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P.S. Hope nonlinear problems are admissable! 



While I provide Consultancy to Pilkington, 
and believe some of the examples are important  
for the future of the wider glass industry and  
beyond, MY INVOLVEMENT HERE IS PERSONAL 
 
However it does draw from Pilkington experience, 
with their permission, as well as other sources. 
 
APPLIED MATHEMATICS: Julian Hunt – past 
president IMA in his Presidential Address: 
 
“Most interesting mathematics now involves 
Inverse Problems“, or words to that effect 



 
WHY  Forward Problems 

WHERE  Diagnostic Inverse Problems 
HOW   Inverse Design Problems 

 
 Diagnosis: detecting whether something exists, 

and if so finding the detail 
 
Design: finding if something can be made, and 
if so how, if not finding an acceptable substitute 
 
May be the same equation  

– but a very different philosophy 



Concentrate here on Design involving PDEs 
- almost always ill posed in the Hadamard sense 
- often not amenable to standard regularisation 
- rarely suited to parametric optimisation 
- relevant to both products and processes 

 
This is Industrial Mathematics – with the 
emphasis on the PROBLEM not the mathematics 
 
I take in my historical order – mostly also the 
order in which they became worth doing 
The first is in fact Diagnostic and Meteorological, 
but makes a good starting point 



1962 – Finding Geostrophic Flows 
 
Then Design and Industrial 

       
1966 - Turbine Blade Design 

1970 - Electrochemical Machining 

1974 - Mold Design 

1978 - Heating Aircraft Screens 

1982 - Canal Cooling Control (DPCS) 
 
.................................... 
 
2000 - Making Car Windscreens 

2004 - Making Non-circular Tubes 



1962 – Finding Geostrophic Flows 
 
Weather forecasting is easy  

– if you know what the weather is now 
 

In those days of  a 2 layer model  
one updated the estimated mid-height transverse 
pressure distribution using ’radio-sonde’ data 
and found the corresponding streamline flow 

 div(f grad ψ) + 2( ψxx ψ yy - ψxy
2 ) = div(g grad h) 

 (f is the earth’s local rotation) 
 Ellipticity requires: 
 f2/2 + f div(grad ψ) + 2( ψxx ψ yy - ψxy

2 ) > 0 



Outside the Tropics (not included at that date) 
f grad ψ) = g grad h 
provides a good enough estimate to adjust  
div(g grad h) by modifying h 
However weather forecasts are sensitive to any 
internal inconsistences in the data and it must be 
done with caution 
An opposing compromise is that the numerical 
results get rougher as the equation becomes closer 
to becoming hyperbolic 
The equation is sufficiently non-linear to require a 
full convergence analysis of the linearisation used – 
not repeated here – to develop a reliable algorithm 



THE OUTCOME 
 

1. The numerical solution must be absolutely 
robust to incorporate within each step of a 
numerical weather forecast, while taking as few 
liberties as possible in adjusting the data to avoid 
superficially hyperbolic regions. 

2. At that date numerical methods themselves 
were in their early days – this may have been one 
of the earliest applications of ’A D I’ methods 

3. Nevertheless the discretisation and solution 
algorithm proved robust in every respect 
 



       1966 - Turbine Blade Design 
 

At this date the preferred shape profiles at low 
Mach number were still hard to determine, and 
the design target was presentied in terms of the 
surface velocity 
 

In terms of a stream function ψ ψ ψ ψ this satisfies 
Laplaces equation in an infinite region with  
ψ and d ψ /dn specified at the boundary BUT this 
is undetermined and to be found 

 

As a free boundary problem this is not 
necessarily as ill posed as other problems  
considered here 



It is instructive to note that: 

 

A generalisation of the Joukowsky aerofoil to 
singularities along the centre line was 
satisfactory for thin blades 

 

For thicker blades singularities on the boundary 
positioned opposite with respect to the centre 
line proved satisfactory 

 

Near analytic methods for design are limited to 
water & low Mach no. gas/steam turbines 
 
Interest moved to ’streamline curvature’ with a 
less direct approach to the inverse problem 



1970 - Electrochemical Machining 

1974 - Mold Design 
 

The same axisymmetric 
problem 
 
To produce a hole to the 
outside profile,  
find the inner tool profile so 
that  
with electrolyte between, the 
advancing tool gives the 
desired shape OR 



To press a TV tube neck to the inner profile, find 
the outer water cooled mold boundary so that at 
the inner boundary the necessary temperature T 
(to ensure good surface quality) AND heat 
transfer to match that from the glass are obtained 
v (or T) satisfies Laplaces Equation  
On the outer/inner boundary v (or T)  
AND dv/dn (or dT/dn) are specified 
 
v (or T) is specified on the boundary to be found 
 
Laplaces Equation is to be integrated given 
’initial conditons’ and the problem is ill-posed 



Hewson Browne at Sheffield in particular drew on 
astrophysics experience to produce analytical 
solutions to the machining problem. 
 
Fortunately the practical problems are near to 1D 
perpendicular to the defined surface, giving: 
An initial estimate of the undetermined boundary 
A predictor-corrector algorithm adequate for the 
design pupose and used for the press tooling 
 
Further work on ECM was at the then PERA and I 
do not know how important this treatment was in 
their subsequent developments 



1978 - Heating Aircraft Screens 

    
The mathematics dates from 1968, 

  but the process was still an idea, 
  and ’took off’ in around 1978 
 
  One puts down a coating with an appropriate 

distribution of conductivity σσσσ    
    
Busbars at top and bottom supply current with 
controlled voltages, say V & 0 (zero) 
Aircraft screens are bent but near enough 
developable surfaces to use flat co-ordinates 



THE PROBLEM 
A sputtering process was used to provide  a 
conducting coating 
This involved setting up an array of cathodes 
to achieve the required distribution of σσσσ 
A handful of people developed the skill and 
experience to put down a uniform grading 
 
BUT the Trident, 747 and suchlike clearly 
required a 2D distribution 
They could not find a good enough set-up to 
achieve the requirement of uniformity of 
heating to around +/-5%    



div(σ grad v) = 0 
 
Uniform heating H is required 
 
(σ grad v . grad v) = H 
 
σσσσ can be found after solving 
 
div(1/(grad v. grad v) grad v) = 0 
 
Unfortunately this is hyperbolic – other 
problems involving (1/grad v. grad v)m 

are mostly in the elliptic range m<1/2 



The equation applies also to power law fluids, 
exceptionally in the hyperbolic range 
 
It is closely related to the compressible flow 
equation. 
 
The approach I used was newish at the time 
and published for compressible flow in the  
Intnl. Jnl. of Num. Meth. in Eng. The ill posed 
problem was too way out for the SIAM Journal 
 
This idea will re-appear and is now almost the 
norm so some detail is given in this case. 



 
  HOWEVER there are ?surprisingly? some 

EXACT  SOLUTIONS 
 
   

σ   
 
 
 
 

α   
 
                 σ cot2 α           α 



          The basic unit can be built up into a variety of  
  exact solutions    
 

It illustrates the need for a discontinuity in σσσσ  
at anything but a right angled corner 
 
It is ’easy’ to achieve uniform rather than zero 
heating in an acute angled corner  
and to avoid a singularity in heating at an 
obtuse angled corner                          
 
This understanding is useful in itself – but not  
enough  
HOWEVER a non-trivial test case is useful 



The iterations which are natural for the elliptic 
problem extend to the hyperbolic one 
surprisingly well  
 
div(σn grad v n) = 0 
 
Uniform heating H is required 
 
σn+1  = H / (grad v n . grad v n) 
 
We assume a solution σ exists and throughout  
the iteration we can linearise using σ + ε 
 



We seek eigenfunctions for ε satisfying 
ε n+1  = λ ε n 
and with no great difficulty find is λ real 
 
For -ve m 2 m </= λ <= 0 
For +ve m 0 </= λ </= 2 m 
 
The iteration converges for |m| < ½ 
The elliptic case with m < -½ requires 
σ n + α (σn+1 - σn) with α < 1 
The hyperbolic case m>1/2 gives  
0 </= λ </= 2 m > 1 and 0 </= λ </= 2 for m=1 
However we can still achieve convergence! 



The above iteration implicitly assumes 
grad v n is a useful approximation 
Consider elongated regions with substantially 
1D along the length 
The assumption is good for long closely 
spaced busbars 
For short widely spaced busbars the current  
σn grad v n should give a better approximation  
than the voltage gradient 
An alternative iteration would be 
σn+1  = σn

2 (grad v n . grad v n) /H 
The eigenfunctions ε n are unchanged BUT 
with the eigenvalue λ n changed to 2 - λ n 



Using σn+1  = H / (grad v n . grad v n) 
And then σn+2  = σn+1

2 (grad v n+1 . grad v n+1) /H 
Gives eigenvalues λ n(2 - λ n) 
Since 0 </= λ n  </= 2 , 0 </= λ n(2 - λ n)  </= 1 
This is a non-divergent iteration and λ n close 
 to 1 correspond to ε n with near uniform H 
Using a standard finite volume discretisation 
the iteration runs as expected, giving more 
uniform H at the cost of increasingly rough σ 
One can accelerate the iteration and smooth v 
BUT a few iterations of the above gave enough 
guidance for a skilled operator to set up for  a 
new screen with no great difficulty 



THE OUTCOME 
1. A few iterations of the above on  a coarse 
mesh  proved sufficient guidance for a skilled 
operator to set up the process for a new 
screen without difficulty 
2. As the individual cathode opertation became 
more reliable, I wondered about developing the 
code to specify the set-up directly 
3. The feeling was that cathode behaviour was 
understood empirically but difficult to model  
4. With very little change, the code was crucial 
in developing new screens for over 20 years – I 
think now alternative technologies are used. 



1982 - Canal Cooling Control (DPCS) 
 

It is necessary in making – for example – bottles 
to have  a very uniform temperature 
 
This may be 200-300C below the temperature at 
which the glass can be taken from the furnace 
 
The glass is carried along  a canal of more or less 
rectangular cross section with a free surface in 
slow viscous flow: it can only be cooled (and if 
necessary re-heated) at the top and side 
boundaries 



What is the shortest length of canal necessary? 
A constraint is that the boundaries must be kept 
above the ’devitrification’ temperature at which 
crystals start to form 
 
This type of ’Distributed Parameter Control 
System’ was being widely explored at the time  
 
The straightforward answer is 
Cool initially to an average below the target 
Reheat the boundaries with a small overshoot  
etc. giving  optimum operation with alternating 
cooling/heating steps of reducing length 



The practical plant designer finds this 
impractical - and of little potential benefit 
The standard approach is in summary to cool 
as fast as possible to the required average: 
then avoid further boundary heat transfer 
 
A related problem I was not aware of then is: 
Towing  a long line with for example sounding 
equipment, bring it back to straight in the 
shortest possible distance after a turn 
I suspect (but do not know) that a skipper will 
instinctively run with the optimum overshoot 
and series of ever shorter correcting moves 

 



2000 - Making Car Windscreens 

    
  The bending process is old 

The mathematics dates from 1990 as the 
required shapes became more complicated 

 
  One sags the glass at around 600C  

supported round the edge,  
controlling temperature and hence viscosity  µ 
over the area so it sags to the target shape 
    
Car  windscreens now have too much cross 
curvature to treat as developable surfaces 



There is an alternative process 
A key decision is whether sag bending can or 
cannot make a new product 
Getting this wrong can be VERY expensive 
 
The ’forward’ problem is non-linear and the 
inverse design problem for µ is normally of 
mixed type 
 
The problem considered explicitly here is the 
elastic bending of a flat rectangular simply 
supported plate to a specified small deflection 
 



This 4th order linear inverse problem, unlike 
the earlier 2nd order non-linear one, was 
published in SIAM 
Philipp Kugler, SIAM J. Appl. Math. Vol.64 No.3 pp858-877 
This was a result of an outstandingly 
successful outcome of EEC funding through 
ECMI for academic interchanges, in this case 
between Linz and Oxford 
 
The governing equation - to be regarded as an 
equation for E, not w is  
 
[E(wxx+ν wyy)] xx+[E(wyy+ν wxx)] yy+2(1- ν)(Ewxy)xy = f 



The visco-elastic analogy: 
 
For small displacement problems in slow 
viscous flow the velocity v can often be found 
as the displacement w in the geometrically 
identical problem elastic problem taking: 
E = 3 µ ,   ν = ½  
 

Looking ahead, the sag occurs on a support 
which matches the edge of the windscreen and 
is  NOT flat  
The elastic problem remains well defined 
despite the developing contact - the viscous 
time dependent problem does not 



The above is one reason for working with the 
elastic inverse problem, despite the possible 
need for some iterative refinement. 
 
Another attractive concept is that the bending 
might be thought of as a 2 stage process: 
1 Bending to a developable surface on the 
   support 
2 Cross curvature developing only within what  

can be regarded as a linear perturbation on 
this surface – an approach found to be of 
great value considering the simpler 1D 
problem for the vertical centre line 



Philipp worked on the same philosophy as used 
for the heated windscreen: assume a solution 
exists and seek a convergent iteration 
A demonstrably reliable iteration comes most 
easily (after reformulating the equation with ν= ½ ) 
as: 

     [E(wxx+ wyy)] xx+[E(wyy+ wxx)] yy 

+[Ewxy] xy - (Ewyy)xx/2  - (Ewyy)xy/2  = f 
 

E(k+1) / E(k) = 2 -[w(k)xx wxx + w(k)yy wyy  
+ wxy w xy + wyy w xx /2 + wxx wyy /2] / 

        [w(k) xx wxx + w(k) yy wyy  
+ wxy wxy  + wyy w xx /2 + wxx wyy /2] 



Having seen this, but noting it does not reduce 
to the non-iterative exact solution in the 1D 
case, my inclination is to develop this giving:  

  
  

E(k+1) / E(k) = [w(k)xx wxx + w(k)yy wyy  
+ w(k)xy w xy  + w(k)yy w xx /2 + w(k)xxw yy /2] /  
  [w xx wxx + wyy wyy  

+ w xy w xy  +wyy w xx /2 + wxxw yy /2] 
   

The former uses solely the latest Total 
Curvature: the latter seems more likely to be 
robust in the regions where this is small and  
the Cross Curvature is the more significant 

  



THE OUTCOME 

An attempt at standard regularistion failed due 
to the numerical problems of consistent 
evaluation of high derivatives in the FE code 
Some guidelines have been found 
However I believe normal practice is using 
parametric methods which may work well  
BUT can be very unsatisfactory 
At least trial and error is a lot cheaper on a 
computer than on production plant! 
Philipp’s paper and examples suggest a 
hopeful line of approach – but it has yet to be 
shown it is robust  for products of interest 



2004 - Making Non-circular Tubes  
 
Glass tubes such as those used for 
fluorescenrt lighting are circular 
 
They are drawn from an annular orifice 
OR from a rotating mandrel  
 
They are carried for many metres on rollers 
before they are cool enough to cut 
Back-pressure from  an internal gas flow along 
them and a slow rotation about the axis as 
they travel keeps them circular 



For a period of some years modelling 
workshops were run by the Glass SIG of ECMI 
Schott raised the problem of forming other 
sections - for example square tubes 
 
The internal pressure and additionally surface 
tension (ST) tend to keep a tube round: 
rotation avoids gravitational flattening 
 
Other shapes clearly need minimal or negative 
excess pressure. That tends to be unstable but 
’upstream’ integration of the equation for 
profile development is possible 



HOWEVER incorporating ST the integration is 
grossly unstable – over short wavelengths 
falttening is very fast – and unstable growth of 
roughness integrating upstream. 
 
Various participating groups looked at this 
with some resulting publications. I think a fair 
summary is that rather than regularising the 
problem it is better to: 
Integrate the equation upstream with zero ST 
to give a suggested feed shape, 
then downstream including ST 



The upstream intgration with zero ST then 
provides the basis for a predictor-corrector 
algorithm  
 
This applies to the process using an orifice 
which can define the initial profile 
 

THE END 
 

With thanks for your interest in this type of 
industrial application of some of the problems 
being studied in this Durham Symposium 
 



SUMMARY 
 

1. Ad hoc iterative methods can work  
surprisingly well for ill posed design problems 

 
2. However the iteration must be carefully 

chosen with appropriate convergence 
parameters 

 
3. As for the NS equations (unless the interest is  

in instability phenomen as in meteorology), 
discretisations should tend to err towards 
being ’more elliptic’ / ’smoother’ than the 
equation 


