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Outline

Elastohydrodynamic Lubrication (EHL)
problems.

Governing equations.

Challenges of solving EHL problems.

Steady-state line contact.

Transient line contact.

Steady-state point contact.

Discussion.
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Lubrication Problems

The use of lubricants to control friction and wear has long
been recognised as being of enormous importance
throughout society...

Jost Report (1966) estimated that 1.3-1.6% of GDP
could be saved via good tribological principles.

First “oil crisis” (1973) led to fuel economy becoming
an issue.

Kyoto Protocol (1997) required all signatories to
reduce CO2 emissions.

Current price of oil makes these issues as topical as
ever!
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Lubrication Problems

Lubricant manufacture represents a multi-billion dollar market
worldwide.

Shell are one of the market leaders in this field.

Challenge is to develop new lubricants to maximize efficiency
and/or minimize wear as components evolve or new components
are designed.

Physical manufacture and testing is very expensive.

Goal is to be able to predict (and optimize) performance without
the need for physical experiments!

The Scientific Computing group at Leeds has worked with Shell
on these problems for the past 15 years and have provided a
range of bespoke software...
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Lubrication Problems

This talk focuses on the elastohydrodynamic (EHL) problem...

(a) Hydrodynamic Lubrication (b) Elastohydrodynamic Lubrication
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EHL Problems

Two cases will be considered...

(a) Line Contact (b) Point Contact
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Equations (1d)

Reynolds equation:

∂
∂X

(

ε
∂P
∂X

)

−
∂ (ρ̄H)

∂X
−

∂ (ρ̄H)

∂T
= 0,

where

ε =
ρ̄H3

η̄λ

η̄(P) = e

{ αP0
z

[

−1+
(

1+
PPh
P0

)z]}

ρ̄(P) =
0.59×109 +1.34PPh

0.59×109 +PPh
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Equations (1d)

Film thickness equation:

H(X ,T ) = H00(T )+
X2

2
−R(X ,T )−

1
π

∫ Xcavi

Xin

ln
∣

∣

∣
X −X

′
∣

∣

∣
P(X

′
,T )dX

′

Force balance equation:

∫ Xcavi

Xin

P(X)dX −
π
2

= 0

Cavitation boundary: Xcavi is an unknown position where

∂P
∂X

= P = 0.
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Challenges

High nonlinearity.

Variation of ε changes the character of the
Reynolds equation.

Free boundary.

Steep pressure spike.

Stability.

Adaptivity.
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Features of DG

High degree on each element.

Only impose continuity weakly.

Only impose Dirichlet boundary conditions
weakly.

Implement "upwinding" through the
numerical flux over element boundaries.

Find P such that

a(P,v) = l(P,v) ∀v ∈ {Ne
i } ,

where...
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DG Spatial Discretization (1d)

In each element e, P is given by :

Pe(X) =
pe+1

∑
i=1

ue
i Ne

i (X).

In the reference element, the basis function are:

-1

 0

 1

-1  0  1

N
(X

)

X

N1(x)
N2(x)
N3(x)
N4(x)
N5(x)
N6(x)

– p. 11/38



DG Spatial Discretization (1d)

a(P,v) = ∑
e∈Ωh

(

∫

e
ε

∂P
∂X

∂v
∂X

dX

)

+∑
Γint

(

[v]

〈

ε
∂P
∂X

〉

− [P]

〈

ε
∂v
∂X

〉)

+

(

vε
∂P
∂X

)

|Xinlet −

(

vε
∂P
∂X

)

|Xoutlet −

(

Pε
∂v
∂X

)

|Xinlet +

(

Pε
∂v
∂X

)

|Xoutlet

l(P,v) = ∑
e∈Ωh

(

∫

e
ρH

∂v
∂X

dX

)

+∑
Γint

[v]〈ρ(P−)H〉

+(ρHv) |Xinlet − (ρHv) |Xoutlet −

(

ginletε
∂v
∂X

)

|Xinlet +

(

goutletε
∂v
∂X

)

|Xoutlet

where P− = limσ→0 P(x−σ), for x ∈ Γint .
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Handling Cavitation Condition

1. Penalty method (e.g. Wu(1986)):

L(P,v) = a(P,v)+
1
δ

∫ Xcavi

Xin

P−vdX− l(P,v) = 0,

where δ is an arbitrary positive number and

P− = min(P,0)

2. Other techniques are possible (e.g. local r-refinement).
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Spatial Discretization (cont.)

Film thickness equation:

H(X ,T ) = H00(T )+
X2

2
−R(X ,T )−

1
π

N

∑
e=1

pe+1

∑
i=1

Ke
i (X)ue

i (T ),

where

Ke
i (X) =

∫

e
ln
∣

∣

∣
X−X

′
∣

∣

∣
Ne

i (X
′
)dX

′
.

Force balance equation:

N

∑
e=1

pe+1

∑
i=1

Ge
i ue

i −
π
2

= 0,

where

Ge
i =

∫

e
Ne

i (X)dX .
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Relaxation (1d)

The discrete steady-state Reynolds equation may be written as:

L(U) = A(U)U−b(U) = 0.

U is relaxed according to:

U ←U +

(

∂L(U)

∂U

)−1

(−L(U)),

where

∂L(U)

∂U
=

∂
∂U

(A(U)U)−
∂b(U)

∂U
≈ A(U)−

∂b(U)

∂U
.

– p. 15/38



P-multigrid

The previous quasi-Newton (banded-matrix) iteration can be
repeated until convergence but it is quite slow and requires a
good initial guess.

Could apply exact Newton to accelerate convergence but
expensive and still need good initial guess.

Instead we apply a p-multigrid approach to accelerate
convergence.

This is based upon the FAS nonlinear multigrid scheme with the
smoother given above.

Note that the p-multigrid does not generally have optimal (linear)
complexity: nevertheless it provides a robust and efficient solver
(in our experience).
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P-multigrid

(a) △p = 1 (b) △p = 2

Figure 1: Four level V-cycles for p-multigrid
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P-multigrid: Two-Level FAS

Consider fine (L p(vp) = 0) and coarse (L q(vq) = 0) discretizations of a
problem, where degree p > q...

1. Pre-smooth at fine level: up.

2. Get residual at fine level: rp := f p−L p(up)

[ f p = 0 at the finest level].

3. Restrict to coarse level: uq
0 := Ĩq

pup ; rq := Iq
prp.

4. Solve coarse grid correction: L q(uq) = f q := rq +L q(uq
0).

5. Interpolate correction to fine level: ep := Ip
q (uq−uq

0).

6. Update fine level solution: up+ = ep.

7. Post-smooth at fine level.

Note that multigrid is obtained by applying this algorithm recursively at

step 4!
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H-Adaptivity

Based on error indicator: e.g. discontinuity
between elements and/or the highest order
contributions to the solution.
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Solution Procedure

1. Give an initial grid and ensure that this grid covers the
pressurized domain.

2. Initialize the pressure on the given grid and calculate the kernels.

3. Update the pressure on the current grid until it is nearly
converged.

4. Check if the grid needs to be adapted.

5. Stop if the grid does not need to be adapted any more and the
numerical residual is smaller than some final converged value
(10−10 say).

6. Adapt the grid if needed and transfer the current pressure profile
from the old grid onto the new grid. Calculate the kernels related
to those new elements. Go to 3.
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Example Results (1d)

U = 1.0×10−11, W = 1.0×10−4,G = 5000
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1. Variable mesh size and order.

2. Half a million FD unknownsVS ∼200.
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Example Results (1d)

Method
Unknowns Peak Peak Cavitation

Pressure Position Position

FD 4097 0.8212 0.9069 1.0693

FD 8193 0.8566 0.9084 1.0701

FD 16385 0.8810 0.9092 1.0704

FD 65537 0.9095 0.9066 1.0705

FD 131073 0.9138 0.9097 1.0707

FD 262145 0.9158 0.9097 1.0706

FD 524289 0.9164 0.9097 1.0706

DG 252 0.9166 0.9097 1.0707

Comparison of FD with DG + penalty method
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Temporal Discretization

Using the Crank-Nicolson method, the 1D transient
Reynolds equation is discretized to be:

− ∑
e∈Ωh

(

∫

e
ρHvdx

)T

+ ∑
e∈Ωh

(

∫

e
ρHvdx

)T+△T

+θ△TL(P,v)T +(1−θ )△TL(P,v)T+△T = 0

Each (implicit) time step requires a "steady-like" nonlinear
system to be solved for uT+△T (using uT as the initial
guess).
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Example Transient Problem

We adopt the same dimensionless model of the roughness
used by Venner(1994):

R(X ,T ) = α10−10(
X−Xd

W
)2

cos(2π
X−Xd

W
), (1)
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Transient Results
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Steady Equations (2d)

Reynolds equation:

−▽·(ε▽P)+▽· (β ρ̄H) = 0, (β = (1,0)T )

Film thickness equation:

H(X ,Y ) = H00+
X2

2
+

Y 2

2
+

2
π

∫ ∞

−∞

∫ ∞

−∞

P(X
′
,Y
′
)

√

(X−X ′)2 +(Y −Y ′)2
dX

′
dY
′

Force balance equation:

∫ ∞

−∞

∫ ∞

−∞
P(X ,Y )dX

′
dY
′
−

2π
3

= 0

Cavitation boundary is now a unknown curve.
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Discretization and Solution (2d)

Generalization of the 1d approach...

High order DG plus Penalty method for Reynolds
equation and cavitation boundary.

P-version of FAS (nonlinear) multigrid for solver.

Smoother based upon sparse approximate Jacobian.

Film thickness evaluated using pre-computed kernels.

Adaptive h-refinement (see below).
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H-Adaptivity

A simple error indicator is provided by considering

Ee =

∥

∥

∥

∥

∥

n(pe)

∑
i=n(pe−1)

ue
i Ne

i (X)

∥

∥

∥

∥

∥

2

=

√

√

√

√

∫

Ωe

(

n(pe)

∑
i=n(pe−1)

ue
i Ne

i (X)

)2

dX

(a) Mesh refinement (b) Mesh Coarsening
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Overall Solution Procedure

1 Give an initial grid and ensure that this grid covers the
pressurized domain.

2 Initialize the pressure on the given grid. Give an initial guess for
H00.

3 Calculate the kernels.

4 Perform 1 or 2 V-cycles on the current grid to update the solution.
H00 is updated on the finest level.

5 Check if the grid needs to be adjusted.

6 Stop if the grid does not need to be adjusted and the residual is
smaller than a given tolerance (10−10 say).

7 Adjust the grid if needed and transfer the current pressure profile
from the old grid onto the new grid. Calculate the kernels related
to those new elements. Go to 3.
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Initial Grid and Pressure Profile
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Slightly Loaded Case
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(a) Initial grid (b) Final grid
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Slightly Loaded Case

(a) Converged pressure profile (b) Viewed from above
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Moderately Loaded Case
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Moderately Loaded Case

(a) Converged pressure profile (b) Viewed from above
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Highly Loaded Case
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Highly Loaded Case

(a) Converged pressure profile (b) Viewed from above
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Discussion

Considerable research effort required...

1. The computation of the film thickness is still
relatively expensive compared to the overall
solution time.

2. Parallel implementation?

3. Transient point contact problems.

4. Improve the efficiency and accuracy of
time-stepping for transient EHL.

5. Error estimates for h-adaptivity.

6. H-p adaptivity....
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Discussion (cont.)

To be of "industrial strength" even more is required...

1. Intuitive user-interface for pre- and post-processing.

2. Minimal choice of parameters with robust default
values.

3. Robust solver that always delivers a solution!

May need to use continuation

May need to use fewer degrees of freedom

Must not require modification of the source code
for different problems!

– p. 38/38


	Outline
	Lubrication Problems
	Lubrication Problems
	Lubrication Problems
	EHL Problems
	Equations (1d)
	Equations (1d)
	Challenges
	Features of DG
	DG Spatial Discretization (1d)
	DG Spatial Discretization (1d)
	Handling Cavitation Condition
	Spatial Discretization (cont.)
	Relaxation (1d)
	P-multigrid
	P-multigrid
	P-multigrid: Two-Level FAS
	H-Adaptivity
	Solution Procedure
	Example Results (1d)
	Example Results (1d)
	Temporal Discretization
	Example Transient Problem
	Transient Results
	Transient Results
	Transient Results
	Transient Results
	Transient Results
	Transient Results
	Transient Results
	Transient Results
	Transient Results
	Transient Results
	Transient Results
	Transient Results
	Transient Results
	Transient Results
	Transient Results
	Transient Results
	Transient Results
	Transient Results
	Transient Results
	Transient Results
	Transient Results
	Transient Results
	Transient Results
	Transient Results
	Transient Results
	Transient Results
	Transient Results
	Transient Results
	Transient Results
	Transient Results

	Steady Equations (2d)
	Discretization and Solution (2d)
	H-Adaptivity
	Overall Solution Procedure
	Initial Grid and Pressure Profile
	Slightly Loaded Case
	Slightly Loaded Case
	Moderately Loaded Case
	Moderately Loaded Case
	Highly Loaded Case
	Highly Loaded Case
	Discussion
	Discussion (cont.)

