
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Example

Damped mechanical system:

(λ2M + λD + K )x = 0

Introduce (velocity) v = λx and obtain companion form([
M 0
0 −I

]
+

[
D K
I 0

])[
v
x

]
= 0.
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Linearization

Definition
For a matrix polynomial P(λ) of degree k , a matrix pencil
L(λ) = (λE +A) is called linearization of P(λ), if there exist
nonsingular unimodular matrices (i.e., of constant nonzero
determinant) S(λ), T (λ) such that

S(λ)L(λ)T (λ) = diag(P(λ), I(n−1)k).

A linearization is called strong if also revL is a linearization of
revP.
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Properties of companion linearization

. Companion linearization preserves the algebraic and
geometric multiplicities of all finite eigenvalues.

. There are some difficulties with multiple eigenvalues including
∞ and the singular part, Byers/M./Xu 2007.

. The geometric multiplicity of the eigenvalue ∞ and the sizes
of singular blocks are not invariant under unimodular
transformations.

. Companion linearization destroys the structure.
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Example
The matrix polynomial

P(λ) =

[
λ2 + λ + 1 1

1 0

]
has only the eigenvalue ∞. Multiplying from the left with

Q(λ) =

[
1 −(λ2 + λ + 1)
0 1

]
we obtain

T (λ) = Q(λ)P(λ) =

[
1 0
0 1

]
It is not necessary to perform a linearization.
Is this a matrix polynomial of degree 1, 2, or one of degree 0 with
leading coefficients 0?
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Constrained Multi-body system

Consider the Euler-Lagrange equations of a linear, constrained
and damped mechanical system

M̂ẍ + D̂ẋ + K̂ x + ĜT µ = f (t)
Ĝx = g.

The associated matrix polynomial is

P(λ) = λ2
[

M̂ 0
0 0

]
+ λ

[
D̂ 0
0 0

]
+

[
K̂ ĜT

Ĝ 0

]
.

If M̂ is positive definite and Ĝ has full row rank, then the
companion form has a Kronecker block associated with ∞ of
size 4.
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Modified first order form

The first order formulation used in multibody dynamics only
introduces y = ẋ and not γ = µ̇.

Mẏ + Dẋ + Kx + GT µ = f (t),
ẋ = y ,

Gx = 0

and the associated linear matrix pencil

L̃(λ) = λ

 M 0 0
0 I 0
0 0 0

+

 D K GT

−I 0 0
0 G 0

 ,

has a Kronecker block at ∞ of size 3.
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Pros and cons, companion linearization

Pros
. Simpler analysis for first order systems and linear evp’s..
. Not much analysis methods for matrix polynomials.
. No generalization of Jordan/Kronecker canonical form for

matrix polynomials.
. Locking, deflation and restart very difficult in nonlinear case.
Cons
. The condition number (sensitivity) may increase. Tisseur

2000, Higham/Mackey/Tisseur 2007.
. The size of the problem is increased.
. Symmetry structures may be lost.
. Approach only works for polynomial or rational nonlinearities.
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Optimal Linearizations

Goal: Find a large class of linearizations for which:
. the linear pencil is easily constructed;
. structure preserving linearizations exist;
. the conditioning of the linear problem can be optimized;

Higham/Mackey/Tisseur 06, Higham/Li/Tisseur 06.
. eigenvalues/vectors of the original problem are easily read off;
. we have structure preserving numerical methods;
. a structured perturbation analysis is possible.
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Vector space of linearizations
Notation: Λ := [λk−1, λk−2, . . . , λ, 1]T , ⊗ - Kronecker product.

Definition (Mackey2/Mehl/M. 2006.)

For a given n × n matrix polynomial P(λ) of degree k define the
sets:

VP = {v ⊗ P(λ) : v ∈ Fk}, v is called right ansatz vector,
WP = {wT ⊗ P(λ) : w ∈ Fk}, w is called left ansatz vector,

L1(P) =
{

L(λ) = λE +A : E ,A ∈ Fkn×kn, L(λ) · (Λ⊗ In) ∈ VP

}
,

L2(P) =
{

L(λ) = λE +A : E ,A ∈ Fkn×kn,
(
ΛT ⊗ In

)
· L(λ) ∈ WP

}
,

DL(P) = L1(P) ∩ L2(P) .
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Example

For P(λ) = λ2M + λD + K , we have

L1(P) =
{

λE +A : (λE +A)

[
λIn
In

]
=

[
v1P(λ)
v2P(λ)

]}
.

We have the freedom to choose the vector v . How can we use
this freedom?
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Properties of DL(P), L1(P), L2(P)

Proposition

For any n × n matrix polynomial P(λ) of degree k,
L1(P) is a vector space of dimension k(k − 1)n2 + k,
L2(P) is a vector space of dimension k(k − 1)n2 + k,
DL(P) is a vector space of dimension k.

These are not all linearizations but they form a large class.
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Example

The first and second companion forms

C1(λ) := λ


Ak 0 · · · 0

0 In
. . . ...

... . . . . . . 0
0 · · · 0 In

+


Ak−1 Ak−2 · · · A0

−In 0 · · · 0
... . . . . . . ...
0 · · · −In 0



C2(λ) := λ


Ak 0 · · · 0

0 In
. . . ...

... . . . . . . 0
0 · · · 0 In

+


Ak−1 −In · · · 0

Ak−2 0 . . . ...
...

... . . . −In
A0 0 · · · 0

 .

are linearizations in L1(P), L2(P), respectively.
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Eigenvector Recovery Property

Theorem (Mackey, Mackey, Mehl, M. 2006)

Let P(λ) be an n × n matrix polynomial of degree k, and let L(λ)
be any pencil in L1(P) with ansatz vector v 6= 0.

Then x ∈ Cn is a right eigenvector for P(λ) with finite
eigenvalue λ ∈ C if and only if Λ⊗ x is a right eigenvector for
L(λ) with eigenvalue λ.
If in addition P is regular, i.e. det P(λ) 6≡ 0, and L ∈ L1(P) is a
linearization, then every eigenvector of L with finite eigenvalue
λ is of the form Λ⊗ x for some eigenvector x of P.

Similar results hold for L2(P).
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When are these linearizations?
Lemma (Mackey, Mackey, Mehl, M. 2006)

Consider an n × n matrix polynomial P(λ) of degree k. Then, for
v = (v1, . . . , vk)

T and w = (w1, . . . , wk)
T in Fk , the associated

pencil satisfies L(λ) = λE +A ∈ DL(P) if and only if v = w.

Theorem (Mackey, Mackey, Mehl, M. 2006)

Consider an n × n matrix polynomial P(λ) of degree k. Then for
given ansatz vector v = w = [v1, . . . , vk ]

T the associated linear
pencil in DL(P) is a linearization if and only if no root of the
v-polynomial

p(v ; x) := v1xk−1 + . . . + vk−1x + vk

is an eigenvalue of P.
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Strong Linearization Property

Theorem (Mackey, Mackey, Mehl, M. 2006)

Let P(λ) be a regular matrix polynomial and L(λ) ∈ L1(P) (or
L(λ) ∈ L2(P)). Then the following statements are equivalent.

(i) L(λ) is a linearization for P(λ).
(ii) L(λ) is a regular pencil.
(iii) L(λ) is a strong linearization for P(λ).
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Example

Consider the eigenvalue problem.

P(λ) = λ2M + λG + K

with K singular and take v = e1.
Then p(v ; x) = 1x1 + 0x0 has an eigenvalue 0, which is an
eigenvalue of P if K is singular.
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Are the classes large enough?

Theorem (Mackey, Mackey, Mehl, M. 2006)

For any regular n × n matrix polynomial P(λ) of degree k,
almost every pencil in L1(P) (L2(P)) is a linearization for P(λ).
For any regular matrix polynomial P(λ), pencils in DL(P) are
linearizations of P(λ) for almost all v ∈ Fk .

’Almost every’ means for all but a closed, nowhere dense set of
measure zero.
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Conditioning of linearization

. Perturbation analysis Tisseur 00, Higham/Mackey/Tisseur 06,
Higham/Li/Tisseur 06.

. Computation of a simple eigenvalue λ̂ via the linearized
eigenvalue problem is very ill-conditioned if p(v , λ̂) is small.

. Proper scaling is necessary.

. Open problem. Does the solution via a good, properly
scaled, structure preserving linearization produce
generally better results than the direct solution of the
original structured problem.

Nonlinear eigenvalue problems in practice 57 / 66



Summary linearization theory

. Companion linearization has some problems for infinite
eigenvalue and singular parts.

. Companion linearization destroys the structure.

. If no ’bad eigenvalues’ occur, then there exist structured
linearizations in DL(P).

. Linearizations are ill-conditioned if eigenvalues near the bad
eigenvalues occur. Higham/Mackey/Tisseur 2006.

. Unified theory for pseudospectra of matrix pencils/polynomials
Ahmad 2008.

. We need to deflate bad eigenvalues/near bad eigenvalues?
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How about the industrial problems?

. The railtrack problem has a majority of infinite eigenvalues (all
interior FEM nodes). It also has a few eigenvalues near −1.
Structured and nonstructured linearizations are very
ill-conditioned.

. The problem in crack following has multiple eigenvalues and
eigenvalues at 0.

. The complex symmetric car acoustic problem is sometimes
singular and has a lot of infinite eigenvalues.

To get accurate numerical results it is essential to deflate ’bad’
evs in a structured way. (→ second talk)
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Num. Methods for linear problems
Many classical methods are available for generalized linear evp’s

(λE − A)x = 0.

. Inverse iteration.

. Generalized Rayleigh quotient method.

. Implicitly restarted (shift-and-invert) Arnoldi method, ARPACK.

. (Non)symmetric (shift-and-invert) Lanczos method.

. Quasi-minimal residual method QMR

. Jacobi-Davidson method.

. . . .
Much better understanding, convergence analysis,
implementations.
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Challenges for linear problems

There are still many challenges for large scale linear
problems, More talks this week.
. Preconditioning.
. Inner-outer iterations.
. Guaranteed convergence of all eigenvalues in a given region.
. Preservation of structure.
. Subspace recycling, warm starts.
. Adaptivity of discretization and ev. solver.
. . . .
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Summary
. Industrial PDE applications lead to nonlinear eigenvalue

problems.
. These sometimes have extra structure that reflects the

physical properties.
. The analysis and numerical solution methods for genuinely

nonlinear eigenvalue problems are not well-enough
understood.

. The eigenvalue methods should be intertwined with the
discretization methods. (Adaptivity of discretization and
eigenvalue iteration).

. The numerical methods need to reflect structures of the
physical problems.

. Deflation of ’bad’ parts of the spectrum is necessary for good
numerical solutions.
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