Challenges for CLAPDE from Optimization:
A Personal View

Nick Gould (RAL)

minimize f(x) subjecttocg(x) =0
rcR"
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Generic quadratic optimization problem from CLAPDE

minimize f(x) subjectto c(x) = 0 «— discrete PDE
rcR"

—> EQP step subproblemsy, from x,

minimize %sTHks + sTg,, subjectto Jis +c =0
s€R «—— linearized PDE

J. Jacobianof constraints
H;, symmetric but indefinitez V ...£(x, y) Hessian of Lagrangian

NB. If the PDE is nonlinear, this will influencgl,,!
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EQP Is not equivalent to a saddle point system

S = arg minimize %.STHk,s + sTg,, subjectto Jps +c =0
scR"

#+—=> saddle-point solution

(T (o)== ( %)

unless(~) s?' Hys > 0 for all nonzeros : Jis = 0 c.f., 2nd-order opt
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EQP Is not equivalent to a saddle point system

S = arg minimize %sTHks + sTg,, subjectto Jps +c =0
scR™

#+=> saddle-point solution

(T (o)== ( %)

unless(~) s?' Hys > 0 for all nonzeros : Jis = 0 c.f., 2nd-order opt

Tasks

find iterative methods which can identify this situation

If violated, want instead normalizesq, to minimize
s Hys : Jps = 0, e.g., appropriate eigenvector

If satisfied, eigenvalue bounds?

OK for constraint-preconditioned CG, but what else??
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Residual reduction is not enough

would like reduction in
(%) ||Jks + ck|| andlor :sT Hys + st gy
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Residual reduction is not enough

would like reduction in
(%) ||Jrxs + ck|| andlor 1sT Hys + st gy

minimum residual like-methods (MINRES, GMRES, QMR, .. .mai
for reduction in
HkS + g + ng
Jis + ci
may not reducé:) for many iterations

are there iterative methods which can engueevery iteration?
Every pair of iterations??
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Three basic computational components

Find s, = ng + tr where
WJn+c~0

ngyk—l—gkzO

w (approx min) 1t H, t, +tig, : J . t,
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Three basic computational components

Find s, = ng + tr where
Jn +cr =~ 0

Jly, +g,.~0
(approx min) 1t: H, t, + ti g, : J,. t,

all need to be efficient and matrix free
may need to “regularise” (trust-region/cubic regularmat?)
can embed within globally convergent “funnel” framework

C.f.— linesearch-based methods based on iterative saddlégubiriion
which (to my knowledge) use heuristic perturbationgdg

how do non-trivial perturbations affect the excellent Pbdsed
preconditioners?
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Multilevel methods

It is unclear how best to use multigrid in the PDE-optimiaatcontext
apply linear multigrid to the EQP subproblem

apply nonlinear multigrid/multilevel ideas
] geometric (Toint, Gratton, Sartenaer, Mouffe, ...)
W algebraic
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Auxiliary constraints

If there additional non-PDE side constraints on (e.g.) st
extra equations
simple bounds on variables
general inequalities
Integer restrictions

how can we impose these without destroying PDE-specifictire (e.g.)
preconditioners?
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“Big” questions
Krylov-based methods treat
H JT
J 0
as a generic matrix/operator

m are there new methods which really exploit the zero block?
m are there new methods which really exploit the substru@ture
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“Big” questions

Krylov-based methods treat

)

as a generic matrix/operator
m are there new methods which really exploit the zero block?
® are there new methods which really exploit the substru@ture

Krylov-based methods obtain products

(7 9)()

.e., Hu, Ju andJTv
m are there better methods without such strong ties, e.g.,

Hu, Jw andJTv?
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Overtoyou...

Thanks to Alison, Andy and David!
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