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minimize
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f(x) subject to c(x) = 0 ←− discrete PDE

=⇒ EQP step subproblemsk from xk

minimize
s∈IRn

1

2
sTHks + sTgk subject to Jks + ck = 0

←− linearized PDE

Jk Jacobianof constraints

Hk symmetric but indefinite≈ ∇xxℓ(x, y) Hessian of Lagrangian

NB. If the PDE is nonlinear, this will influenceHk!

CLAPDE Durham, 23rd July 2008 – p. 2/9



EQP is not equivalent to a saddle point system
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unless(∼) sTHks > 0 for all nonzeros : Jks = 0 c.f., 2nd-order opt

Tasks

find iterative methods which can identify this situation

if violated, want instead normalizedsk to minimize
sTHks : Jks = 0, e.g., appropriate eigenvector

if satisfied, eigenvalue bounds?

OK for constraint-preconditioned CG, but what else??
CLAPDE Durham, 23rd July 2008 – p. 3/9



Residual reduction is not enough
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may not reduce(∗) for many iterations

are there iterative methods which can ensure(∗) every iteration?
Every pair of iterations??
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Three basic computational components

Findsk = nk + tk where

Jknk + ck ≈ 0
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may need to “regularise” (trust-region/cubic regularisation??)

can embed within globally convergent “funnel” framework

C.f.— linesearch-based methods based on iterative saddle-point solution
which (to my knowledge) use heuristic perturbations toHk

how do non-trivial perturbations affect the excellent PDE-based
preconditioners?
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Multilevel methods

It is unclear how best to use multigrid in the PDE-optimization context

apply linear multigrid to the EQP subproblem

apply nonlinear multigrid/multilevel ideas
geometric (Toint, Gratton, Sartenaer, Mouffe, . . . )

algebraic
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Auxiliary constraints

If there additional non-PDE side constraints on (e.g.) controls:

extra equations

simple bounds on variables

general inequalities

integer restrictions

how can we impose these without destroying PDE-specific structure (e.g.)
preconditioners?
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“Big” questions

Krylov-based methods treat
(

H JT

J 0

)

as a generic matrix/operator
are there new methods which really exploit the zero block?
are there new methods which really exploit the substructure?
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“Big” questions

Krylov-based methods treat
(

H JT

J 0

)

as a generic matrix/operator
are there new methods which really exploit the zero block?
are there new methods which really exploit the substructure?

Krylov-based methods obtain products

(

H JT

J 0

)(

u

v

)

,

i.e.,Hu, Ju andJTv

are there better methods without such strong ties, e.g.,
Hu, Jw andJTv?
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Over to you . . .

Thanks to Alison, Andy and David!
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