
NUMERICAL METHODS FOR
STOCHASTIC PARTIAL DIFFERENTIAL

EQUATIONS AND THEIR CONTROL

Max Gunzburger
Department of Scientific Computing, Florida State University

gunzburg@scs.fsu.edu

London Mathematical Society Durham Symposium

Computational Linear Algebra for Partial Differential Equations

July 14 – 24, 2008, Durham, UK



All models are wrong, but some models are useful

George Box



Computational results are believed by no one, except for the person who

wrote the code

Experimental results are believed by everyone, except for the person who

ran the experiment



NUMERICAL METHODS FOR
STOCHASTIC PDE’S FOR DUMMIES

WHERE I AM THE DUMMY



INTRODUCTORY REMARKS



Uncertainty is everywhere

• Physical, biological, social, economic, financial, etc.

processes always involve uncertainties

• As a result, mathematical models of these

processes should account for uncertainty

• Accounting for uncertainty in processes governed by partial

differential equations can involve

– random coefficients in the PDE, boundary condition,
and initial condition operators

– random right-hand sides in the PDE’s, boundary conditions,
and initial conditions

– random geometry, i.e., random boundary shapes



• Uncertainty arises because

– available data are incomplete

- they are predictable but are too difficult (perhaps

impossible) or costly to obtain by measurement

→ media properties in oil reservoirs or aquifers

- they are unpredictable

→ wind shear, rainfall amounts

– not all scales in the data and/or solutions can or should be resolved

- it is too difficult (perhaps impossible) or costly

to do so in a computational simulation

→ turbulence, molecular vibrations

- some scales may not be of interest

→ surface roughness, hourly stock prices

• Of course, it is well known that two experiments run under

the “same” conditions will yield different results



Modeling noise

• White noise – input data vary randomly and independently from one point
of the physical domain to another and from one time instant to another

– uncertainty is described in terms of uncorrelated random fields

– examples: thermal fluctuations; surface roughness; Langevin dynamics

• Colored noise – input data vary randomly from one point of the physical
domain to another and from one time instant to another according to a given
(spatial/temporal) correlation structure

– uncertainty is described in terms of correlated random fields

– examples: rainfall amounts; bone densities; permeabilities

within subsurface layers



• Random parameters – input data depend on a
finite† number of random parameters

– think of this case as “knobs” in an experiment

– each parameter may vary independently according to its

own given probability density

– alternately, the parameters may vary according to a

given joint probability density

– examples: homogeneous material properties, e.g., Young’s modulus,

Poisson’s ratio, speed of sound, inflow mass

†What we really mean is that the number of parameters is not only finite, but independent of the spa-

tial/temporal discretization; this is not possible for the approximation of white noise for which the number
of parameters increases as the grid sizes decrease



• Ultimately, for all three cases, on a computer

one solves problems involving random parameters

– in the white noise and colored noise cases, one discretizes the noise so that
the discretized noise is determined by a finite number of parameters

- in the white noise case, the number of parameters has to increase

as the spatial and/or temporal resolutions of the numerical scheme

used to solve the PDEs increases

- in the colored noise case, the number of parameters needed to

approximate a correlated random field can, in practice, be

chosen independently of the spatial/temporal resolutions



Uncertainty quantification

• Uncertainty quantification is the task of determining statistical information
about outputs of a system, given statistical information about the inputs

SYSTEM

uncertain

inputs

uncertain

outputs

– of course, the system may have deterministic inputs as well

• We are interested in systems governed by partial differential equations

PDE

uncertain

inputs

uncertain

solution

of the PDE

– the solution of the partial differential equation defines the mapping from
the input variables to the output variables



• Often, solutions of the PDE are not the primary output quantity of interest

– quantities obtained by post-processing solutions of the PDE

are more often of interest

- of course, one still has to obtain a solution of

the PDE to determine the quantity of interest

PDE

uncertain

inputs

uncertain

quantities

of interest

Post-processing

of the solution

of the PDEuncertain

solution

of the PDE



• A realization of the random system is determined by

specifying a specific set of input variables

and then

using the PDE to determine the corresponding output variables

– thus, a realization is a solution of a deterministic problem

• One is never interested in individual realizations of

solutions of the PDE or of the quantities of interest

– one is interested in determining statistical information about the

quantities of interest, given statistical information about the inputs



Quantities of interest

• Suppose we have N random parameters {yn}Nn=1

– we use the abbreviation ~y = {y1, y2, . . . , yN}

– each yn could be distributed independently† according to its probability
density function (PDF) ρn(yn) defined for yn in a (possibly infinite) interval
Γn

– alternately, the parameters could be distributed according to a joint PDF
ρ(y1, . . . , yN) that is a mapping from an N -dimensional set Γ into the real
numbers

- independently distributed parameters are the special case for which

ρ(y1, . . . , yN) =
N∏

n=1

ρn(yn) and Γ = Γ1 ⊗ Γ2 ⊗ · · · ⊗ ΓN

†Without proper justification and sometimes incorrectly, it is almost always assumed that the parameters

are independent; based on empirical evidence, sometimes this is a justifiable assumption in the parameters-
are-“knobs” case, but for correlated random fields, it is justifiable only for the (spherical) Gaussian case;

in general, independence is a simplifying assumption that is invoked for the sake of convenience, e.g.,
because of a lack of knowledge



• Realization = a solution u(x, t; ~y) of a PDE for a specific choice ~y = {yn}Nn=1

for the random parameters

– again, there is no interest in individual realizations

• One may be interested in statistics of solutions of the PDE

– average or expected value

u(x, t) = E[u(x, t; ·)] =

∫

Γ

u(x, t; ~y)ρ(~y) d~y

– covariance

Cu(x, t;x
′, t′) = E

[(
u(x, t; ·) − u(x, t)

)(
u(x′, t′; ·) − u(x′, t′)

)]

=

∫

Γ

(
u(x, t; ~y) − u(x, t)

)(
u(x′, t′; ~y) − u(x′, t′)

)
ρ(~y) d~y

– variance Cu(x, t;x, t)

– higher moments



• One may instead be interested in statistics of

spatial/temporal integrals of the solution of the PDE

– for any fixed ~y, we have, e.g.,

J (t; ~y) =

∫

D
F (u; ~y) dx or J (x; ~y) =

∫ t1

t0

F (u; ~y) dt

or

J (~y) =

∫ t1

t0

∫

D
F (u; ~y) dxdt

where F (·; ·) is given, D is a spatial domain, and (t0, t1) is a time interval

– quantities defined with respect to integrals over

boundary segments also often occur in practice



– examples

- the space-time average of u

J (~y) =

∫ t1

t0

∫

D
u(x, t; ~y) dxdt

- if u denotes a velocity field, then

J (t; ~y) =

∫

D
u(x, t; ~y) · u(x, t; ~y) dx

is proportional to the kinetic energy

– again, one is not interested in the values of these quantities for

specific choices of the parameters ~y

- one is interested in their statistics



– example: expected value of the kinetic energy

E

[∫

D
u(x, t; ~y) · u(x, t; ~y) dx

]

=

∫

Γ

∫

D
u(x, t; ~y) · u(x, t; ~y)ρ(~y) dx d~y

• Thus, quantities of interest of this common type

involve integrals over the parameter space†

– e.g., for some G(·), integrals of the type∫

Γ

G
(
u(x, t; ~y)

)
ρ(~y) d~y or possibly

∫

Γ

G
(
u(x, t; ~y);x, t, ~y

)
ρ(~y) d~y

†An important class of quantities of interest that arises in, e.g., reliability studies, but that we do not have

time to consider involves integrals over a subset or Γ; in particular, we have
∫

Γ

χu0
G
(
u(x; ~y)

)
ρ(~y) d~y =

∫

Γu0

G
(
u(x; ~y)

)
ρ(~y) d~y

where, for some given u0

χu0
=

{
1 if u(x; ~y) ≥ u0

0 otherwise
and Γu0

= {~y ∈ Γ such that u(x; ~y) ≥ u0}



• Ideally, one wants to determine an approximation of the PDF for the quantity
of interest,

i.e., more than just a few statistical moments

of some output quantity

– the quantity of interest is a PDF

– one way (but not the only way) to construct the approximate PDF is to
compute many statistical moments of the output quantity

- so, again, we are faced with evaluating stochastic integrals



Quadrature rules for stochastic integrals

• Integrals of the type

∫

Γ

G
(
u(x, t; ~y)

)
ρ(~y) d~y

cannot, in general, be evaluated exactly

• Thus, these integrals are approximated using a quadrature rule

∫

Γ

G
(
u(x, t; ~y)

)
ρ(~y) d~y ≈

Q∑

q=1

wqG
(
u(x, t; ~yq)

)
ρ(~yq)

for some choice of

quadrature weights {wq}Qq=1 (real numbers)

and

quadrature points {~yq}Qq=1 (points in the parameter domain Γ)



– Alternately, sometimes the probability density function is used in the

determination of the quadrature points and weights so that instead

one ends up with the approximation

∫

Γ

G
(
u(x, t; ~y)

)
ρ(~y) d~y ≈

Q∑

q=1

wqG
(
u(x, t; ~yq)

)

• Monte Carlo integration – the simplest rule =⇒

– randomly select Q points in Γ according to the PDF ρ(~y)

– evaluate the integrand at each of the sample points

– average the values so obtained

- i.e., for all q, wq = 1/Q

– more on Monte Carlo and other quadrature rules later



Big problem

• In practice, one usually does not know much about the statistics of the input
variables

– one is lucky if one knows a range of values, e.g., maximum and minimum
values, for an input parameter

- in which case one often assumes that the parameter

is uniformly distributed over that range

– if one is luckier, one knows the mean and variance for the input parameter

- in which case one often assumes that the

parameter is normally distributed

– of course, one may be completely wrong in assuming such simple probability
distributions for a parameter

• This leads to the need to solve stochastic model calibration problems



Model calibration

• Model calibration is the task of determining statistical information about

the inputs of a system, given statistical information about the outputs

– e.g., one can use experimental observations to determine the statistical
information about the outputs

– in particular, one wants to identify the probability density functions (PDF)
of the input variables

• Of course, the system still maps the inputs to the outputs

– thus, determining the input PDF is an inverse problem

– usually involves an iteration in which guesses for the input PDF are updated

– several ways to do the update, e.g., Baysean, maximum likelyhood, . . .



SYSTEM

uncertain

inputs

uncertain

outputs

PDF known PDF to be

determined

Uncertainty quantification – direct problem

uncertain

inputs --

PDF to be

determined

uncertain

outputs --

PDF known

initial guess

for the input PDF
system

output

updated

input PDF

SYSTEM

comparer

and

updater

Model calibration – inverse problem



• Model calibration problems are a particular case of more general

stochastic inverse, or parameter identification, or

control, or optimization problems

initial

uncertain

inputs

system

output

updated

inputs

SYSTEM

feedback

law

Feedback control

optimal inputs (controls)

and system states

OPTIMIZER

system

+

objective

Optimal control



OBSERVATIONS ABOUT THESE LECTURES

• Of greatest interest (to us) are nonlinear problems; however

– so we focus on methods that are useful in the nonlinear setting

– however, we do sometimes comment on special features of some methods
that only hold for linear problems

• Both time-dependent and steady-state problems are of interest

– for the sake of simplifying the exposition, we consider mostly steady-state
problems

– however, almost everthing we have to say applies equally well to time-
dependent problems



WHITE NOISE



UNCORRELATED RANDOM FIELDS

• White noise refers to the case of uncorrelated random fields η(x, t;ω) for
which we have†

E
(
η(x, t;ω)

)
= 0 and E

(
η(x, t;ω)η(x′, t′;ω)

)
= δ(t− t′)δ(x − x

′)

– at every point in space and at every instant in time, η(x, t;ω) is independent
and identically distributed

- one determines η(x, t;ω) at any point in space and any instant in time

by sampling according to a given probability distribution

– the Gaussian case is the one that often arises in practice (or because of a
lack of information)

†The zero mean and unit variance assumptions are not restrictive



Discretizing white noise

• In computer simulations, one cannot sample the Gaussian distribution at every
point of the spatial domain and at every instant of time

– white noise terms are replaced by discretized white noise terms

- discretized white noise is more regular that white noise

• Among the means available for discretizing white noise, grid-based methods
are the most popular



• To define a single realization of the discretized white noise, we

– subdivide the spatial domain D into Nspace subdomains

– subdivide the temporal interval [0, T ] into Ntime time subintervals

– then, in the ns-th spatial subdomain having volume Vns and in the nt-th
temporal subinterval having duration ∆tnt, set

ηapproximate(x, t; {yns,nt}) =
1√

∆tnt
√
Vns

yns,nt

where yns,nt are independent Gaussian samples having zero mean and unit
variance

• Additional realizations are defined by resampling over the space-time grid



Realizations of discretized white noise at a same time interval in a square subdi-

vided into 2, 8, 32, 72, 238, 242, 338, and 512 triangles



Realizations of discretized white noise at two different time intervals in a square

subdivided into the same number of triangles

• Thus, the discretized white noise is piecewise constant in space and time

• Note that the piecewise constant function is much smoother than the random
field it approximates



• It can be shown that

lim
Nspace→∞, Ntime→∞

E
(
ηapproximate(x, t; {yns,nt}) ηapproximate(x′, t′; {yns,nt})

)

= E
(
η(x, t)η(x′, t′)

)
= δ(x − x

′)δ(t− t′)

• The white noise case has been reduced to a case of a large but finite number
of parameters

– we have the

N = NspaceNtime parameters yns,nt

where ns = 1, . . . , Nspace and nt = 1, . . . , Ntime

– if we refine the spatial grid and/or reduce the time step,

the number of parameters increases



PDE’S FORCED BY WHITE NOISE

• Formally, we can write an evolution equation with white noise forcing as

∂u

∂t
= A(u;x, t) + f(x, t) + B(u;x, t)η(x, t;ω) in D × (0, T ]

where

A is a possibly nonlinear deterministic operator

f is a deterministic forcing function

B is a possibly nonlinear deterministic operator

η is the white noise forcing function

– among many other cases,

A, f , and B can take care of cases with means 6= 0 and variances 6= 1



• If B is independent of u, we have additive white noise

∂u

∂t
= A(u;x, t) + f(x, t) + b(x, t) η(x, t)

– in practice, often b is a constant

• If B depends on u, we have multiplicative white noise

– of particular interest is the case of B linear in u

∂u

∂t
= A(u;x, t) + f(x, t) + b(x, t)u η(x, t)



• Some observations

– solutions are not sufficiently regular for the equations just written to make
sense

- the renowned Ito calculus is introduced to make sense

of differential equations with white noise forcing

– white noise need not be restricted to forcing terms in the PDE

- in practice, it can also appear

in the coefficients of the PDEs and boundary and initial conditions

in the data in boundary and initial conditions

in the definition of the domain



• Spatial discretization of the PDE can be effected via a finite element method
based on a triangulation of the spatial domain D; temporal discretization is
effected via a finite difference method, e.g., a backward Euler method

– it is natural to use the same grids in space and time as are used to discretize
the white noise

– thus, if one refines the finite element grid and the time step, one also refines
the grid and time step for the white noise discretization

• Once a realization of the discretized noise is chosen,

i.e., once one chooses the NspaceNtime Gaussian samples ηns,nt,

a realization of the solution of the PDE is determined

by solving a deterministic problem



• For example, consider the problem





∂u

∂t
= ∆u + f(x, t) + b(x, t)u η(x, t;ω) in D × (0, T ]

u = 0 in ∂D × (0, T ]

u(x, 0) = u0(x) in D

– subdivide [0, T ] into Ntime subintervals

of duration ∆tnt, nt = 1, . . . , Ntime

– subdivide D into Nspace finite elements {Dns}
Nspace
ns=1

– define a finite element space Sh0 ⊂ H1
0(D)

with respect to the grid {Dns}
Nspace
ns=1



– choose an approximation u(0,h)(x) to the initial data u0(x)

– sample, from a standard Gaussian distribution,

the NspaceNtime values yns,nt, ns = 1, . . . , Nspace and nt = 1, . . . , Ntime

– set u
(0)
h (x) = u(0,h)(x)

– then, for nt = 1, . . . , Ntime, determine u
(nt)
h (x) ∈ Sh0 from

∫

D

u
(nt)
h − u

(nt−1)
h

∆tnt
vh dx +

∫

D
∇u(n)

h · ∇vh dx

=

∫

D
fvh dx +

1√
∆tnt

√
Ans

Ns∑

ns=1

∫

Dns
yns,ntvh dx for all vh ∈ Sh0

- note that we have used a backward-Euler time stepping scheme



• This is a standard discrete finite element system for the heat equation, albeit
with an unusual right-hand side

• Due to the lack of regularity of solutions of PDE’s with white noise,

the usual notions of convergence

of the approximate solution to the exact solution

do not hold,

even in expectation

– one has to be satisfied with very weak notions of convergence



COLORED NOISE



CORRELATED RANDOM FIELDS

• We now consider correlated random fields η(x, t;ω)

– at each point x in a spatial domain D and at each instant t in an time
interval [t0, t1], the value of η is determined by a random variable ω whose
values are drawn from a given probability distribution

– however, unlike the white noise case, the covariance function of the random
field η(x, t;ω) does not reduce to delta functions

• In rare cases, a formula for the random field is “known”

– again, we cannot sample the random field at every spatial and temporal
point

– on the other hand, unlike the white noise case, the fact that the random
field is correlated implies that one can find a discrete approximation to the
random field for which the number of degrees of freedom can be thought
of as fixed, i.e., independent of the spatial and temporal grid sizes



• More often, only the

mean† µη(x, t)

and

covariance function covη(x, t;x
′, t′)

are known for points x and x
′ in D and time instants t and t′ in [t0, t1]

– in this case, what we do not have is a formula for η(x, t;ω)

– thus, we cannot evaluate η(x, t;ω) when we need to

– for example, if η(x, t;ω) is a coefficient or a forcing function in a PDE,
then to determine an approximate realization of the PDE we need to

evaluate η(x, t;ω) for a specific choice of ω and at specific points x and
specific instants of time t used in the discretized PDE

†We have that

µη(x, t) = E
(
(η(x, t; ·)

)

and
covη(x, t;x

′, t′) = E
((
η(x, t; ·) − µη(x, t)

)(
η(x′, t′; ·) − µη(x

′, t′)
))



• Examples of covariance functions

cov(x, t;x′, t′) = e−|x−x
′|/L−|t−t′|/T

and
cov(x, t;x′, t′) = e−|x−x

′|2/L2−|t−t′|2/T 2

where L is the correlation length and T is the correlation time

- large L, T =⇒ long-range order

- small L, T =⇒ short-range order

• Note that covariance functions are symmetric and positive



• So, we have two cases

– the more common case for which only the mean and covariance function
of the random field are known

- we would like to find a simple formula depending on only a few

parameters whose mean and covariance function are approximately

the same as the given mean and covariance function

– the rare case for which the random field is given as a formula but we want
to approximate it

- we would like to approximate it using few random parameters,

certainly with a number of parameters that is independent

of the spatial and temporal grid sizes

- of course, this case can be turned into the first case by determining

the mean and covariance function of the given random field

(this may or may not be a good idea)



• Among the known ways for doing these tasks, we will focus on perhaps the
most popular =⇒

the Karhunen-Loève (KL) expansion of a random field η(x, t;ω)

– given the mean and covariance of a random field η(x, t;ω),

- the KL expansion provides a simple formula that

can be used whenever one needs a value η(x, t;ω)

– to keep things simple, we discuss KL expansions

for the case of spatially-dependent random fields



The Karhunen-Loève expansion

• Given the mean µη(x) and covariance covη(x,x
′) of a random field η(x;ω),

determine the eigenpairs {λn, bn(x)}∞n=1 from the eigenvalue problem∫

D
covη(x,x

′) b(x′) dx′ = λb(x)

– often in practice, an approximate version of this problem is solved, e.g.,
using a finite element method

– due to the symmetry of covη(·; ·), the eigenvalues λn are real and the

eigenfunctions bn(x) can be chosen to be real and orthonormal, i.e.,∫

D
bn(x) bn′(x) dx = δnn′

– due to the positivity of η(x;ω), the eigenvalues are all positive

- without loss of generality, they may be ordered in non-increasing order

λ1 ≥ λ2 ≥ · · ·



• Then, the random field η(x;ω) admits the KL expansion†

η(x;ω) = µη(x) +

∞∑

n=1

√
λn bn(x)Yn(ω)

where {Yn(ω)}∞n=1 are centered and uncorrelated random variables, i.e.,

E
(
Yn(ω)

)
= 0 E

(
Yn(ω)Yn′(ω)

)
= 0

that inherit the probability structure of the random field η(x;ω)

– e.g., if η(x;ω) is a Gaussian random field, then the Yn’s are all Gaussian
random variables



†To see this, let us make the ansatz

η(x;ω) = µη(x) +
∞∑

n=1

αnbn(x)yn(ω)

where ∫

D
bn(x)bn′(x) dx = δnn′, E(yn) = 0, and E(ynyn′) = δnn′

i.e., {bn(·)}∞n=1 is a set of orthonormal functions and {yn(·)}∞n=1 is a set of uncorrelated random variables;
we then have that

E(η) = µη(x) +

∞∑

n=1

αnbn(x)E(yn) = µη(x)

and

E
((
η(x; ·) − µη(x)

)(
η(x′; ·) − µη(x

′)
))

=
∞∑

n=1

∞∑

n′=1

αnαn′bn(x)bn′(x′)E(ynyn′) =
∞∑

n=1

α2
nbn(x)bn(x

′)

so that

covη(x,x
′) =

∞∑

n=1

α2
nbn(x)bn(x

′);

then, we have that
∫

D
covη(x,x

′)bn′(x′) dx′ =
∞∑

n=1

α2
nbn(x)

∫

D
bn(x

′)bn′(x′) dx′ = α2
n′bn′(x)

so that indeed {α2
n, bn(x)}∞n=1 are the eigenpairs, i.e., we recover the KL expansion



• The usefulness of the KL expansion results from the fact that the eigenvalues
{λn}∞n=1 decay as n increases

– how fast they decay depends on the smoothness of the covariance function
covη(x,x

′) and on the correlation length L



0
20

40
60

80
100

0

20

40

60

80

100
0

50

100

150

200

0
20

40
60

80
100

0

20

40

60

80

100
0

2

4

6

8

10

12

14

16

18

x 10
4

Peaked and smooth covariance functions

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ig

en
va

lu
es

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

E
ig

en
va

lu
es

Corresponding KL eigenvalues



• The decay of the eigenvalues implies that truncated KL expansions

ηN(x;ω) = µ(x) +

N∑

n=1

√
λnbn(x)Yn(ω)

can be accurate approximations to the exact expansions

– if one wishes for the relative error to be less than a prescribed tolerance δ,
i.e., if one wants

‖ηN − η‖2

‖η‖2
≤ δ,

one should choose N to be the smallest integer such that
∞∑

n=N+1

λn

∞∑

n=1

λn

≤ δ or, equivalently,

N∑

n=1

λn

∞∑

n=1

λn

≥ 1 − δ



• Although the Yn’s are uncorrelated, in general they are not independent

– in fact, they are independent if and only if they are (spherical) Gaussian

– however, every random field can, in principle, be written as a function of a
Gaussian random field

- the inverse of the cumulative probability density of the given field,

so that, in this way, we only have to deal with Gaussian random variables

• Dealing with independent random variables can have important

practical consequences



• One important issue is the well posedness of the PDE when using a

KL representation of random fields

– suppose the coefficient a(x;ω) of an elliptic PDE is a random field

- it cannot be a Gaussian random field since then it would

admit negative values, which is not allowable

– one way to get around this is to let, with amin > 0,

a(x;ω) = amin + eη(x;ω)

where η(x;ω) is a Gaussian random field with given mean and covariance

– then, using a truncated KL expansion for η(x;ω), we have that

a(x;ω) = amin + eµ(x)+
∑N
n=1

√
λn bn(x) Yn(ω)

where {Yn(ω)}Nn=1 are Gaussian random variables



Approximating Gaussian random fields

• For Gaussian random fields, we are done: we identify the random variables
{Yn(ω)}Nn=1 with Gaussian random parameters {yn}Nn=1 such that ~y ∈ Γ =
R
N

• Let η(x;ω) be a Gaussian random field

– we approximate η(x;ω) by its N -term truncated KL expansion

ηN(x;ω) = µ(x) +
N∑

n=1

√
λnbn(x)yn

where {yn}Nn=1 are Gaussian random parameters

• Thus, we now have a formula for the (approximation to a) random field that
involves a finite number of random parameters

– we can then use any of the methods to be discussed for problems involving
a finite number of given random parameters to solve the problems described
in terms of Gaussian random fields



Approximating non-Gaussian random fields

• If ξ(x;ω) is the given correlated random field and if the cumulative density
function Fξ(ω) is known, then one can write

ξ(x;ω) = F−1
ξ

(
η(x;ω)

)
where η(x;ω) is a Gaussian random field

– then, one can approximate η(x;ω) using a truncated KL expansion in terms
of Gaussian random parameters {yn}Ni=1 so that

ξN(x;ω) = F−1
ξ

(
(ηN(x;ω)

)
= F−1

ξ

(
µ(x) +

N∑

n=1

√
λnbn(x)yn

)

– so, again, we have obtained a formula for an approximation of the general
random field ξ(x;ω) in terms of N random Gaussian parameters so that
we can use any of the methods to be discussed for the random parameters
case to find approximate solutions of the stochastic PDE



RANDOM PARAMETERS



PDE’S with random inputs depending on random parameters

• One or more

input functions,

e.g., coefficients, forcing terms, initial data, etc. in a

partial differential equation

depend on a finite number of random parameters

– the input function could also depend on space and time

– the random parameters could come from a Karhunen-Loève expansion of a
correlated random field

– the random parameters could appear naturally in the definition of input
function

- e.g., the Young’s modulus or a diffusivity coefficient could be random



• Ideally, we would know the probability density function (PDF)

for each parameter

– as has already been mentioned, in practice, we know very little about the
statistics of input parameters

– however, we will assume that we know the PDFs for all the random input
parameters



• Example: a nonlinear parabolic equation

c(x, t; yNb, . . . , yNc)
∂u

∂t
−∇ ·

(
a(x, t; y1, . . . , yNa)∇u

)
+ b(x, t; yNa+1, . . . , yNb)u

3

= f(x, t; yNc+1, . . . , yNf ) on D(yNi+1, . . . , yNg; yNg+1, . . . , yNh)

u = fdir(x, t; yNf+1, . . . , yNd) on ∂DD(yNi+1, . . . , yNg)

a(x, t; y1, . . . , yNa)
∂u

∂n
= fneu(x, t; yNd+1, . . . , yNe) on ∂DN(yNg+1, . . . , yNh)

u = f0(x; yNe+1, . . . , yNi) on D(yNi+1, . . . , yNg; yNg+1, . . . , yN)

– the yn’s are random parameters

– a, b, c, f , fdir, fneu, and f0 are given functions of x, t, and

the random parameters

– the boundary segments ∂DD and ∂DN are parametrized by the

corresponding random parameters

– of course, ∇ and ∇· are operators involving spatial derivatives



• Concrete example: an elliptic PDE for u(x; y1, . . . , y5)

– consider

∇ ·
(
a(x; y1, y2)∇u

)
= f(x; y3, y4) on D(y5)

u = 0 on ∂D(y5)

where
a(x; y1, y2) = 3 + |x|

(
y2

1 + sin(y2)
)

f(x; y3, y4) = y3e
−y4|x|2

D(y5) = (0, 1) × (0, 1 + 0.3y5)

with

ρ1(y1) = N(0; 1) ρ2(y2) = U (0; 0.5π) ρ3(y3) = N(0; 2)

ρ4(y4) = U (0, 1) ρ5(y5) = U (−1, 1)



• The well-posedness of the PDE for all possible values of the parameters is a
very important (and sometimes ignored) consideration

– for the simple elliptic PDE

∇ ·
(
a(x; y1, . . . , yN)∇u

)
= f(x) on D

we must have, for some amax ≥ amin > 0,

amin ≤ a(x; y1, . . . , yÑ) ≤ amax for all x ∈ D and all ~y ∈ Γ

– this could place a constraint on how one chooses the PDF for the parameters

– for example, if we have
a(x; y) = a0 + y

where a0 > 0, we cannot choose y to be a Gaussian random parameter



A brief taxonomy of methods for stochastic PDEs
with random input parameters

• Stochastic finite element methods (SFEMs)

=⇒ methods for which spatial discretization is

effected using finite element methods†

• One particular class of SFEMs is known as

stochastic Galerkin methods (SGMs)

=⇒ methods for which probabilistic discretization is

also effected using a Galerkin method

– polynomial chaos and generalized polynomial chaos methods are SGMs

– we will also consider other SGMs

† Throughout, we assume that spatial discretization is effected using finite element methods; most of

what we say also holds for other spatial discretization approaches, e.g., finite differences, finite volumes,
spectral, etc.



• Another class of SFEMs are stochastic sampling methods (SSMs)

=⇒ points in the parameter domain Γ are sampled,

then used as inputs for the PDE, and then

ensemble averages of output quantities of interest are computed

– Monte-Carlo finite element methods are the simplest SSMs

– stochastic collocation methods (SCMs) are also SSMs

- the sampling points are the quadrature points corresponding

to some quadrature rule



Example used to describe numerical methods for SPDEs

• Let D ⊂ R
d denote a spatial domain† with boundary ∂D

- d = 1, 2, or 3 denotes the spatial dimension

- x ∈ D denotes the spatial variable

• Let Γ ∈ R
N denote a parameter domain

- N denotes the number of parameters

- ~y = (y1, y2, . . . , yN) ∈ Γ denotes the random parameter vector

- note that we have a finite number of parameters {yn}Nn=1

but they can take on values anywhere in the Euclidean domain Γ

†For the sake of simplicity, we now consider stationary problems; all we have to say holds equally well for

time-dependent problems



• Let u(x; ~y) ∈ X × Z denote the solution of the SPDE†‡

– generally, Z = Lqρ(Γ), the space of functions of N variables whose q-th
power is integrable with respect to the joint PDF (the weight function)
ρ(·), i.e., those functions g(~y) for which∫

Γ

|g(~y)|qρ(~y) d~y <∞

- q is chosen according to how many statistical moments

one wants to have well defined

- the most common choice is q = 2 so that up to the

second moments are well defined

- if {y1, . . . , yN} are independent and if Lqρn(Γn) denotes the space of

functions that have integrable q-th powers with respect to the PDF
ρn(yn),

we have that

Lqρ(Γ) = Lqρ1
(Γ1) ⊗ Lqρ2

(Γ2) ⊗ · · · ⊗ LqρN (ΓN)
†Often, X is a Sobolev space such as H1

0(D)

‡It is not always convenient to use a product space X ×Z; for example, it may make more sense to have

u ∈ Lq
ρ(Γ;X)



• It is entirely natural to then treat a function u(x; ~y) of d spatial variables and
of N random parameters as a function of d +N variables

• This leads one to consider a Galerkin weak formulation in physical and pa-
rameter space: seek u(x; ~y) ∈ X × Z

∫

Γ

∫

D
S(u; ~y)T (v)ρ(~y) dxd~y =

∫

Γ

∫

D
vf(~y)ρ(~y) dxd~y ∀ v ∈ X × Z

where†

– S(·; ·) is, in general, a nonlinear operator‡

– T (·) is a linear operator

†Of course, if E(·) denotes the expected value, this may be expressed in the form

E

(∫

D
S(u; ~y)T (v)ρ(~y) dx−

∫

D
vf(~y)ρ(~y) dx

)
= 0

‡S, T , and f could also depend on x, but we do not explicitly keep track of such dependences



• In general, we would have a sum of such terms, i.e., we would have that

M∑

m=1

∫

Γ

∫

D
Sm(u; ~y)Tm(v)ρ(~y) dxd~y

=

∫

Γ

∫

D
vf(~y)ρ(~y) dxd~y ∀ v ∈ X × Z

– however, without loss of generality, it suffices for our purposes to consider
the simpler single-term form

∫

Γ

∫

D
S(u; ~y)T (v)ρ(~y) dxd~y =

∫

Γ

∫

D
vf(~y)ρ(~y) dxd~y ∀ v ∈ X × Z

• In general,

– both S and T could involve derivatives with respect to x

– but S does not involve derivatives with respect to ~y



• Example

– suppose our SPDE problem is given by

−∇ ·
(
a(~y)∇u

)
+ c(~y)u3 = f(~y) in D and u = 0 in ∂D

- of course, a, c, and f could also depend on x

– we then have that X = H1
0(D) and Z = L2

ρ(Γ) and the weak formulation:

- seek u(x; ~y) ∈ H1
0(D) × L2

ρ(Γ) such that
∫

D

∫

Γ

(
a(~y)∇u

)
· ∇vρ(~y) d~ydx +

∫

D

∫

Γ

(
c(~y)u3

)
vρ(~y) d~ydx

=

∫

D

∫

Γ

f(~y)vρ(~y) d~ydx ∀ v ∈ H1
0(D) × L2

ρ(Γ)

– in the first term, we have that S(u, ~y) = a(~y)∇u and T = ∇v

– in the second term, we have that S(u, ~y) = c(~y)u3 and T = v



• We assume that all methods considered use the same approach to effect
discretization with respect to the spatial variables

– we focus on finite element methods,

i.e., on stochastic finite element methods

– throughout, {φj(x)}Jj=1 denotes a basis for the finite element spaceXJ ⊂ X
used to effect spatial discretization

- note that J denotes the dimension of the finite element space

• We assume that Γ is a parameter box

- without loss of generality, it can be taken to be

a hypercube in R
N

- for parameters with unbounded PDFs, Γ can be of infinite extent

- if the parameters are constrained, Γ need not be so simple

e.g., if y1 and y2 are independent except that we require that

y2
1 + y2

2 ≤ 1, then Γ would be the unit circle



STOCHASTIC GALERKIN METHODS



STOCHASTIC GALERKIN METHODS

• Functions of the parameters have to be discretized in much the same way
functions of the (finite number of) spatial variables have to be discretized

– spatial discretization is effected via a standard finite element discretization
in the usual manner by choosing a J-dimensional subspace XJ ⊂ X

– let {φj(~y)}Jj=1 denote a basis for XJ

• Stochastic Galerkin methods are methods for which discretization with respect
to parameter space is also effected using a Galerkin approach, i.e.,

– we choose a K-dimensional subspace ZK ⊂ Z

– let {ψk(~y)}Kk=1 denote a basis for the parameter approximating space ZK



• Due to the product nature of the domain D ⊗ Γ and of the space X ⊗ Z, it
is natural to seek approximations that use this structure, i.e.,

– approximations are defined as a sum of products

of the spatial and probabilistic basis functions

• Thus, we seek an approximate solution of the SPDE of the form†

uJK =
J∑

j=1

K∑

k=1

cjkφj(x)ψk(~y) ∈ XJ × ZK

• The coefficients cjk, and therefore uJK, are determined by solving the problem
∫

D

∫

Γ

ρ(~y)S(uJK, ~y)T (v) dxd~y =

∫

D

∫

Γ

ρ(~y)vf(~y) dxd~y ∀ v ∈ XJ×ZK

†Potentially, some economies can be effected if one also approximates the data functions (e.g., coefficients)

appearing in the problem in the same way one approximates the solution, e.g., for a data function a(x; ~y),
one determines ak(x), k = 1, . . . , K, such that

K∑

k=1

ak(x)ψk(~y) ≈ a(x; y1, . . . , yN);

in actuality, these economies can be realized only in very limited settings; more on this later



• We then have that the discretized problem

∫

D

∫

Γ

ρ(~y)S
( J∑

j=1

K∑

k=1

cjkφj(x)ψk(~y), ~y
)
T
(
φj′(x)

)
ψk′(~y) dxd~y

=

∫

D

∫

Γ

ρ(~y)φj′(x)ψk′(~y)f(~y) dxd~y

for j ′ ∈ {1, . . . , J} and k′ ∈ {1, . . . , K}

• Of course, the solution

uJK(x; ~y) =
J∑

j=1

K∑

k=1

cjkφj(x)ψk(~y)

of this problem is independent of the basis set used

– although the coefficients cjk do depend on the choice of basis



• In general, the integrals cannot be evaluated exactly

– quadrature rules must be invoked to effect approximate evaluations

– thus, the integrals with respect to the parameter domain† Γ are

approximated by a quadrature rule to obtain

R∑

r=1

ŵrρ(~̂yr)ψk′(~̂yr)

∫

D
S
( J∑

j=1

K∑

k=1

cjkφj(x)ψk(~̂yr), ~̂yr

)
T
(
φj′(x)

)
dx

=
R∑

r=1

ŵrρ(~̂yr)ψk′(~̂yr)

∫

D
φj′(x)f(~̂yr) dx

for j ′ ∈ {1, . . . , J} and k′ ∈ {1, . . . , K}

for some choice of quadrature weights {ŵr}Rr=1 and quadrature points {~̂yr}Rr=1

in Γ

†Integrals with respect to the spatial domain D must also be approximated using quadrature rules; we do

not need to consider this issue since we assume that all methods discussed treat all aspects of the spatial
discretization in the same manner



– this quadrature rule need not be the same as the quadrature rule {wq, ~yq}Qr=1

used to obtain the approximation of a quantity of interest

• In general, the discrete problem is a fully coupled (in physical and parameter
spaces) JK × JK system

– there are JK equations and JK degrees of freedom cjk
†

• On the other hand, one can solve for the approximate dependence of the solu-
tion uJK(x, ~y) on both the spatial coordinates x and the random parameters
~y by solving a single deterministic problem of size JK

– in particular

- one does not have to explicitly sample the random parameters ~y

- one does not have to determine multiple solutions of the SPDE

†Economies are possible for linear SPDEs; more on this later



• Note that, once the cjk’s are determined, one has obtained the explicit formula

uJK(x; ~y) =
J∑

j=1

K∑

k=1

cjkφj(x)ψk(~y)

for the approximate solution of the SPDE that can be evaluated at any point
x ∈ D in the spatial domain and for any value ~y ∈ Γ of the random parameters

– in particular, one can determine, by straightforward evaluation, uJK(x, ~yq)
at any quadrature point ~yq appearing in a quadrature rule approximation
of a quantity of interest



• Thus, we obtain the stochastic Galerkin approximation

to the quantity of interest

∫

Γ

G
(
u(x; ~y)

)
ρ(~y) d~y ≈

Q∑

q=1

wqρ(~yq)G
(
u(x; ~yq)

)

≈
Q∑

q=1

wqρ(~yq)G
(
uJK(x; ~yq)

)

=

Q∑

q=1

wqρ(~yq)G
( J∑

j=1

K∑

k=1

cjkφj(x)ψk(~yq)
)



• To complete the description of the problem actually solved on a computer,
one has to make specific choices†

– for an approximating subspace ZK ⊂ Z

– for a basis {ψk(~y)}Kk=1 for ZK

– for a quadrature rule {ŵr, ~̂yr}R used to approximate

the parameter integrals in the discretized SPDE

– for a quadrature rule {wq, ~yq}Qq=1 used to approximate

the parameter integrals in the discretized quantity of interest

• We arrange our discussion according to the first two choices

– for each choice for the approximating space and the basis set, we will make
choices for the two quadrature rules

†We assume that the approximating subspace SJ ⊂ S and a basis {φj(x)}J
j=1 used for spatial discretization

have been already chosen



• For parameter approximating spaces ZK, one can use

– locally-supported piecewise polynomial spaces

- i.e., a finite element-type method

– globally-supported polynomial spaces

- i.e., a spectral-type method

• Following this plan will enable us to show that many (if not all) numerical
methods for SPDEs can be derived from the stochastic Galerkin framework



GLOBAL POLYNOMIAL APPROXIMATING SPACES –

POLYNOMIAL CHAOS AND

LAGRANGE INTERPOLATORY METHODS



GLOBAL POLYNOMIAL APPROXIMATING SPACES
FOR PARAMETER APPROXIMATION

• Let Pr denote the set of all polynomials of degree less than or equal to r

• Let {Θi(y)}ri=0 denote a basis for Pr

– of course, there are an infinite number of possible bases

- the simplest is the monomial basis for which

Θi(y) = yi for i = 0, 1, . . . , r

– we will discuss several bases later

• Let p = (p1, p2, . . . , pN) be a multi-index, i.e.,

– an N -vector whose components are non-negative integers

and let |p| =
∑N

n=1 pn



• For each parameter yn, we use polynomials of degreeM and a basis {Θn,k(yn)}Kn
k=1

– for the sake of simplicity, we assume that Mn = M for all n

– there are good reasons for sometimes choosing different degree polynomials
for each parameter

- we will point out some instances for which this is the case



• For a given integer M ≥ 0, let {ψk(~y)}Kk=1 denote the set of distinct multi-
variate polynomials such that

{
ψk(~y)

}K
k=1

=
{ N∏

n=1

Θn,in(yn)
}

where
Θn,in(yn) ∈ PM and |p| ≤M

– the highest degree term in any of the multivariate polynomials is M

- thus, if N = 2 and M = 2, we have terms like

y2
1 and y1y2 but not terms like y2

1y2

– the number of probabilistic degrees of freedom is given by

K =
(N +M)!

N !M !
where N = number of random parameters

M = maximal degree of any of the

N -dimensional global poloynomials used



– for example, if N = 2 and M = 3, we have

|p| = p1 + p2 ≤M = 3

and

K =
(N +M)!

N !M !
=

(2 + 3)!

2! 3!
= 10

and we have the set of 10 basis functions

{
ψ1(y1, y2) , . . . , ψ10(y1, y2)

}
=





Θ1,0(y1) Θ2,0(y2)
Θ1,1(y1) Θ2,0(y2)
Θ1,0(y1) Θ2,1(y2)
Θ1,1(y1) Θ2,1(y2)
Θ1,2(y1) Θ2,0(y2)
Θ1,0(y1) Θ2,2(y2)
Θ1,2(y1) Θ2,1(y2)
Θ1,1(y1) Θ2,2(y2)
Θ1,3(y1) Θ2,0(y2)
Θ1,0(y1) Θ2,3(y2)







• Alternately, one could use the tensor product basis

{
ψk(~y)

}K
k=1

=
{ N∏

n=1

Θn,in(yn)
}

where
Θn,in(yn) ∈ PM and pn ≤M for all n

– now the highest degree term in any of the

polynomials is M in each yn

- thus, if M = 2, we have not only have terms like

y2
1 and y1y2, but we also have terms like y2

1y2 and y2
1y

2
2

– the number of probabilistic degrees of freedom is now given by

K = (M + 1)N

where N = number of random parameters

M = maximal degree in any variable yn of any of the

N -dimensional global poloynomials used



– for example, if N = 2 and M = 3, we have

K = (M + 1)N = (3 + 1)2 = 16

{
ψ1(y1, y2) , . . . , ψ16(y1, y2)

}
=





Θ1,0(y1) Θ2,0(y2)
Θ1,1(y1) Θ2,0(y2)
Θ1,0(y1) Θ2,1(y2)
Θ1,1(y1) Θ2,1(y2)
Θ1,2(y1) Θ2,0(y2)
Θ1,0(y1) Θ2,2(y2)
Θ1,2(y1) Θ2,1(y2)
Θ1,1(y1) Θ2,2(y2)
Θ1,3(y1) Θ2,0(y2)
Θ1,0(y1) Θ2,3(y2)
Θ1,1(y1) Θ2,3(y2)
Θ1,2(y1) Θ2,3(y2)
Θ1,3(y1) Θ2,3(y2)
Θ1,2(y1) Θ2,2(y2)
Θ1,3(y1) Θ2,1(y2)
Θ1,3(y1) Θ2,2(y2)







Global polynomial approximation in parameter space

N = M = K = no. of probabilistic
no. random maximal degree degrees of freedom
parameters of polynomials using complete using tensor

polynomial basis product basis

3 3 20 64
5 56 216

5 3 56 1,024
5 252 7,776

10 3 286 1,048,576
5 3,003 60,046,176

20 3 1,771 > 1×1012

5 53,130 > 3×1015

100 3 176,851 > 1×1060

5 96,560,646 > 6×1077

• It seems that using tensor product bases is a bad idea



• Once a basis set {ψk(~y)}Kk=1 is chosen, we use the approximation

uJ,K =
J∑

j=1

K∑

k=1

cj,kφj(x)ψk(~y)

– the probabilistic basis functions {ψk(~y)}Kk=1 are

multivariate global polynomials

• The discrete system involves JK equations in JK unknowns, where

J = the number of finite element degrees of freedom

used to discretize in physical space

K = the number of global polynomials

used to discretize in parameter space



GLOBAL ORTHOGONAL POLYNOMIAL BASES

• For n = 1, . . . , N , let {Hn,mn(yn)}Mmn=0 denote the set of polynomials in R

of degree less than or equal to M that are orthonormal with respect to the
function ρn(yn)

– we have that

∫

In
Hn,mn(yn)Hn,m′

n
(yn)ρn(yn) dyn = δmm′ for mn, m

′
n ∈ {0, . . . ,M}

– note that the set {Hn,mn(yn)}Mmn=0 is hierarchical in the sense that

degree(Hn,mn) = mn

• Let

Ψk(~y) =
N∏

n=1

Hn,mn(yn) for all mn ∈ {0, . . . ,M} such that
∑N

n=1mn ≤M



• We then have that k ∈
{

1, . . . ,KPC =
(N +M)!

N !M !

}

• For example, if M = 1 and N = 3 we have the KPC = 4 basis functions†

H1,0(y1)H2,0(y2)H3,0(y3)

H1,1(y1)H2,0(y2)H3,0(y3) H1,0(y1)H2,1(y2)H3,0(y3) H1,0(y1)H2,0(y2)H3,1(y3)

while for if M = 2 and N = 3 we have the KPC = 10 basis functions
(suppressing noting the explicit dependences on the ~yn’s)

H1,0H2,0H3,0

H1,1H2,0H3,0 H1,0H2,1H3,0 H1,0H2,0H3,1

H1,2H2,0H3,0 H1,1H2,1H3,0 H1,1H2,0H3,1 H1,0H2,2H3,0 H1,0H2,1H3,1 H1,0H2,0H3,2

†It is convenient to write the N -dimensional polynomials so that each row contains the polynomials of the

same total degree
∑N

n=1mn; thus the first row contains all possible products of the N one-dimensional
polynomials of total degree 0, the second row has total degree 1, etc.



• We see that the functions Ψk(~y)’s are products of one-dimensional orthonor-
mal polynomials and have total degree less than or equal to M

– we then have that∫

Γ

Ψk(~y)Ψk′(~y)ρ(~y) d~y =

∫

Γ

Ψk(~y)Ψk′(~y)Π
N
n=1ρn(yn) d~y

=
N∏

n=1

∫

In
Hn,mn(yn)Hn,m′

n
(yn)ρn(yn) dyn = δkk′

– note that we need to write ρ(~y) =
∏N

n=1 ρn(yn), i.e., as a product as well,
so that we know what Hn,m(·) is orthonormal with respect to

– thus, we are restricted to independent random variables and to parameter
domains Γ that are (possibly infinite) hypercubes

• It is easy to see that the set {Ψk}KPC
k=1 of N -dimensional polynomials is a basis

for the complete polynomial space of degree M , i.e.,

span{Ψk}KPC
k=1 = all polynomials of total degree ≤M



• The stochastic Galerkin-global orthogonal polynomial approximation of the

solution of the SPDE is then defined by setting

ZPC = span{Ψk}KPC
k=1

so that

uPC(x, ~y) =
J∑

j=1

KPC∑

k=1

cjkφj(x)Ψk(~y)

• This is better known under another name†

(stochastic Galerkin) polynomial chaos approximation (SG-PC)
= complete, global orthonormal polynomial approximation

†Polynomial chaos approximations usually refer to the case for which, for all n, ρn(yn) is a Gaussian

PDF so that, for all n, {Hn,m(yn)}M
m=0 are sets of Hermite polynomials; for other PDFs, the SC-PC

approximation is usually referred to as a generalized polynomial chaos approximation; here we do not

differentiate between the two and refer to all cases as polynomial chaos approximations



• The implementation of the SG-PC method is simpler if one instead uses a
tensor product polynomial space; however, as we have seen, such a choice
leads to hugely more costly approximations†

†The tensor product basis is given by

Ψk(~y) =

N∏

n=1

Hn,mn
(yn) for all mn ∈ {0, . . . ,M} such that mn ≤M

in this case, span{Ψk}K
k=1 is the tensor product space of polynomials such that the degree in any

coordinate yn is less than or equal to M ; if we do this, we end up with K = (M + 1)N basis functions;
for example, if M = 1 and N = 3, we have the 8 polynomials (the 4 we had before plus 4 additional ones)

H1,0H2,0H3,0

H1,1H2,0H3,0 H1,0H2,1H3,0 H1,0H2,0H3,1

H1,1H2,1H3,0 H1,1H2,0H3,1 H1,0H2,1H3,1

H1,1H2,1H3,1

for N > 1 and M > 0 we have that (M + 1)N > (N+M)!
N !M ! ; for a moderate number of parameters or for a

moderately high degree polynomial, we in fact have that (M + 1)N ≫ (N+M)!
N !M ! ; for example,

if M = 6 and N = 3 =⇒ (N +M)!/(N !M !) = 84 and (M + 1)N = 343
if M = 4 and N = 5 =⇒ (N +M)!/(N !M !) = 126 and (M + 1)N = 3125

if M = 2 and N = 7 =⇒ (N +M)!/(N !M !) = 36 and (M + 1)N = 2187
the disparity gets worse as, say, N increases; for example,

if M = 2 and N = 10 =⇒ (N +M)!/(N !M !) = 66 and (M + 1)N = 59059

on the other hand, since the accuracy, i.e., the rate of convergence of global polynomial approximation,
is determined by the degree of the largest complete polynomial space contained in the approximate

space, for the same M , the accuracy obtained using a tensor product space is the same as that obtained
using a complete polynomial space; as a result, by using the latter one can obtain the same accuracy

with substantially fewer degrees of freedom



SG-PC approximations of quantities of interest

• The SG-PC approximation of a quantity of interest is then defined by

∫

Γ

G
(
u(x; ~y)

)
ρ(~y) d~y ≈

Q∑

q=1

wqρ(~yq)G
(
uPC(x; ~yq)

)

where

– uPC(x; ~yq), q = 1, . . . , Q, is obtained by evaluation of the

SG-PC approximation of the stochastic SPDE at the quadrature points

- i.e., we have that

uPC(x, ~yq) =

J∑

j=1

KPC∑

k=1

cjkφj(x)Ψk(~yq) for q = 1, . . . , Q



• Thus, the SG-PC approximation of a quantity of interest can be determined
by

1. first solving a single JKPC × JKPC system of equations to determine the
SG-PC approximation of the solution of the SPDE;

2. then evaluating the SG-PC approximation at the Q quadrature points;

3. substituting the results of Step 2 into the quadrature rule approximation of
the quantity of interest

• The cost of obtaining an SG-PC approximation of a quantity of interest is
dominated by the first step



GLOBAL LAGRANGE INTERPOLATORY BASES

• Instead of using global orthogonal polynomials to define a stochastic Galerkin
method, one can use interpolatory polynomials

• Given a set of points {~̃yk}KLI
k=1 in Γ

– for k ∈ {1, . . . , KLI}, let Lk(~y) denote the set of Lagrange interpolating
polynomials for these points

- we have that

Lk(~yk′) = δkk′ for all k, k′ ∈ {1, . . . , KLI}

• Set ψk(~y) = Lk(~y) for k ∈ {1, . . . ,KLI} so that

ZKLI
= span{Lk}KLI

k=1



• Then, the stochastic Galerkin-Lagrange interpolant (SG-LI) approximation of
the solution of the SPDE takes the form

uLI(x, ~y) =

J∑

j=1

KLI∑

k=1

cjkφj(x)Lk(~y)

• In general, the SG-LI approximation to the solution of an SPDE can be ob-
tained by solving a single JKLI × JKLI system

– this would also be the dominant cost encountered in obtaining an SG-LI
approximation of a quantity of interest



• If we choose a point set {~̃yk}KLI
k=1 that can be used to define a complete

interpolating polynomial of degree less than or equal M , we have that

ZKLI
= ZKPC

and KLI = KPC =
(N +M)!

N !M !

• In this case, it is clear that

the polynomial chaos approximation uPC(x; ~y)
= global Lagrange interpolant approximation
uLI(x; ~y) based on a complete polynomial space

– the only differences between the two approximations result from the choices
of bases



• Unfortunately, even for a moderate number of parameters, it may not be easy
to define a “good” set of interpolation points that can be used to determine
a complete Lagrange interpolant

– it is easy to define a set of interpolation points that can be used to define
a tensor product Lagrange interpolant†

– however, as we have seen, this leads to a very inefficient approximation
compared to complete polynomial approximation

• There exists intermediate choices, e.g., Smolyak point sets,

that can be systematically defined in any dimension

– for the Smolyak point sets, KLI >
(M +N)!

N !M !
so that they require more

points compared to complete polynomial interpolation

– however, we have that KLI ≪ (M + 1)N so that it requires much fewer
points compared to tensor product interpolation

†Unlike the case for orthogonal polynomials, for Lagrange polynomials it is not easy to define a complete

polynomial basis from the tensor product basis; for the Lagrange case, the tensor product basis is not
hierarchical since all Lagrange polynomials are of the same degree



• We therefore conclude that

in general, for the same accuracy, a
stochastic Galerkin-Lagrange polynomial approximation

is (a little) more costly to obtain than is a
stochastic Galerkin-polynomial chaos approximation

• However, as we shall now see, a judicious choice for the interpolation points
can lead to great efficiency improvements in stochastic Galerkin-Lagrange
interpolation methods

– we defer discussion of how one one obtains the LI-approximation

of a quantity of interest until after we consider this special case

of the SG-LI method

– we also defer further discussion of Smolyak point sets until later



STOCHASTIC COLLOCATION METHODS



• For the SG-LI method, the discretized SPDE looks like
R∑

r=1

ŵrρ(~̂yr)Lk′(~̂yr)

∫

D
S
( J∑

j=1

K∑

k=1

cjkφj(x)Lk(~̂yr), ~̂yr

)
T
(
φj′(x)

)
dx

=

R∑

r=1

ŵrρ(~̂yr)Lk′(~̂yr)

∫

D
φj′(x)f(~̂yr) dx

for j ′ ∈ {1, . . . , J} and k′ ∈ {1, . . . , K}

• Suppose we choose

the interpolating points {~̃yk}KLI
k=1 for the SG-LI method

to be the same as

the quadrature points {~̂yr}Rr=1 used in the discretized SPDE

• We then have that

Lk(~̂yr) = δkr ∀ r, k ∈ {1, . . . , R = KLI}



• As a result, the discretized SPDE reduces to
∫

D
S
( J∑

j=1

cjrφj(x), ~̂yr

)
T
(
φj′(x)

)
dx =

∫

D
φj′(x)f(~̂yr) dx

for j ′ ∈ {1, . . . , J}, r ∈ {1, . . . , R = KLI}

• Thus, we have total uncoupling in parameter space

– for each r ∈ {1, . . . , R}, we can solve the separate standard, deterministic
finite element problem for {cjr}Jj=1

for r ∈ {1, . . . , R}, determine ur(x) =
∑J

j=1 cjrφj(x) satisfying
∫

D
S
(
ur(x), ~̂yr

)
T
(
φj′(x)

)
dx =

∫

D
φj′(x)f(~̂yr) dx

for j ′ ∈ {1, . . . , J}



• Such a method is referred to as a stochastic collocation (SC) method so that

stochastic collocation methods are
stochastic Galerkin-Lagrange interpolation methods for which
the interpolation points are the same as the quadrature points

of the quadrature rule used to discretize the SPDE

• It is important to note that for stochastic collocation methods,

the uncoupling of the spatial and probabilistic degrees of freedom

occurs for

general nonlinear PDEs

general joint probability distributions

and

general random field data



• If desired, the stochastic collocation approximation to the solution u(x, ~y) of
the SPDE is then given by

uSC(x, ~y) =

R∑

r=1

ur(x)Lr(~y) =

J∑

j=1

R∑

r=1

cjrφj(x)Lr(~y)

– however, as we will now see, one does not need to form this expression to
a determine an approximation of a quantity of interest

– this is unlike the case for general stochastic Galerkin methods, including
polynomial chaos methods, for which one must evaluate the approximation
of the solution of the SPDE at the quadrature points of the approximation
of a quantity of interest



SC-approximations of quantities of interest

• It is also convenient to use the same quadrature rule

- to approximate a quantity of interest

as was used to

- approximate the integrals in the discretized SPDE

and that was also used as

- the Lagrange interpolations points,

i.e., we choose
KLI = R = Q

{~̃yk}KLI
k=1 = {~̂yr}Rr=1 = {~yq}Qq=1 and {ŵr}Rr=1 = {wq}Qq=1

• We then have that

Lr(~yq) = δrq for all r, q ∈ {1, . . . ,KLI = R = Q}



• Using this in the expression for the approximation of a quantity of interest
results in

∫

Γ

G
(
u(x; ~y)

)
ρ(~y) d~y ≈

Q∑

q=1

wqρ(~yq)G
(
uSC(x)

)

=

Q∑

q=1

wqρ(~yq)G
( R∑

r=1

ur(x)Lr(~yq)
)

=

Q∑

q=1

wqρ(~yq)G
(
uq(x)

)

i.e.,

∫

Γ

G
(
u(x; ~y)

)
ρ(~y) d~y ≈

Q∑

q=1

wqρ(~yq)G
(
uq(x)

)

where, for q ∈ {1, . . . , Q = R = KLI}, uq(x) =
∑J

j=1 cjqφj(x)

is determined from∫

D
S
(
uq(x), ~yq

)
T
(
φj′(x)

)
dx =

∫

D
φj′(x)f(~yq) dx for j ′ ∈ {1, . . . , J}



• Note that

– we do not have to explicitly determine the Lagrange interpolating

polynomials {Lk(~y)}KLI
k=1 to determine the approximation of a

quantity of interest

– nor do we have to form and evaluate, at quadrature points, the

SC-approximation†

• Thus, we see that the SC-approximation of a quantity of interest can be
determined by

1. first solving Q = KLI systems of equations of size J to determine uq(x)
for q = 1, . . . , Q = KLI;

2. then substituting the results of Step 1 into the approximation of the quantity
of interest

†In contrast, for PC approximations of quantities of interest one must explicitly evaluate the PC

approximation at quadrature points



• The cost of obtaining the SC-approximation of a quantity of interest is

dominated by the first step which requires the solution of KLI systems

of size J

– recall that the cost of obtaining the PC-approximation of a quantity of
interest is dominated by the cost of solving a single deterministic system of
size JKPC

– for general, nonlinear problems, the SC-approximation can be obtained at
much less cost†

†In the best-case scenario for which the PC-system of size JKPC and each of the Q = R = KLI SC-

systems of size J can be solved in linear time, the solution cost associated with the PC-approximation of
a quantity of interest will be of O(JKPC) while the corresponding solution cost for the SC-approximation

of a quantity of interest is of O(JKLI); for the same accuracy, in practice KLI > KPC so that in this
best-case scenario, the SC-approximation of a quantity of interest is more costly to obtain than is the
PC-approximation; for more general problems for which solution costs are not linear in the number of

degrees of freedom, the PC-approximation is more costly to obtain that is the SC-approximation since,
for some α > 1, one must compare the cost of O(JKPC)α for the PC case to the cost of O(JαKLI) for

the SC case, keeping in mind that although KLI > KPC, using Smolyak points as collocation points we
have that KLI ≈ KPC



NON-INTRUSIVE POLYNOMIAL CHAOS METHODS



• Can the uncoupling of parameter and spatial degrees of freedom be effected
in a polynomial chaos setting?

• The PC approximation is given by

uPC(x, ~y) =

J∑

j=1

KPC∑

k=1

cjkφj(x)Ψk(~y) =

KPC∑

k=1

ũk(x)Ψk(~y)

where for k ∈ {1, . . . , KPC},

ũk(x) =
J∑

j=1

cjkφj(x)

and {Ψk(~y)}KPC
k=1 is a set of orthonormal polynomials with respect to weight

ρ(~y) =
∏N

n=1 ρn(yn)

• As a result, we have that, for k′ ∈ {1, . . . , KPC},
∫

Γ

uPC(x, ~y)Ψk′(~y)ρ(~y) d~y =

KPC∑

k=1

uk(x)

∫

Γ

Ψk(~y)Ψk′(~y)ρ(~y) d~y = ũk′(x)



• We view this as a formula for ũk′(x), i.e.,

ũk′(x) =
J∑

j=1

cjk′φj(x) =

∫

Γ

uPC(x, ~y)Ψk′(~y)ρ(~y) d~y

• We use a quadrature rule† {ŵr, ~̂yr}Rr=1 to approximate the integral to obtain

ũk′(x) ≈
R∑

r=1

ŵruPC(x, ~̂yr)Ψk′(~̂yr)ρ(~̂yr) for k′ ∈ {1, . . . , KPC}

• For r ∈ {1, . . . , R}, we replace uPC(x, ~̂yr) by the solution ur(x) of ‡

∫

D
S
(
ur(x), ~̂yr

)
T
(
φj′(x)

)
dx =

∫

D
φj′(x)f(~̂yr) dx for j ′ ∈ {1, . . . , J}

†This quadrature rule may be the same or may be different from the quadrature rule used to approximate
a quantity of interest
‡Note that this is exactly the same set of R equations that is solved for in the stochastic collocation case



• We thus obtain

ũk′(x) ≈
R∑

r=1

ŵrur(x)Ψk′(~̂yr)ρ(~̂yr)

• We use this approximation to define the† non-intrusive polynomial chaos

(NIPC) approximation to the solution u(x, ~y) of the SPDE:‡

u(x, ~y) ≈ uPC(x, ~y) =

KPC∑

k=1

ũk(x)Ψk(~y)

≈ uNIPC(x, ~y) =

KPC∑

k=1

R∑

r=1

ŵrur(x)Ψk(~̂yr)ρ(~̂yr)Ψk(~y)

†Nowadays, the polynomial chaos method previously discussed is often referred as the intrusive polynomial
chaos method to differentiate it from the non-intrusive polynomial chaos method defined here
‡In comparison, the stochastic collocation approximation takes the simpler form

uSC(x, ~y) =

R∑

r=1

ur(x)Lr(~y)

due to the fact that Lk(~̂yr) = δkr in the SC case while Ψk(~̂yr) 6= 0 for all k and r in the NIPC case



• Thus, the NIPC approximation can be obtained by solving

R deterministic problems of size J to obtain ur(x) for r = 1, . . . , R

instead of the

one deterministic problem of size JKPC

that is solved in the intrusive polynomial chaos method

• All KPC “coefficients”
∑R

r=1 ŵrur(x)Ψk(~̂yr)ρ(~̂yr), k ∈ {1, . . . ,KPC}, in the
NIPC expansion

uNIPC(x, ~y) =

KPC∑

k=1

R∑

r=1

ŵrur(x)Ψk(~̂yr)ρ(~̂yr)Ψk(~y)

=
R∑

r=1

ŵrρ(~̂yr)ur(x)

KPC∑

k=1

Ψk(~̂yr)Ψk(~y)

can be obtained from the same R solutions ur(x), r ∈ {1, . . . , R}, of the
SPDE



• The cost of obtaining the NIPC-approximation is dominated by the need to
solve† R systems of size J

• For non-intrusive-polynomial chaos approximations,

the uncoupling of the spatial and probabilistic degrees of freedom

occurs for

general nonlinear PDEs

but only for

independent random variables‡

and

Gaussian random field data‡

†This is just the same as for the stochastic collocation approximation

‡This is unlike the case for stochastic collocation methods for which similar uncouplings are possible for

general joint probability distributions and general random fields



• Thus, it is clear that

non-intrusive polynomial chaos approximations are
stochastic Galerkin-global orthogonal polynomial approximations

obtained by approximating the coefficients of the
orthogonal polynomials via a quadrature rule

• It is also clear that, for the same accuracy

the costs of obtaining stochastic collocation and
non-intrusive polynomial chaos approximations are comparable

and, in general, both are much lower than the cost of
obtaining the intrusive polynomial chaos approximation



NIPC-approximations of quantities of interest

• Unlike the stochastic collocation case, there is no great advantage to using
the same quadrature rule for approximating a quantity of interest as is used
to construct the non-intrusive polynomial chaos approximation

– on the other hand, there is no reason not to do so

– so, we choose

Q = R, {wq}Qq=1 = {ŵr}Rr=1, and {~yq}Qq=1 = {~̂yr}Rr=1



• Then, the NIPC approximation of a quantity of interest has the form†

∫

Γ

G
(
u(x; ~y)

)
ρ(~y) d~y ≈

Q∑

q=1

wqρ(~yq)G
(
uNIPC(x)

)

=

Q∑

q=1

wqρ(~yq)G

(KPC∑

k=1

( Q∑

q=1

wquq(x)Ψk(~yq)ρ(~yq)
)
Ψk(~yq)

)

where, for q ∈ {1, . . . , Q = R}, uq(x) =
∑J

j=1 cjqφj(x) is determined from

∫

D
S
(
uq(x), ~yq

)
T
(
φj′(x)

)
dx =

∫

D
φj′(x)f(~yq) dx for j ′ ∈ {1, . . . , J}

†In comparison, the stochastic collocation approximation of the quantity of interest takes the simpler form

∫

Γ

G
(
u(x; ~y)

)
ρ(~y) d~y ≈

Q∑

q=1

wqρ(~yq)G
(
uq(x)

)

again due to the fact that Lk(~̂yr) = δkr in the SC case while Ψk(~̂yr) 6= 0 for all k and r in the NIPC case



• Thus, we see that the NIPC approximation of a quantity of interest can be
determined by

1. first solving Q systems of equations of size J to determine

uq(x) for q = 1, . . . , Q;

2. then substituting the results of Step 1 into the NIPC-approximation of the
quantity of interest

• Note that one is not restricted to use of any particular quadrature rule, either
to determine the NIPC approximation of the solution of the SPDE or the NIPC
approximation to a quantity of interest

– in particular, one does not have to use interpolatory quadrature rules

– one can use, e.g., any of the rules to be discussed in connection with
stochastic sampling methods



• Note also that to obtain this approximation, one has to explicitly construct
and evaluate, at the quadrature points ~yq, the non-intrusive polynomial chaos
approximation

– this includes having to explicitly evaluate the orthogonal polynomial basis
functions Ψk(·) at the quadrature points

– this should be contrasted with the SC approximation of a quantity of in-
terest that does not need the explicit construction or evaluation of the
SC approximation nor of the the Lagrange interpolatory polynomial basis
functions Lk(·)

– again, these differences between the two methods are due to the facts that
Lk(~yq) = δkq while Ψk(~yq) 6= 0 for all k and q



STOCHASTIC SAMPLING METHODS



APPROXIMATING QUANTITIES OF INTEREST
USING SAMPLING METHODS

• Recall that quantities of interest often require the evaluation of stochastic
integrals of functions of the solutions

• These integrals usually have to be approximated using quadrature rules, i.e.,
∫

Γ

G
(
u(x, ~y);x, ~y)

)
ρ(~y) d~y ≈

Q∑

q=1

wqG
(
u(x, ~yq);x, ~yq)

)

or ∫

Γ

G
(
u(x, ~y);x, ~y)

)
ρ(~y) d~y ≈

Q∑

q=1

wqρ(yq)G
(
u(x, ~yq);x, ~yq)

)

• To use such a rule, one needs to know the solution u(x, ~y) of the SPDE at
each of the quadrature points ~yq, q = 1, . . . , Q, in the probabilistic domain Γ

– for this purpose, one can use a stochastic Galerkin method to obtain an
approximation to the the solution u(x, ~y) and then evaluate that approxi-
mation at the quadrature points



• However, once a quadrature rule is chosen to approximate a quantity of inter-
est,

- i.e., once the quadrature points {~yq}Qq=1 are known

the simplest and most direct means of determining u(x, ~yq) is to simply solve
the PDE Q times, once for each quadrature point ~yq

• This approach is referred to as the stochastic sampling method (SSM) for
SPDEs and for quantities of interest that depend on the solutions of SPDEs

• We have already encountered two SSMs

– we have seen that SGMs based on Lagrange

interpolating polynomials reduce to SSMs

– we have also seen that non-intrusive polynomial

chaos methods are essentially SSMs

- although one does need the additional step of explicitly constructing

the non-intrusive polynomial chaos approximation



• In an SSM, to determine an approximation to a quantity of interest,

– one chooses a quadrature rule for the probabilistic integrals, i.e.,

- one chooses quadrature weights and points {wq, ~yq}Qq=1

– one chooses a finite element method, (i.e., a finite element space and a
basis {φj}Jj=1 for that space) and, for each q, one defines the finite element
approximation of the solution at the quadrature points by

uq(x) =
J∑

j=1

bj,qφj(x) for q = 1, . . . , Q

– then, to determine bj,q for j = 1, . . . , J and q = 1 . . . , Q, one separately,
and if desired, in parallel, solves the Q deterministic problems: for q =
1, . . . , Q,
∫

D
S
( J∑

j=1

bj,qφj, ~yq

)
T (φj′) dx =

∫

D
φj′f(~yq) dx for j ′ = 1, . . . , J



- each of these can be discretized using a finite element method

=⇒ one can use legacy codes as black boxes

=⇒ i.e., without changing a single line of code

=⇒ i.e., one just uses the legacy code Q times

– and finally, one just substitues uq(x) wherever u(x; ~yq) is needed into the
quadrature rule approximation of a quantity of interest

• The cost of determining an approximation to a quantity of interest using the
SSM approach is dominated by

– the cost to determine Q finite element solutions, each of size J

• This should be compared to the cost of using general SGM approaches for the
same purpose that are dominated by

– the cost needed to determine the solution of

a single system of size JK



• Which approach wins, i.e., which one yields a desired accuracy in the statistics
of quantities of interest for the lowest computational cost, depends on

– the value of Q, the number of quadrature points in SSM approaches

– the value ofK, the number of probabilistic terms in the SGM approximation
to the solution

– the cost of solving the systems of discrete equations encountered

- for nonlinear problems and time dependent problems,

one may have to solve such systems many times

– many implementation issues

• Of course, such comparisons do not factor in the relative programming cost
for implementing the different approaches

– SSM approaches allow for the easy use of legacy codes

– general SGM approaches do not allow for this



• In most cases, and certainly due to some recent developments,

SSMs win over SGMs

– which is why polynomial chaos people are now doing non-intrusive

polynomial chaos which is, as we have seen, practically a SSM

• Of course, there are many ways to sample points in parameter space other
than at the quadrature points for some integration rule

– so, we now take a more general view of SSMs



STOCHASTIC SAMPLING METHODS
ARE STOCHASTIC GALERKIN METHODS

• From the previous discussions, it seems that we could have introduced stochas-
tic sampling methods as a special case of stochastic Galerkin methods

– in fact,

every stochastic sampling method
is a stochastic Galerkin method using
Lagrange interpolating polynomials

based on the sample points
and quadrature rules also based on the sample points

• However, stochastic sampling methods are easier to understand through the
straightforward approach we have just taken

– the straightforward approach also avoids difficult questions about the rela-
tions of the cardinality of the set of sample points and the construction of
interpolating polynomials



SURROGATE APPROXIMATIONS AND
STOCHASTIC SAMPLING METHODS

• Stochastic sampling methods (SSMs) for solving stochastic PDEs are based
on

– first determining a sample set of values {~ys}
Nsample
s=1 of the vector of random

parameters ~y ∈ Γ ⊂ R
N

– then determining Nsample (approximate) solutions {u(x; ~ys)}
Nsample
s=1 of the

PDE via, e.g., a finite element method



Evaluating quantities of interest within the SSM framework

• If we want to evaluate quantities of interest that involve integrals over the
parameter set Γ using a Q-point quadrature rule involving the quadrature
points {~yq}Qq=1 ⊂ Γ and quadrature weights {wq}Qq=1

– it is then natural to choose the set of sample points {~ys}
Nsample
s=1 that are

used to solve the PDENsample times to be the same as the set of quadrature

points {~yq}Qq=1 that are used to approximate the quantities of interest

• Alternately, we could choose {~ys}
Nsample
s=1 to be different (and presumably

coarser) than the quadrature points {~yq}Qq=1

– one would then use the sample points {~ys}
Nsample
s=1 to build a surrogate or

response surface usurrogate(x, y) for the solution u(x, y)

– surrogates/response surfaces for the solution u(x, ~y) are (usually polyno-
mial) functions of, in our case, the random parameters ~y



– in fact, they are simply representations, e.g., in terms of Lagrange interpo-
lation polynomials, of the approximate solution in terms of the parameter
vector ~y

– it is usually more efficient to build a surrogate/response surface directly for

the integrand G
(
u(x, ~y);x, ~y

)
of the desired quantity of interest

- one solves for an approximation us(x) to

the solution u(x, ~ys) of the PDE for the

sample parameter points ~ys, s = 1, . . . , Nsample

- one then evaluates the approximations to the integrand

Gs(x) = G
(
us(x);x, ~ys

)
for s = 1, . . . , Nsample

- from these samplings of G at the sample points ~ys,

one builds a surrogate Gsurrogate(x, ~y)

– once a surrogate/response surface is built, it can be used to evaluate the
integrand at the quadrature points {~yq}Qq=1



• To illustrate the different approaches, within the SSM framework, for com-
puting approximations of quantities of interest, consider a quantity of the
form

J (u) =

∫

Γ

∫

D
G
(
u(x, ~y)

)
ρ(~y) dxd~y

– a spatial quadrature rule with the points xr and

weights Wr for r = 1, . . . , R is used to approximate

the spatial integral resulting in the approximation

J (u) ≈
∫

Γ

R∑

r=1

WrG
(
u(xr, ~y)

)
ρ(~y) d~y

– a parameter-space quadrature rule with the points yq and

weights wq for q = 1, . . . , Q is used to approximate

the spatial integral resulting in the approximation

J (u) ≈
Q∑

q=1

R∑

r=1

wqWrρ(~yq)G
(
u(xr, ~yq)

)



– a set of points {~ys}Nsamples=1 is chosen in the parameter domain Γ

- these sample points are used to obtain the set of

realizations {us(x)}Nsamples=1 of a finite element

discretization of the SPDE

- each realization is determined by setting the

parameters ~y = ~ys in the discretized SPDE

– if the probalistic quadrature points {~y}Qq=1 are the same as the sample

points {~y}Nsamples=1 , we directly define the computable approximation

J (u) ≈
Q∑

q=1

R∑

r=1

wqWrρ(~yq)G
(
uq(xr)

)

where we have, of course, renamed us(x) by uq(x) since now they are one
and the same



– if the the sample points {~y}Nsamples=1 are coarser than the

probalistic quadrature points {~y}Qq=1, we first build

a surrogate Gsurrogate(xr, ~y) for G(xr, ~y)

- the simplest means for doing this is to use the

set of Lagrange interpolating polynomials {Ls(~y)}
Nsample
s=1

corresponding to the sample points {~ys}
Nsample
s=1 ,

resulting in the surrogate approximation

Gsurrogate(xr, ~y) =

Nsample∑

s=1

G
(
us(xr)

)
Ls(~y)

- other surrogate constructions may be used,

e.g., least-squares fits to the data {~ys, G
(
us(xr)

)
}Nsamples=1

using global orthogonal polynomials or even piecewise polynomials



- once the surrogate Gsurrogate(xr, ~y) has been constructed,

one defines the indirect computable approximation

J (u) ≈
Q∑

q=1

R∑

r=1

wqWrρ(~yq)Gsurrogate(xr, ~yq)

by evaluating the surrogate at the

probabilistic quadrature points {~yq}Qq=1

- for example, if the surrogate is constructed using

Lagrange interpolating polynomials, we have the approximation

J (u) ≈
Nsample∑

s=1

R∑

r=1

WrG
(
us(xr)

) Q∑

q=1

wqρ(~yq)Ls(~yq)



- of course, if the sample points {~ys}Nsamples=1 are the same as the

probabilistic quadrature points {~yq}Nqq=1 so that Ls(~yq) = δsq,

this approximation reduces to the one obtained before which,

in this example, takes the simple form

J (u) ≈
Q∑

q=1

wqρ(~yq)
R∑

r=1

WrG
(
uq(xr)

)

• Note that if one uses the sample points directly as quadrature points, then
one does not need to construct a representation of the approximate solution
in terms of the random parameters

– if one uses a coarser set of sampling points relative to the quadrature points,
one does have to build such a representation since it needs to be evaluated
at the quadrature points, and not just the sample points

– of course, this is also unlike the case for general SGMs in which one does
build such a representation, e.g., an intrusive polynomial chaos expansion



• We will concentrate on the case where the sample points are used directly as
quadrature points

• So, we next discuss quadrature rules that can be used to approximate quan-
tities of interest

– (coarser) versions of some of these rules can also supply sample points that
can be used to build surrogates or response surfaces

• We will discuss quadrature rules for the N -dimensional hypercube,

the case that most often arises in practice

– other rectangular regions, i.e., bounding boxes, can be mapped in the

obvious way to the unit hypercube

• Unfortunately, we do not have time to discuss sampling in unbounded domains
or in general, non-rectangular domains



QUADRATURE RULES FOR HYPERCUBES

• One is tempted to use well-known quadrature rules to define the sample points
for SSMs

• We will discuss two classes of quadrature rules

for the N -dimensional hypercube

– sampling and simple averaging rules

- the canonical example is Monte Carlo integration

– weighted quadrature rules based on standard one-dimensional rules

- ultimately, we consider sparse grid Smolyak quadrature rules

• Recall that in the SSM framework we are using, the quadrature points are also
the points used to sample the solutions of the SPDE



Sampling and simple averaging quadrature rules

• We consider sampling + simple averaging-based quadrature rules that are
based on

– determining a set of quadrature points {yq}Qq=1

– approximating integrals of a function G(y) by an equal weight rule

∫

Γ

G(~y)ρ(y) dy ≈ 1

Q

Q∑

q=1

G(~yq)
if one samples the points
according to the PDF ρ(~y)

or by
∫

Γ

G(~y)ρ(y) dy ≈ 1

Q

Q∑

q=1

ρ(yq)G(yq)
if one samples the
points uniformly



• The second approach seems simpler, but is wasteful

– the density of points is the same in regions where ρ(·) is small as where it
is large

- unfortunately, many sampling methods can only be used

to sample uniformly or have difficulty, i.e., they are much

less efficient, when sampling nonuniformly

• Note that the weights do not depend on the position of the points {~yq}Qq=1 or
on other geometric quantities



Monte Carlo sampling

• As has already been said, the simplest quadrature rule is based on

Monte Carlo, i.e., random, sampling of the hypercube

– random sampling could be done uniformly in the hypercube

- in which case wq =
ρ(~yq)

Q

– random sampling could instead be done according to the density function
ρ(~y) by, e.g., a rejection method

- in which case wq =
1

Q

• Monte Carlo integration has one very great virtue (other than its simplicity)

– its convergence behavior is independent of the dimension N ,

i.e., of the number of parameters



• Unfortunately, it also has one great fault

– its convergence behavior is slow Error = O
( σ√

Q

)

• The slow convergence of Monte Carlo integration has motivated the huge
amount of effort devoted to improving or replacing Monte Carlo sampling as
an integration rule

– it has also motivated the development of stochastic Galerkin methods



“Improved” sampling + simple averaging-based quadrature rules

• There have been many sampling + simple averaging-based quadrature rules
proposed as replacements for Monte Carlo quadrature, including

variance reduction Monte Carlo methods

quasi-Monte Carlo methods (Halton, Sobol, Faure, Hammersley, . . .)

stratified sampling

Latin hypercube sampling and its many “improved” versions

orthogonal arrays

lattice rules

importance sampling

etc.



• In general, these “improved” rules have, in theory, improved rates of

convergence, at least for not too large N

– the best theoretical result is of the type

Error = O
((lnQ)N

Q

)
⇐= note the dependence on N

– this is often a pessimistic estimate

– for large N , the (lnQ)N term dominates

- the curse of dimensionality is still with us

– also, in many cases, biasing problems exist, especially for a large number
of sample points

• However, if one is careful when using them, the “improved” sampling and
averaging methods often can indeed improve on Monte-Carlo sampling



Monte Carlo and quasi-Monte Carlo point sets

Latin hypercube and lattice rule point sets



Tensor products of standard 1-D quadrature rules

• One is familiar with many quadrature rules in 1D

• On the hypercube, one can easily define multiple integration rules

as tensor products of 1D rules

• As we have already seen, tensor products really suffer from

the curse of dimensionality

• Tensor product rules integrate tensor products of polynomials exactly

• Just as was the case for interpolation and approximation, one can get the same
rate of convergence using quadrature rules that integrate complete polynomi-
als exactly

• The same table of numbers used before applies here



Quadrature rules in hypercubes

N = number of Q = number of
no. random quadrature points quadrature points
parameters in each direction using complete using a tensor

polynomial rule product rule

3 4 20 64
6 56 216

5 4 56 1,024
6 252 7,776

10 4 286 1,048,576
6 3,003 60,046,176

20 4 1,771 > 1×1012

6 53,130 > 3×1015

100 4 176,851 > 1×1060

6 96,560,646 > 6×1077



A tensor product set of quadrature points in 2D

• On the other hand, tensor product rules are easy to define

– the quadrature points are tensor products of

the quadrature points of the 1D rules

– the quadrature weights are products of the weights of the 1D rules



• High-dimensional rules based on complete polynomials

are not so easy to define

– determining a good set of quadrature points and the

corresponding quadrature weights is difficult

– these difficulties further motivated interest in SGM methods

• But now, there is available an intermediate means of defining quadrature rules

– the number of points is much less that that for tensor product rules, but is
somewhat greater than that for complete polynomial rules

– these rules are constructed through

judicious sparsifications of tensor product rules

– the are known as Smolyak or sparse grid quadrature rules



SPARSE (SMOLYAK) QUADRATURE RULE-BASED
STOCHASTIC SAMPLING METHODS

• Let I be a positive integer and for each i = 1, . . . , I ,

let mi denote a positive integer

• For each i = 1, . . . , I , let Θ(i) = {y(i)
1 , . . . , y

(i)
mi}

denote a set of points in [−1, 1]

– note that for convenience, we will be looking at the hypercube [−1, 1]N

• Let N > 1 denote the number of parameters

• Let p = (p1, p2, . . . , pN) denote a multi-index,

– in this case, an N -vector whose components are positive integers

and let |p| =
∑N

n=1 pn



• Let M denote a positive integer

• Let I(M,N) = {p : M + 1 ≤ |p| ≤ N +M}

• Then,
S(M,N) =

⋃

p∈I(M,N)

Θ(p1) ⊗ Θ(p2) ⊗ · · · ⊗ Θ(pN )

defines a sparse grid



• Example

– let I = 3, m1 = 1, m2 = 3, and m3 = 7

– let Θ(i), i = . . . , I = 3 be given by the three one-dimensional nested point
sets

– let N = 2 and M = 2 so that I(2, 2) = {p : 3 ≤ |p| ≤ 4}

– I(2, 2) then contains the combinations

(p1, p2) = (1, 1), (1, 2), (2, 1), (3, 1), (1, 3), (2, 2)

but not the combinations

(p1, p2) = (2, 3), (3, 2), (3, 3)

- for nested point sets, it is enough to include the combinations for

which |p| = N +M , i.e., (3, 1), (1, 3), (2, 2) in the example



– then, S(2, 2) is given by

– this should be contrasted with the full tensor-product point set



• the following diagram shows how the sparse grid comes about

• point sets included in S(2, 2) ◦ point sets not included in S(2, 2)



• What Smolyak showed is that

– if one chooses the underlying one-dimensional grids to be the quadrature
points for some integration rule

then

– the accuracy of the full tensor product point set can be preserved with point
sets with much fewer points

• Along the way, Smolyak also showed how to systematically compute the
weights of the resulting sparse quadrature rule

• The use of Smolyak grids in the SPDE setting has been rigorously analyzed
for some simple linear and nonlinear elliptic PDEs



• Some choices of one-dimensional quadrature rules upon which the Smolyak
grids can be constructed

– Newton-Cotes: nested equidistant abscissas by taking m1 = 1 and mi =
2i−1 + 1 for i > 1

- maximum degree of exactness is mI − 1

- can have (highly) negative weights causing numerical inaccuracies

– Clenshaw-Curtis: nested (same growth as above) Chebyshev points

- maximum degree of exactness is mI − 1

- nested grids keep the number of points down

– Gauss: non-nested abscissas

- maximum degree of exactness is 2mI − 1

– Gauss-Patterson: seems to have good promise

Results that follow are from papers of Nobile, Tempone, and Webster



• For the integral ∫

RN
exp

(
−

N∑

n=1

a2
n(yn − bn)

2

)
d~y

where an and bn are randomly sampled uniformly in (0, 1), we have the fol-
lowing errors for different quadrature rules

Comparisons of errors vs. number of quadrature points for different integration
rules



For N = 2 and M = 5: comparison of full tensor product grids with two Smolyak
grids



For N = 5, 11, and 21: comparison of full tensor product grids with Clenshaw-
Curtis-Smolyak grids for different levels, i.e., for different maximum number of
points in each direction



• There is more good news about Smolyak grids

• Recently, anisotropic Smolyak grids have been developed to take advantage
of anisotropies in the relative importance of random parameters

• For example, in the Karhunen-Loéve expansion for the colored noise case, the
random variables y1, y2, . . . are increasingly less influential

• Adaptive strategies have been developed to determine how to take advantage
of such anisotropies



Anisotropic Clenshaw-Curtis sparse grids for different levels of anisotropy; on the
left is the isotropic case; the anisotropic grids will yield the same accuracy as the
isotropic one, provided the integrand possesess the necessary anisotropy



L2 errors in the expected values of the solution of an SPDE using different
sampling strategies; Monte Carlo is always worst, anisotropic Smolyak best, with
Clenshaw-Curtis being better than Gauss; L is a correlation length for the colored
noise



Number of points needed to reduce to reduce the L2 errors in the expected values
of the solution of an SPDE by a factor of 104



• This shows the effectiveness of using stochastic sampling methods along with
modern sparse grid techniques



LOCAL POLYNOMIAL APPROXIMATING SPACES

IN STOCHASTIC GALERKIN METHODS



PIECEWISE POLYNOMIAL APPROXIMATING SPACES
FOR PARAMETER SPACE DISCRETIZATION

• Emulating finite element spatial discretization methods, one is led to

locally-supported piecewise polynomial spaces for approximating

functions of the random parameters

• One starts by “triangulating” Γ, the set of all possible values for the random
parameters {y1, . . . , yN}
– of course, unless one wants to get fancy, i.e.,

- use infinite elements or other methods for treating unbounded domains

we have to assume that Γ is bounded

– thus, we consider problems for which the Γn, n = 1, . . . , N , themselves
are bounded

- e.g., we cannot consider y1 to be a Gaussian random parameter since,

in this case, Γ1 = (−∞,∞)

- of course, we can considered truncated Gaussian parameters



• One then chooses ZK to be a space of piecewise polynomial functions of
degree less than of equal to M , defined with respect to the triangulation

– since ZK ⊂ Lqρ(Γ), one can choose M = 0, i.e., piecewise constant func-
tions

– however, one can choose higher degree piecewise polynomials as well

– one is free to choose discontinuous finite element spaces

• Unfortunately, the number of parameters N cannot be large

– even for a subdivision with two elements in each direction, N cannot be
big, e.g., K = 2N becomes prohibitively large very quickly



• Also, triangulating in high dimensions is not an easy task

– unless N is small, one can in practice only consider the case of Γ being
rectangular domain in R

N that is “triangulated” into smaller rectangular
domains

• One can choose a standard “finite element”-type basis set

– {ψk(~y)}Kk=1 consists of compactly supported piecewise polynomials

– if ZK is a discontinuous (with respect to the triangulation of Γ) finite
element space, then each basis function can be chosen to have support
over only a single element

– if ZK is a continuous (with respect to the triangulation of Γ) finite element
space, then each basis function can be chosen to have support over a small
patch of elements



• There is a really big difference between using discontinuous and continuous
finite element-type spaces to discretize in parameter space

• First, consider an example of a continuous finite element-type space

– Γ is a hypercube in N -dimensions (N = number of random parameters)

– Γ is subdivided into Nhypercubes smaller hypercubes

– ZK consists of tensor products of continuous piecewise polynomials of de-
gree less that or equal to M ≥ 1 in each parameter direction

– then, the number of probabilistic degrees of freedom is given by

K =
(
MN

1/N
hypercubes + 1

)N

– as always, the discrete problem involves JK degrees of freedom cj,k



• If we look at the JK × JK coefficient matrix for the discrete system (ema-
nating from a linear Poisson problem)

∫

Γ

∫

D
a(x; ~y)∇φj(x) · ∇φj′(x)ψk(~y)ψk′(~y)ρ(~y) dxd~y

we see that it is sparse with respect to both the spatial and probabilistic indices

– if the support of φj(x) and φj′(x) do not overlap, then the corresponding
matrix entry vanishes for all k and k′

– if the support of ψk(x) and ψk′(x) do not overlap, then the corresponding
matrix entry vanishes for all j and j ′

– this sparsity can be taken advantage of when one solves the system, espe-
cially if one uses an iterative method

– however, we still have a coupled (albeit sparse) JK × JK system to solve



• Now, consider an example of using discontinuous finite element-type spaces
to discretize in parameter space

– Γ is a hypercube in N -dimensions (N = number of random parameters)

– Γ is subdivided into Nhypercubes smaller hypercubes

– in each element, ZK consists of complete polynomials of degree less that
or equal to M ≥ 0

- no continuity is required across element boundaries

– then, the number of probabilistic degrees of freedom is given by

K = Nhypercubes

(
(N +M)!

N !M !

)

which can be larger than that obtained using continuous finite element-type
spaces

– as always, the discrete problem involves JK degrees of freedom cj,k



Piecewise polynomial approximation in parameter space

N = M = N
1/N
hypercubes = K = no. of probabilistic

no. maximal no. of degrees of freedom
random degree of intervals in continuous tensor discontinuous

parameters polynomials each direction product basis basis

3 0 5 – 125
10 – 1,000

1 5 216 500
10 1,331 4,000

2 5 1,331 1,250
10 9,261 10,000

5 0 5 – 3,125
10 – 100,000

1 5 7,776 18,750
10 161,051 600,000

2 5 161,051 65,625
10 4,084,101 2,100,000



• But, let’s examine the JK × JK coefficient matrix for the discrete system in
the discontinuous finite element case

∫

Γ

∫

D
a(x; ~y)∇φj(x) · ∇φj′(x)ψk(~y)ψk′(~y)ρ(~y) dxd~y

– again, we have the usual sparsity with respect to both the spatial indices

– but now, since the support of the probabilistic basis functions {ψk(~y)}Kk=1

is restricted to a single element in parameter space, we have that

- with respect to parameter space, the matrix is block diagonal

- there is a complete uncoupling of the probabilistic degrees of freedom



• Let Γhypercube denote one of the Nhypercubes elements in the subdivision of Γ
into smaller hypercubes

• Let Khypercube denote the probabilistic degrees of freedom in each element
Γhypercube, i.e.,

Khypercube =
(N +M)!

N !M !
=

K

Nhypercubes

• For each of the Nhypercubes elements Γhypercube, let

Ihypercube =
{
k ∈ {1, . . . , K} | supp

(
ψk(~y)

)
⊂ Γhypercube

}

– note that the cardinality of the index set Ihypercube is Khypercube



• Then, the coupled JK×JK system for the degrees of freedom cj,k uncouples
into Nhypercubes systems, each of size JKhypercube × JKhypercube

∫

D

∫

Γ

ρ(~y)S
( J∑

j=1

K∑

k=1

cjkφj(x)ψk(~y), ~y
)
T
(
φj′(x)

)
ψk′(~y) dxd~y

=

∫

D

∫

Γ

ρ(~y)φj′(x)ψk′(~y)f(~y) dxd~y

for j ′ ∈ {1, . . . , J} and k′ ∈ {1, . . . , K}

J∑

j=1

∑

k∈Ihypercube

cj,k

∫

Γhypercube

∫

D
a∇φj(x) · ∇φj′(x)ψk(~y)ψk′(~y)ρ(~y) dxd~y

=

∫

Γhypercube

∫

D
fφj′(x)ψk′(~y)ρ(~y) dxd~y

for all j ′ = 1, . . . , J and k′ ∈ Ihypercube



• The moral of the story is that, in practice, once pretty much has to settle for
piecewise constant approximations in parameter space

• Even for this case, N cannot be too large



PIECEWISE CONSTANT APPROXIMATING SPACES

• Let ∪Kk=1Γk denote a subdivision of Γ into disjoint, non-overlapping subsets

– we have that

∪Kk=1Γk = Γ and Γk ∩ Γk′ = ∅ if k 6= k′

• Let

ψk(~y) =

{
1 if ~y ∈ Γk
0 otherwise

for k ∈ {k, . . . , K}

and let

ZK = span {ψk}Kk=1

– thus, ZK is the space of piecewise constant functions with respect to the
partition ∪Kk=1Γk of Γ



• Clearly, ZK ⊂ Lpρ(Γ) so that it can be used as an approximating space for
discretizing parameter dependences of solution of an SPDE

• Recall that, after the invocation of the piecewise constant basis functions and
of a parameter-space quadrature rule, the stochastic Galerkin method has the
form

R∑

r=1

wrρ(~yr)ψk′(~yr)

∫

D
S
( J∑

j=1

K∑

k=1

cjkφj(x)ψk(~yr), ~yr

)
T
(
φj′(x)

)
dx

=
R∑

r=1

wrρ(~yr)ψk′(~yr)

∫

D
φj′(x)f(~yr) dx

for j ′ ∈ {1, . . . , J} and k′ ∈ {1, . . . ,K}

where {wr, ~yr}Rr=1 denotes the quadrature rule used to approximate integrals
over parameter space Γ



• Suppose we choose the quadrature rule so that

R = K and ~yr ∈ Γr for r ∈ {1, . . . , R = K}

– thus,

- each quadrature point ~yr belongs to one of the subsets Γk

and

- each subset contains one and only one of the quadrature points

– Clearly, we then have that

ψk(~yr) = δkr for all k, r ∈ {1, . . . , K = R}



• Then, the discretized stochastic Galerkin system reduces to

∫

D
S
(
ur(x), ~yr

)
T
(
φj′(x)

)
dx =

∫

D
φj′(x)f(~yr) dx

for j ′ ∈ {1, . . . , J} and r ∈ {1, . . . , R = K}

where ur(x) =
∑J

j=1 cjrφj(x)

– thus, we have total uncoupling of the spatial and parameter problems

– we solve a sequence of R = K problems of size J to determine {ur(x)}Rr=1

– then, the stochastic Galerkin-piecewise constant approximation of the so-
lution of the SPDE is simply given by

u(x; ~y) = ur(x) for ~y ∈ Γr



• Note that to determine the ur(x) one does not have to explicitly know the
weights wr or the subregions Γk

– one need only know the point set {~yk}Kk=1

• Note also that there is no restrictions on the point set {~yk}Kk=1

– one can, in fact, use any of the point sets we have encountered in discussing
stochastic sampling or stochastic collocation or stochastic Galerkin methods

• Clearly,
any stochastic sampling method can be viewed

as a stochastic Galerkin method



Approximations of quantities of interest

• It is natural to use the same quadrature rule

- to approximate a quantity of interest

as was used to

- approximate the integrals in discretized SPDE,

i.e., we choose
K = R = Q

{~yk}Kk=1 = {~yr}Rr=1 = {~yq}Qq=1 and {wr}Rr=1 = {wq}Qq=1

• We then have that

ψr(~yq) = δrq for all r, q ∈ {1, . . . ,K = R = Q}



• Using this in the expression for the approximation of a quantity of interest
results in

∫

Γ

G
(
u(x; ~y)

)
ρ(~y) d~y ≈

Q∑

q=1

wqρ(~yq)G
(
uSC(x)

)

=

Q∑

q=1

wqρ(~yq)G
( R∑

r=1

ur(x)ψr(~yq)
)

=

Q∑

q=1

wqρ(~yq)G
(
uq(x)

)

i.e.,

∫

Γ

G
(
u(x; ~y)

)
ρ(~y) d~y ≈

Q∑

q=1

wqρ(~yq)G
(
uq(x)

)

where, for q ∈ {1, . . . , Q = R = KLI}, uq(x) =
∑J

j=1 cjqφj(x)

is determined from∫

D
S
(
uq(x), ~yq

)
T
(
φj′(x)

)
dx =

∫

D
φj′(x)f(~yq) dx for j ′ ∈ {1, . . . , J}



• This all looks very familiar:

– it looks just the same as when we discussed stochastic collocation methods

– in fact, there is very little distinction between stochastic sampling and
stochastic collocation methods

– and, as we have seen, all stochastic sampling and stochastic collocation
methods can be derived from the stochastic Galerkin framework



ECONOMIES IN POLYNOMIAL CHAOS METHODS

FOR LINEAR SPDES



• Suppose that the SPDE is linear in the solution u

• For example, consider the case for which one has, after using a polynomial
chaos expansion method, the SPDE†

∫

D

∫

Γ

ρ(~y)a(x; ~y)S
( J∑

j=1

KPC∑

k=1

cjkφj(x)Ψk(~y)
)
T
(
φj′(x)

)
Ψk′(~y) dxd~y

=

∫

D

∫

Γ

ρ(~y)φj′(x)Ψk′(~y)f(x; ~y) dxd~y,

where now both S(·) and T (·) are linear

†Here, it is useful to follow the explicit dependences of the data functions a and f on the spatial variable

x



• Since, S(·) is linear and does not involve derivatives with respect to the

components of ~y, we have that

J∑

j=1

KPC∑

k=1

cjk

∫

D
S
(
φj(x)

)
T
(
φj′(x)

)∫

Γ

a(x; ~y)ρ(~y)Ψk(~y)Ψk′(~y) d~ydx

=

∫

D
φj′(x)

∫

Γ

f(x; ~y)ρ(~y)Ψk′(~y) d~ydx

• In this linear SPDE case, there are two economies possible in the

implementation of PC methods



PC-expansions of data functions

• We approximate the data functions a and f in the same way one approximates
the solution, i.e., using PC-expansions

– thus, we assume we have in hand the approximations

a(x; ~y) ≈
KPC∑

k′′=1

ak′′(x)Ψk′′(~y)

and

f(x; ~y) ≈
KPC∑

k′′=1

fk′′(x)Ψk′′(~y)



– substituting into the PC-discretization of the SPDE results in

KPC∑

k′′=1

J∑

j=1

KPC∑

k=1

cjk

(∫

D
ak′′(x)S

(
φj(x)

)
T
(
φj′(x)

)
dx

)

(∫

Γ

ρ(~y)Ψk(~y)Ψk′(~y)Ψk′′(~y) d~y

)

=

KPC∑

k′′=1

(∫

D
fk′′(x)φj′(x) dx

)(∫

Γ

ρ(~y)Ψk′(~y)Ψk′′(~y) d~y

)

=

∫

D
fk(x)φj′(x) dx

where the last equality follows from the orthonormality of the PC-basis
functions {Ψk(~y)}KPC

k=1

– orthogonality also results in some sparsity in the left-hand side that may be
taken advantage of when using iterative linear system solution methods

- for example, whenever k+ k′ 6= k′′ (and for similar situations involving

reversal of indices), the summand on the left-hand side vanishes



• Determining the PC-approximations of the data functions a and f may be
costly since one has to determine a different expansion for every spatial

quadrature point used in the finite element spatial discretization

– of course, if the data is independent of x, then only one expansion for each
data function is needed

• We again point out that the economies resulting from the use of PC-expansions
of the data functions are realizable only for linear SPDEs



KL-expansions of random data fields

• Now, suppose that the data functions a and f are Gaussian correlated random
fields

– then, we may determine the approximate KL-expansions

a(x; ~y) ≈
N∑

n=1

√
λnan(x)yn

and

f(x; ~y) ≈
N∑

n=1

√
σnfn(x)yn,

– {λn, an(x)}∞n=1 and {σn, fn(x)}∞n=1 are the eigenpairs of the covariance
functions for a and f , respectively

– recall that we have to assume (spherical) Gaussian variables since otherwise
~y is not a set of independent parameters



– substituting into the PC-discretization of the linear SPDE results in

J∑

j=1

KPC∑

k=1

cjk

N∑

n=1

√
λn

(∫

D
an(x)S

(
φj(x)

)
T
(
φj′(x)

)
dx

)

(∫

Γ

ynρ(~y)Ψk(~y)Ψk′(~y) d~y

)

=
N∑

n=1

√
σn

(∫

D
fn(x)φj′(x) dx

)(∫

Γ

ynρ(~y)Ψk′(~y) d~y

)

• Doubly orthogonal polynomials can be constructed† such that
∫

Γ

Ψk(~y)Ψk′(~y)ρ(~y) d~y = 0 and

∫

Γ

~yΨk(~y)Ψk′(~y)ρ(~y) d~y = 0

whenever k 6= k′

†The construction involves solving an eigenvalue problem for each polynomial



• As a result, the probabilistic and spatial degrees of freedom uncouple

– one can solve for the cij’s by solving KPC deterministic finite element
problems of size J instead of the single problem of size JKPC

• We again point out that the economies resulting from the use of KL-expansions
of the data random fields are realizable only for linear SPDEs

• Moreover, even for linear SPDEs, they are only possible for Gaussian

random fields since it is only in this case that the KL expansions are

linear in independent random parameters

• This should be contrasted with stochastic collocation methods and the

non-intrusive polynomial chaos methods for which the uncoupling of the

parameter and spatial degrees of freedom occurs for general, nonlinear SPDEs

– for stochastic collocation methods, the uncoupling also occurs for

general, non-Gaussian probability distributions



OPTIMAL CONTROL PROBLEMS FOR

STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS



Optimization problems

• The state system

−∇ ·
(
κ(ω,x)∇u(ω,x)

)
= f(ω,x) in Ω ×D

u(ω,x) = 0 on Ω × ∂D

– ω is an elementary event in a probability space Ω

– x is a point in the spatial domain D

– κ(ω,x) and f(ω,x) are correlated random fields

– the solution u(ω,x) is also a random field



• Optimal control problem

– κ(ω,x) is given

– f(ω,x) to be determined

– given target function û(ω,x) may be deterministic or may be a random
field

– cost functional (E(·) denotes the expected value)

F(u, f ; û) = E
(
‖u(ω, ·) − û(ω, ·)‖2

L2(D) + α‖f(ω, ·)‖2
L2(D)

)

=⇒
find a state u and a control f such that F(u, f ; û) is

minimized subject to the state system being satisfied



• Parameter identification problem

– f(ω,x) is given

– κ(ω,x) to be determined

– given target function û(ω,x) may be deterministic or may be a random
field

– cost functional

K(u, κ; û) = E
(
‖u(ω, ·) − û(ω, ·)‖2

L2(D) + β‖∇κ(ω, ·)‖2
L2(D)

)

=⇒
find a state u and a coefficient function κ such that K(u, κ; û) is

minimized subject to the state system being satisfied



Results

• Existence of optimal solutions

• Existence of Lagrange multipliers

• Derivation of optimality system

– the adjoint or co-state system

−∇ ·
(
κ(ω,x)∇ξ(ω,x)

)
= −

(
u(ω,x) − û(ω,x)

)
in Ω ×D

ξ(ω,x) = 0 on Ω × ∂D

– optimality condition

E
(
− β∆κ + ∇u · ∇ξ

)
= 0



• Discretization of noise so that κ, f , û, and u depend on a parameter vector
~y(ω) = (y1(ω), . . . , yN(ω))T

– these parameters may be “knobs” in an experiment

– alternately, they could result from an approximation, e.g., a truncated
Karhunen-Loevy expansion, of a correlated random field

• finite element analyses of stochastic collocation method (in progress)

– isotropic and anisotropic Smolyak sparse grids are used as collocation points

• development of gradient method to effect optimization



Computational results

• choose target û = x(1 − x2) +
N∑

i=1

sin
(nπx
L

)
yn(ω)

• choose optimal κ = (1 + x3) +
N∑

i=1

cos
(nπx
L

)
yn(ω)

• set f = −∇ ·
(
κ∇û)

• choose initial κ = 1 + x

• assume yi uniform on [−1, 1] with E(yi) = 0 and E(yiyj) = δij

=⇒
given random f and û, identify the expectation of both the control E(κ)

and the state E(u) and compare with the exact statistical quantities



Left: expected value of initial (blue) and target (red) coefficient κ
Right: expected value of initial and target solution u

Number of random variables = N = 1



Left: expected value of optimal and target coefficient κ
Right: expected value of optimal and target solution u

Number of random variables = N = 1
Number of Monte Carlo samples = M = 1



Left: expected value of optimal and target coefficient κ
Right: expected value of optimal and target solution u

Number of random variables = N = 1
Number of Monte Carlo samples = M = 10



Left: expected value of optimal and target coefficient κ
Right: expected value of optimal and target solution u

Number of random variables = N = 1
Number of Monte Carlo samples = M = 100



Left: expected value of optimal and target coefficient κ
Right: expected value of optimal and target solution u

Number of random variables = N = 1
Number of anisotropic Smolyak collocation points = M = 1



Left: expected value of initial (blue) and target (red) coefficient κ
Right: expected value of initial and target solution u

Number of random variables = N = 5



Left: expected value of optimal and target coefficient κ
Right: expected value of optimal and target solution u

Number of random variables = N = 5
Number of Monte Carlo samples = M = 11



Left: expected value of optimal and target coefficient κ
Right: expected value of optimal and target solution u

Number of random variables = N = 5
Number of anisotropic Smolyak collocation points = M = 11



N MC AS

5 7e+03 801
10 9e+06 1581
20 8e+09 11561

For N random parameters, the number of Monte Carlo samples and the number
of anisotropic Smolyak collocation points required to reduce the original error in
the expected values of both the solution u and coefficient κ by a factor of 106


