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Blade Vortex Interaction (BVI)

with S.S. Collis (Sandia), K. Ghayour (Adv. Scientific)

I Trailing vortex from preceeding blade interacts with following blade,
generating unsteady lift and dipole sound source

I Severe, impulsive sound radiated toward ground
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Rotor Blade

PIV measurements of a hovering rotor

(P.B. Martin, Univ. Maryland)
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On-Blade Control of BVI Noise
Can on-blade actuators be used to reduce BVI generated noise?
Formulate as optimization problem which couples to complex flow
simulation.
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Rotor Blade

Kirchhoff surface

Minimize pressure fluctu-
ations in a far field region
through suction/blowing on
the rotor blade.

Pressure is computed by
solving the unsteady com-
pressible Navier Stokes
equations with boundary
data for velocities given by
suction/blowing control.
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Results for a 2D model problem
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Shape Optimization
with M. Behr (RWTH Aachen), F. Abraham (GlaxoSmithKline)
Shear-stress distribution in
PI 710 Centrifugal Pump

Cannula Shape

Minimize J(u, p, α),
subject to

u ·∇u−∇ · σ(u, p) = 0 on Ω(α),
∇ · u = 0 on Ω(α),

n · σ(u, p) = h on Γ1(α),
u = g on Γ2(α),

where

σ(u, p) = −pI + 2µε(u),

ε(u) = 1
2

“
∇u + ∇uT

”
,

µ(γ̇) = µ∞ +
µ0 − µ∞

(1 + (λγ̇)b)a ,

γ̇ =
p

2ε(u) : ε(u).
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(Oil) Reservoir Management
with A. El Bakry and K. D. Wiegand (ExxonMobil)
We consider an incompressible oil-water system described by a coupled
system of nonlinear, time-dependent partial differential equations (PDEs)

−∇ ·
(
K(x)λt

(
sw(x, t)

)
∇p(x, t)

)
= qo(x, t) + qw(x, t),

φ(x)
d

dt
sw(x, t)−∇ ·

(
K(x)λw(sw(x, t))∇p(x, t)

)
= qw(x, t),

x ∈ Ω, t ∈ (0, T ), for the pres-
sure p and the water satura-
tion sw, combined with bound-
ary and initial conds.

sw : Water Saturation
p : Pressure
K : Absolute Permeability
λt, λw : Phase Mobilities
φ : Rock Porosity
qw, qo : Well Sources/Sinks
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Simulation Result
Four injection wells and four production wells.
Water is injected into all four injection wells at a constant rate.

Much of the oil gets trapped!
Need optimization to determine injection/production rates.
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Characteristics of PDE Constrained Optimization Problems

I All problems are PDE constrained optimization problems - there are
many, many more.

I Evaluation of objective function and constraint functions involves
expensive simulations (in the previous examples solution of partial
differential equations (PDEs)).

I THE optimization problem does not exist. Instead each problem
leads to a family of optimization problems which are closely linked.

I The robust and efficient solution of such optimization problems
requires the integration of application specific structure, numerical
simulation and optimization algorithms.
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Need to look at the big picture, not only at one component

PDE Constrained
     Optimization

Applications

Software Optimization
Algorithms

Problem
Structure Discretization
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Optimization Approach

I Selection of a suitable optimization algorithm depends on the
properties of the optimization problem, properties of the PDE
simulator, ...

I I will discuss (a few) issues in PDE constrained optimization that
arise from the presence of the PDE (in contrast to ‘just’ large-scale
finite dimensional constraints). I will focus on CLAPDE and
interfaces, but not on optimization algorithms.

I My research focusses on derivative based, Newton-type algorithms
for PDE constrained optimization problems.

+ many control variables/parameters u,
+ fast convergence,
+ often mesh independent convergence behavior,
+ efficiency from integration of optimization and simulation,
− require insight into simulator.
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Abstract Optimization Problem

min J(y, u)

s.t. c(y, u) = 0, (the governing PDE)

g(y, u) = 0, (additional equality constr.)

h(y, u) ∈ −K (additional inequality constr.)

y ∈ Yad, u ∈ Uad.

where
I (Y, ‖ · ‖Y), (U , ‖ · ‖U ), (C, ‖ · ‖C) are real Banach spaces,
I (H, ‖ · ‖H) is a real normed space,
I Yad ⊂ Y, Uad ⊂ U are nonempty, closed convex sets,
I K ⊂ H is a nonempty, closed convex cone,
I J : Y × U → R, c : Y × U → C, h : Y × U → H are smooth

mappings.

Notation:
y: states, Y: state space, u: controls, U : control space,
c(y, u) = 0 state equation.
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Problem Formulation

min J(y, u)
s.t. c(y, u) = 0,

g(y, u) = 0,
h(y, u) ∈ −K

⇓
y(u) is the unique solution of c(y, u) = 0

⇓

min Ĵ(u)
s.t. ĝ(u) = 0,

ĥ(u) ∈ −K,

 reduced
problem

where Ĵ(u) def= J(y(u), u), ĝ(u) def= g(y(u), u), ĥ(u) def= h(y(u), u).
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I The full and the reduced order problems are closely related.

miny,u J(y, u)
s.t. c(y, u) = 0.

⇓

min
u

Ĵ(u) def= J(y(u), u).

For example, the gradient of the reduced functional is given by

∇Ĵ(u) = ∇uL(y, u, λ)|y=y(u),λ=λ(u),

where
L(y, u, λ) = J(y, u) + 〈λ, c(y, u)〉

is the Lagrangian of the constrained problem and λ(u) is the
solution of the adjoint equation (see later).
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I The reduced problem formulation is often used, but it is not always
clear that it can be used.

For example, the problem

minimize
1
2

∫
Ω

(y(x)− ŷ(x))2dx+
α

2

∫
∂Ω

u2(x)ds,

subject to −∆y(x) = l(x) in Ω,
∂

∂n
y(x) = u(x) on ∂Ω

is well-posed and has a unique solution, but for given u the state
equation does not have a solution or it has infinitely many solutions.

I In practice the equation c(y, u) = 0 cannot be solved exactly.
Only an approximation yε(u) of y(u) can be computed such that,
e.g., ‖c(yε(u), u)‖ < ε for some user determined parameter ε.

Thus the functions Ĵ(u) def= J(y(u), u), ĝ(u) def= g(y(u), u),

ĥ(u) def= h(y(u), u) (and their derivatives) are never available.
(More on this later).
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Optimality Conditions
I Recall the optimization problem in Banach spaces

min J(y, u)

s.t. c(y, u) = 0, (the governing PDE)

h(y, u) ∈ −K (additional inequality constr.)

y ∈ Yad, u ∈ Uad.

I This is a generalization of well-known (finite dimensional) nonlinear
programs of the type

min J(y, u)

s.t. c(y, u) = 0,
h(y, u) ≤ 0
y ∈ [ylow, yup]ny , u ∈ [ulow, uup]nu .

I One can derive Karush-Kuhn-Tucker (KKT) type optimality
conditions (see, e.g., Zowe/Kurcyusz (1979) and the books by
J. Jahn (1996), J. Werner (1984), D. G. Luenberger (1969)) ...
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Karush-Kuhn-Tucker Theorem in Banach Spaces
I ... but the Lagrange multipliers are not vectors in Rm, but

functionals.

I Lagrangian

L(y, u, λ, µ) = J(y, u) + λ ◦ c(y, u) + µ ◦ h(y, u).

I If (y∗, u∗) is a local minimizer and if a regularity condition (CQ)
holds, then there exist continuous linear functionals (Lagrange
multipliers) λ∗ ∈ C∗,

µ∗ ∈ K∗ ≡ {` ∈ H∗ : `(v) ≥ 0 for all v ∈ K}

such that(
DyJ(y∗, u∗) + λ∗ ◦Dyc(y∗, u∗) + µ∗ ◦Dyh(y∗, u∗)

)
(y − y∗) ≥ 0,(

DuJ(y∗, u∗) + λ∗ ◦Duc(y∗, u∗) + µ∗ ◦Duh(y∗, u∗)
)

(u− u∗) ≥ 0,

µ∗(h(y∗, u∗)) = 0

for all y ∈ Yad, u ∈ Uad.
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I For finite dimensional nonlinear programs this reduces to

L(y, u, λ, µ) = J(y, u) + λT c(y, u) + µTh(y, u).

If (y∗, u∗) is a local minimizer and if a regularity condition (CQ)
holds, then there exist λ∗ ∈ Rm, µ∗ ∈ Rk, µ∗ ≥ 0,(
∇yJ(y∗, u∗) +Dyc(y∗, u∗)Tλ∗ +Dyh(y∗, u∗)Tλ∗

)T
(y − y∗) ≥ 0,(

∇uJ(y∗, u∗) +Dyc(y∗, u∗)Tλ∗ +Duh(y∗, u∗)Tλ∗
)T

(u− u∗) ≥ 0,

µT∗ h(y∗, u∗) = 0

for all y ∈ [ylow, yup]ny , u ∈ [ulow, uup]nu .

I The KKT Theorem is a good guideline, but applying it to PDE
constrained optimization is difficult.

I The choice of state and control spaces are important.
I Precise characterization of Lagrange multipliers is important for

design and analysis of optimization algorithms.
I Precise characterization of Lagrange mult. requires (a lot of) work.
I Optimality conditions for optimal control problems with control and

state constraints have been derived by Casas, Bonnans, Kunisch,
Bergounioux, Raymond, Tröltzsch,.....
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Example 1 (Only PDE Constraint)

Minimize
1
2

∫
Ω

(y(x)− ŷ(x))2dx+
α

2

∫
Ω

u2(x)dx,

subject to −∆y(x) = u(x) + l(x), x ∈ Ω, y(x) = 0 x ∈ ∂Ω.

I Y = H1
0 (Ω), U = L2(Ω).

I J(y, u) = 1
2

∫
Ω

(y(x)− ŷ(x))2dx+ α
2

∫
Ω
u2(x)dx,

I c : H1
0 (Ω)× L2(Ω)→ H−1(Ω), where

〈c(y, u), φ〉Y′,Y =
∫

Ω

∇y∇φdx−
∫

Ω

uφdx−
∫

Ω

lφdx.

I L(y, u, λ) = 1
2

∫
Ω

(y−ŷ)2dx+α
2

∫
Ω
u2dx+

∫
Ω
∇y∇λdx−

∫
Ω
uλ+lλdx.

If (y∗, u∗) ∈ H1
0 × L2 is a local min., there exists λ∗ ∈ H1

0 such that

−∆λ∗(x) = −(y∗(x)− ŷ(x)), x ∈ Ω,
λ∗(x) = 0 x ∈ ∂Ω,

αu∗(x)− λ∗(x) = 0 a.e. in Ω.
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I J(y, u) = 1
2

∫
Ω

(y(x)− ŷ(x))2dx+ α
2

∫
Ω
u2(x)dx,

I c : H1
0 (Ω)× L2(Ω)→ H−1(Ω), where

〈c(y, u), φ〉Y′,Y =
∫

Ω

∇y∇φdx−
∫

Ω

uφdx−
∫

Ω

lφdx.

I L(y, u, λ) = 1
2

∫
Ω

(y−ŷ)2dx+α
2

∫
Ω
u2dx+

∫
Ω
∇y∇λdx−

∫
Ω
uλ+lλdx.

If (y∗, u∗) ∈ H1
0 × L2 is a local min., there exists λ∗ ∈ H1

0 such that

−∆λ∗(x) = −(y∗(x)− ŷ(x)), x ∈ Ω,
λ∗(x) = 0 x ∈ ∂Ω,

αu∗(x)− λ∗(x) = 0 a.e. in Ω.
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Example 1 (Only PDE Constraint)

Minimize
1
2

∫
Ω

(y(x)− ŷ(x))2dx+
α

2

∫
Ω

u2(x)dx,

subject to −∆y(x) = u(x) + l(x), x ∈ Ω, y(x) = 0 x ∈ ∂Ω.

I Y = H1
0 (Ω), U = L2(Ω).

I J(y, u) = 1
2

∫
Ω

(y(x)− ŷ(x))2dx+ α
2

∫
Ω
u2(x)dx,

I c : H1
0 (Ω)× L2(Ω)→ H−1(Ω), where

〈c(y, u), φ〉Y′,Y =
∫

Ω

∇y∇φdx−
∫

Ω

uφdx−
∫

Ω

lφdx.

I L(y, u, λ) = 1
2

∫
Ω

(y−ŷ)2dx+α
2

∫
Ω
u2dx+

∫
Ω
∇y∇λdx−

∫
Ω
uλ+lλdx.

If (y∗, u∗) ∈ H1
0 × L2 is a local min., there exists λ∗ ∈ H1

0 such that

−∆λ∗(x) = −(y∗(x)− ŷ(x)), x ∈ Ω,
λ∗(x) = 0 x ∈ ∂Ω,

αu∗(x)− λ∗(x) = 0 a.e. in Ω.

Optimality conditions involve another linear PDE, the adjoint PDE.
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Example 2 (Pointwise Control Constraints)

Minimize
1
2

∫
Ω

(y(x)− ŷ(x))2dx+
α

2

∫
Ω

u2(x)dx,

subject to −∆y(x) = u(x) + l(x), x ∈ Ω, y(x) = 0 x ∈ ∂Ω,
ulow(x) ≤ u(x) ≤ uup(x) a.e. in Ω.

If (y∗, u∗) ∈ H1
0 × L2 is a local minimizer, then there exist λ∗ ∈ H1

0 and
µlow,∗, µup,∗ ∈ L2, with µlow,∗, µup,∗ ≥ 0 a.e. in Ω such that

−∆λ∗(x) = −(y∗(x)− ŷ(x)), x ∈ Ω,
λ∗(x) = 0 x ∈ ∂Ω,

αu∗(x)− λ∗(x)− µlow,∗(x) + µup,∗(x) = 0, a.e. in Ω,∫
Ω

(ulow,∗ − u∗)µlow,∗dx =
∫

Ω

(u∗ − uup,∗)µup,∗dx = 0.

Lagrange multipliers corresponding to pointwise control constraints are
L2 functions.

M. Heinkenschloss PDE Constrained Optimization – 22



Examples Overview Problem Formulation Optimality Conditions Discretization and Optimization KKT Solver Industry

Example 2 (Pointwise Control Constraints)

Minimize
1
2

∫
Ω

(y(x)− ŷ(x))2dx+
α

2

∫
Ω

u2(x)dx,

subject to −∆y(x) = u(x), x ∈ Ω, y(x) = 0 x ∈ ∂Ω,
u(x) ≤ 1 a.e. in Ω.

u∗ µup,∗
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Example 3 (Pointwise State Constraints)

Minimize
1
2

∫
Ω

(y(x)− ŷ(x))2dx+
α

2

∫
Ω

u2(x)dx,

subject to −∆y(x) = u(x) + l(x), x ∈ Ω, y(x) = 0 x ∈ ∂Ω,
ylow(x) ≤ y(x) ≤ yup(x) a.e. in Ω.

I Need more regular states y to make sense out of
ylow(x) ≤ y(x) ≤ yup(x) a.e. in Ω. Require y ∈ C(Ω).

I Lagrange multipliers νlow,∗, νup,∗ are in C(Ω)∗, i.e., are measures.
I Optimality conditions

−∆λ∗ = −(y∗ − ŷ) + νup,∗ − νlow,∗, x ∈ Ω,
λ∗ = 0 x ∈ ∂Ω,

αu∗ − λ∗ = 0, a.e. in Ω.∫
Ω

(ylow,∗ − y∗)dνlow,∗ =
∫

Ω

(y∗ − yup,∗)dνup,∗ = 0.

Adjoint equation involves measures on the right hand side.
I Often, more can be said about the structure of νup,∗, νlow,∗.
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Example 3 (Pointwise State Constraints)

Minimize
1
2

∫
Ω

(y(x)− sin(2πx1x2))2dx+
α

2

∫
Ω

u2(x)dx,

subject to −∆y(x) = u(x), x ∈ Ω, y(x) = 0 x ∈ ∂Ω,
y(x) ≤ 0.1 a.e. in Ω.

y∗ νup,∗
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Optimization Algorithms
I Handling pointwise control and especially state constraints is

difficult.
I PDE constrained optimization problems have motivated many

algorithms or modifications of algorithms (semismooth Newton
methods, interior point methods, primal-dual active set methods,
regularization methods for state constrained problems).
Convergence analyses are available for infinite dimensional problems,
but often only for small classes of problems (especially when state
constraints are present).

I Interior-point methods for large-scale finite dimensional problems
also work well (almost mesh independent behavior), but there is no
supporting theory.

I Most of the computing time in these algorithms is spent on the
solution of KKT (optimality saddle point) systems.

I Need matrix free KKT system solvers.
I These are used in optimization context (detection of negative

curvature).
I Solvers need to be insensitive to penalty/regularization/barrier

parameters, as well as to mesh size.
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Discretization
I We want to solve

min J(y, u)

s.t. c(y, u) = 0, (the governing PDE)

g(y, u) = 0, (additional equality constr.)

where Y,U , C,G,H are Banach spaces, K ⊂ H is a cone, and

J : Y × U → R, c : Y × U → C,
g : Y × U → G, h : Y × U → H,

I but we can only solve a discretization

min Jh(yh, uh)
s.t. ch(yh, uh) = 0,

gh(yh, uh) = 0,

where Yh,Uh, Ch,Gh,Hh are finite dimensional Banach spaces,

Jh : Yh × Uh → R, ch : Yh × Uh → Ch,
gh : Yh × Uh → Gh, hh : Yh × Uh → Hh.

I Does the solution (uh, yh) of the discretized problem converge to
the solution (u, y) of the original problem? How fast?

M. Heinkenschloss PDE Constrained Optimization – 27



Examples Overview Problem Formulation Optimality Conditions Discretization and Optimization KKT Solver Industry

Discretization
I We want to solve

min J(y, u)

s.t. c(y, u) = 0, (the governing PDE)

g(y, u) = 0, (additional equality constr.)

where Y,U , C,G,H are Banach spaces, K ⊂ H is a cone, and

J : Y × U → R, c : Y × U → C,
g : Y × U → G, h : Y × U → H,

I but we can only solve a discretization

min Jh(yh, uh)
s.t. ch(yh, uh) = 0,

gh(yh, uh) = 0,

where Yh,Uh, Ch,Gh,Hh are finite dimensional Banach spaces,

Jh : Yh × Uh → R, ch : Yh × Uh → Ch,
gh : Yh × Uh → Gh, hh : Yh × Uh → Hh.

I Does the solution (uh, yh) of the discretized problem converge to
the solution (u, y) of the original problem? How fast?

M. Heinkenschloss PDE Constrained Optimization – 27



Examples Overview Problem Formulation Optimality Conditions Discretization and Optimization KKT Solver Industry

Discretization
I We want to solve

min J(y, u)

s.t. c(y, u) = 0, (the governing PDE)

g(y, u) = 0, (additional equality constr.)

where Y,U , C,G,H are Banach spaces, K ⊂ H is a cone, and

J : Y × U → R, c : Y × U → C,
g : Y × U → G, h : Y × U → H,

I but we can only solve a discretization

min Jh(yh, uh)
s.t. ch(yh, uh) = 0,

gh(yh, uh) = 0,

where Yh,Uh, Ch,Gh,Hh are finite dimensional Banach spaces,

Jh : Yh × Uh → R, ch : Yh × Uh → Ch,
gh : Yh × Uh → Gh, hh : Yh × Uh → Hh.

I Does the solution (uh, yh) of the discretized problem converge to
the solution (u, y) of the original problem? How fast?

M. Heinkenschloss PDE Constrained Optimization – 27



Examples Overview Problem Formulation Optimality Conditions Discretization and Optimization KKT Solver Industry

Standard Approach

Discretize-then-optimze

min J (y, u)
s.t. c(y, u) = 0

(y, u) ∈ K

discretize- large-scale nonlinear
programming problem

optimize

?

apply nonlinear pro-
gramming
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Example (W.W. Hager, 2000)

Optimal Control Problem

Minimize 1
2

∫ 1

0

u2(t) + 2y2(t)dt

where

ẏ(t) = 1
2y(t) + u(t), t ∈ [0, 1],

y(0) = 1.

Solution

y∗(t) =
2e3t + e3

e3t/2(2 + e3)
,

u∗(t) =
2(e3t − e3)
e3t/2(2 + e3)

.

DOES NOT CONVERGE! WHY?

Discretization using a 2nd order
Runge Kutta method

Minimize
h

2

K−1∑
k=0

u2
k+1/2 + 2y2

k+1/2

where

yk+1/2 = yk +
h

2
( 1

2yk + uk),

yk+1 = yk + h( 1
2yk+1/2 + uk+1/2),

k = 0, . . . ,K.
Solution of the discretized problem:

yk = 1, yk+1/2 = 0,

uk = −4 + h

2h
, uk+1/2 = 0,

k = 0, . . . ,K.
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Discretization of state equation and objective function implies a
discretization for the adjoint equation, which may have different
convergence properties than the discretization scheme applied to state
equation and objective function.

For the example problem

ẏ(t) = 1
2y(t) + u(t),

y(0) = 1,

λ̇(t) = − 1
2λ(t) + 2y(t),

λ(1) = 0,

u(t)− λ(t) = 0.

yk+1/2 = yk +
∆t
2

( 1
2yk + uk),

yk+1 = yk + ∆t( 1
2yk+1/2 + uk+1/2),

λk+1/2 = ∆t( 1
2λk+1 − 2yk+1/2),

λk = λk+1 + (1 + ∆t/4)λk+1/2,

−λk+1/2 = 0,
uk+1/2 − λk+1 = 0.

Note, this is a discretization issue, not an issue of how the discretized
optimization problem is solved!

M. Heinkenschloss PDE Constrained Optimization – 30



Examples Overview Problem Formulation Optimality Conditions Discretization and Optimization KKT Solver Industry

Discretization of state equation and objective function implies a
discretization for the adjoint equation, which may have different
convergence properties than the discretization scheme applied to state
equation and objective function.

For the example problem
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Discretize-then-optimize

min J (y, u)
s.t. c(y, u) = 0

(y, u) ∈ K

discretize-
large-scale non-
linear
programming
problem

optimize

?
apply AD and
nonlinear pro-
gramming

optimize

?
optimality condi-
tions & deriva-
tives in PDE form

discretize- apply nonlinear
programming

same result?

Optimize-then-discretize

Both approaches are different, in general. One is not better than the
other. It is important to look at the whole picture.
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I For nonlinear problems, the optimize-then-discretize may lead to
inexact gradients:

(∇Ĵ(uh))h 6= ∇Ĵh(uh).

But, usually one can show ‖(∇Ĵ(uh))h −∇Ĵh(uh)‖ → 0.

I Need to use optimization carefully! At a fixed discretization the
(gradient based) optimization algorithm will get stuck if the
stopping tolerance is too fine relative to the accuracy in the
computed gradient (∇Ĵ(uh))h.

Figure 8: Level curves of the functional and projected negative approximate gradient of the func-
tional on the same two-dimensional slice of parameter space used for Figure 7; the gradient of the
functional is determined by the finite difference quotient approach. The square and circle have the
same meaning as in Figure 7.

Figure 9: Level curves of the functional and projected negative approximate gradients of the func-
tional on the same two-dimensional slice of parameter space used for Figures 7 and 8 and in
the vicinity of the point (the filled square) returned by the optimizer after 33 iterations of the
differentiate-then-discretize sensitivity equation approach; the direction of the approximate nega-
tive gradient of the functional determined by both the finite difference quotient approximation and
by the sensitivity equation approach are displayed.

4 Spurious minima

Now that we know that using finite difference quotients to approximate the gradient of the functional
yields consistent gradients, let’s solve the optimization problem (with the matching line located at

11

(∇Ĵ(uh))h and ∇Ĵh(uh) for
a shape design problem from
Burkardt, Gunzburger, Peterson
(2002).
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(∇Ĵ(uh))h and ∇Ĵh(uh) for
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I Need to investigate the discretization scheme for the optimal control
problem.

I Approaches to coordinate choice of discretization level and
optimization.

I Consistent approximations (Polak (1997)):
How accurately does one solve the discretized optimization problem
before increasing the discretization level? Requires only asymptotic
error estimates.

I Trust-region based model management approaches (see Sec. 10.6 in
Conn, Gould, Toint (2000) for an overview):
At a given iterate yk, uk select an approximate problem based on
function and derivative information for the original problem. Can go
back to approximate model. Requires error estimates.

I Adaptive mesh refinement for elliptic/parabolic optimal control
problems
Becker/Rannacher (2001,...), Liu et. al. (2003,...), Günther/Hinze
(2008), Hintermüller/Hoppe (2005,..), S. Ulbrich (2008), Vexler
(2005,...). Applies mostly to linear-quadratic or convex optimal
control problems.

From an optimization point of view this is an issue of managing
inexactness in function evaluations.
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KKT Solver
I Newton-type or Sequential Quadratic Programming (SQP)-type

methods require the solution of

min 1
2

(
y
u

)T (
Hyy Hyu

Huy Huu

)(
y
u

)
+
(
c
d

)T (
y
u

)
,

s.t. Ay +Bu+ b = 0 (discretized PDE)

I If A ∈ Rny×ny is invertible the QP is equivalent to

min 1
2u

TZTHZu+ uTZT (Hxc + g) + 1
2 (xc)THxc,

where

Z =
(
−A−1B

I

)
, xc =

(
−A−1b

0

)
, g =

(
c
d

)
.

I Necessary optimality condition Hyy Hyu AT

Huy Huu BT

A B 0

 y
u
λ

 = −

 c
d
b

 .
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I H may not be spd on null space of constraints Hyy Hyu AT

Huy Huu BT

A B 0

 y
u
λ

 = −

 c
d
b

 . (1)

I Symmetric permutation of (1) gives Hyy AT Hyu

A 0 B
Huy BT Huu

 y
λ
u

 = −

 c
b
d

 . (2)

If A ∈ Rny×ny is invertible, (1,1)-block is invertible.
I Schur complement

S = Huu −
(
Huy | BT

)( Hyy AT

A 0

)−1(
Hyu

B

)
= ZTHZ

is equal to the reduced Hessian.
I If good preconditioners for the reduced Hessian ZTHZ and for the

discretized PDE A and adjoint AT are known, block preconditioners
tend to work well (no theory).
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I Reduced Hessian ZTHZ can be very complicated, especially for QP
subproblems arising in optimization algorithms for nonlinear
problems or for problems with inequality constraints.

I For PDE constrained optimization we need matrix-free
preconditioners.

I For some (simple?) applications, optimization based multigrid or
domain decomposition methods work well, but they need to be
extended case by case to other problems. KKT systems arising in
PDE constrained optimization can be very different than saddle
point systems arising in PDE.
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Personal View of PDE Constrained Optimization in an
‘Industry’ Setting

I Simulation:

I Simulators are very complex (complex physics, legacy codes,...) and
are often developed without optimization in mind. For example, it
can be difficult to extract derivatives even though some may be used
inside.

I Simulations are done with high fidelity, but a low fidelity simulator
can be very useful in the optimization context. (It is easier to use
and to interface with a gradient based optimization algorithm; can
be used in a model management strategy - think ‘preconditioning’).

I Simulation tools are used by many - their use cannot be disrupted.
I Simulator calls optimizer. (Simulator controls the optimizer.)
I Is it worth the time and money to add complicated optimization

capability? Optimization needs evolve; choice of optimizer
determined by first need.

I Optimization problem evolves; simulator may not cover all physics.
I Improve rather than optimize?

I Optimization:
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I Optimization:

I Give me (exact) function values and derivatives.
I Optimizer calls subroutines for function and derivative evaluation.

(Optimizer controls simulator).
I Optimize, not only improve.
I Optimizers are developed for ‘clean’ test problems.

I PDE Constrained Optimization:
I PDE constrained optimization problems arise in more and more

applications.
I Fast, high fidelity optimization becomes more important.
I Optimization and simulation need to work together. (What is

needed? What can be done? ...)
I PDE constrained optimization for a small class of important

problems, rather than ‘general purpose’ PDE constrained
optimization?

I PDE constrained optimization poses many challenging theoretical,
algorithmic, software engineering questions.

I PDE constrained optimization is difficult:
If we could solve every PDE constrained optimization problem, we
could solve every PDE.
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