

Symmetric iterative solvers for symmetric saddle-point problems

Sue Dollar and Nick Gould

Nonlinear programming problems

Many methods for solution of

 $\min_{x\in \mathbb{R}^n} F(x) \quad \text{subject to} \quad Ax = b, Cx \geq 0$

involve solving a sequence of equality programming problems of the form

 $\min_{p \in \mathbb{R}^n} \frac{1}{2} p^T H p + g^T p \quad \text{subject to} \quad Ap = -d.$

Nonlinear programming problems

Many methods for solution of

 $\min_{x\in \mathbb{R}^n} F(x) \quad \text{subject to} \quad Ax = b, Cx \geq 0$

involve solving a sequence of equality programming problems of the form

$$\min_{p \in \mathbb{R}^n} \frac{1}{2} p^T H p + g^T p \quad \text{subject to} \quad Ap = -d.$$

Karush-Kuhn-Tucker equations:

$$\begin{bmatrix} H & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} p \\ -\lambda \end{bmatrix} = \begin{bmatrix} -g \\ -d \end{bmatrix}$$

$$\begin{bmatrix} H & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} p \\ -\lambda \end{bmatrix} = \begin{bmatrix} -g \\ -d \end{bmatrix}$$

Direct sparse methods

$$\begin{bmatrix} H & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} p \\ -\lambda \end{bmatrix} = \begin{bmatrix} -g \\ -d \end{bmatrix}$$

Black box

$$\begin{bmatrix} H & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} p \\ -\lambda \end{bmatrix} = \begin{bmatrix} -g \\ -d \end{bmatrix}$$

Direct sparse methods

Black box

Inertia revealing

$$\begin{bmatrix} H & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} p \\ -\lambda \end{bmatrix} = \begin{bmatrix} -g \\ -d \end{bmatrix}$$

Direct sparse methods

Black box

Inertia revealing

May have problems with very large problems

$$\begin{bmatrix} H & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} p \\ -\lambda \end{bmatrix} = \begin{bmatrix} -g \\ -d \end{bmatrix}$$

Direct sparse methods

Black box

Inertia revealing

May have problems with very large problems

MINRES

$$\begin{bmatrix} H & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} p \\ -\lambda \end{bmatrix} = \begin{bmatrix} -g \\ -d \end{bmatrix}$$

Direct sparse methods

Black box

Inertia revealing

May have problems with very large problems

MINRES

Short-term recurrence

$$\begin{bmatrix} H & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} p \\ -\lambda \end{bmatrix} = \begin{bmatrix} -g \\ -d \end{bmatrix}$$

Direct sparse methods

Black box

Inertia revealing

May have problems with very large problems

MINRES

Short-term recurrence

Symmetric and positive-definite preconditioner

$$\begin{bmatrix} H & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} p \\ -\lambda \end{bmatrix} = \begin{bmatrix} -g \\ -d \end{bmatrix}$$

Direct sparse methods

Black box

Inertia revealing

May have problems with very large problems

MINRES

Short-term recurrence

Symmetric and positive-definite preconditioner

Not inertia revealing

$$\begin{bmatrix} H & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} p \\ -\lambda \end{bmatrix} = \begin{bmatrix} -g \\ -d \end{bmatrix}$$

Direct sparse methods

Black box

Inertia revealing

May have problems with very large problems

MINRES

Short-term recurrence

Symmetric and positive-definite preconditioner

Not inertia revealing

Projected PCG

$$\begin{bmatrix} H & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} p \\ -\lambda \end{bmatrix} = \begin{bmatrix} -g \\ -d \end{bmatrix}$$

Direct sparse methods

Black box

Inertia revealing

May have problems with very large problems

MINRES

Short-term recurrence

Symmetric and positive-definite preconditioner

Not inertia revealing

Projected PCG

Short-term recurrence

$$\begin{bmatrix} H & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} p \\ -\lambda \end{bmatrix} = \begin{bmatrix} -g \\ -d \end{bmatrix}$$

Direct sparse methods

Black box

Inertia revealing

May have problems with very large problems

MINRES

Short-term recurrence

Symmetric and positive-definite preconditioner

Not inertia revealing

Projected PCG

Short-term recurrence

Inertia revealing

$$\begin{bmatrix} H & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} p \\ -\lambda \end{bmatrix} = \begin{bmatrix} -g \\ -d \end{bmatrix}$$

Direct sparse methods

Black box

Inertia revealing

May have problems with very large problems

MINRES

Short-term recurrence

Symmetric and positive-definite preconditioner

Not inertia revealing

Projected PCG

Short-term recurrence

Inertia revealing

Uses constraint preconditioner

$$\begin{bmatrix} G & A^T \\ A & 0 \end{bmatrix}$$

Theorem (Gould 1985): Let A have full row rank and Z be such that AZ = 0 and $rank(A^T, Z) = n$. Then

- (EQP) has a strong minimizer iff $Z^T H Z$ is positive definite;
- (EQP) has weak minimizer if $Z^T H Z$ is positive semi-definite with $Z^T H Z$ singular and equations consistent;
- Otherwise, (EQP) has no finite solution.

Theorem (Gould 1985): Let A have full row rank and Z be such that AZ = 0 and $rank(A^T, Z) = n$. Then

(EQP) has a strong minimizer iff $Z^T H Z$ is positive definite;

(EQP) has weak minimizer if $Z^T H Z$ is positive semi-definite with $Z^T H Z$ singular and equations consistent;

Otherwise, (EQP) has no finite solution.

PPCG method derived by applying PCG to problem of form $Z^T H Z p_z = r_z$ with preconditioner $Z^T G Z$

Theorem (Gould 1985): Let A have full row rank and n_{-} and n_{0} be the number of negative and zero eigenvalues of K. Then

- (EQP) has a strong minimizer iff $n_{-} = m$ and $n_{0} = 0$;
- (EQP) has weak minimizer iff $n_{-} = m$, $n_0 > 0$ and equation consistent;
- Otherwise, (EQP) has no finite solution.

Requirements

We would like to form an iterative method that

- is a short-term recurrence scheme;
- is inertia revealing;
- performs similarly to MINRES.

Can we build a basis \mathcal{U}_j for the Krylov subspace

$$\mathcal{K}_{j}(K,r_{0}) = \operatorname{span}\left\{r_{0}, Kr_{0}, K^{2}r_{0}, \dots, K^{j}r_{0}\right\}$$

such that $U_j^T K U_j$ is block diagonal with 1x1 and 2x2 blocks?

Can we build a basis \mathcal{U}_i for the Krylov subspace

$$\mathcal{K}_{j}\left(K,r_{0}\right) = \operatorname{span}\left\{r_{0},Kr_{0},K^{2}r_{0},\ldots,K^{j}r_{0}\right\}$$

such that $U_j^T K U_j$ is block diagonal with 1x1 and 2x2 blocks? Original idea: Is it possible to find U_j such that

and K_i are 2x2 saddle-point systems with zero (2,2) block?

Can we build a basis \mathcal{U}_i for the Krylov subspace

$$\mathcal{K}_j(K, r_0) = \operatorname{span}\left\{r_0, Kr_0, K^2r_0, \dots, K^jr_0\right\}$$

such that $U_j^T K U_j$ is block diagonal with 1x1 and 2x2 blocks? Original idea: Is it possible to find U_j such that

and K_i are 2x2 saddle-point systems with zero (2,2) block? No, but can detect at each stage whether we should form a 2x2 or 1x1 block.

Can we build a basis \mathcal{U}_j for the Krylov subspace

$$\mathcal{K}_j(K, r_0) = \operatorname{span}\left\{r_0, Kr_0, K^2r_0, \dots, K^jr_0\right\}$$

such that $U_j^T K U_j$ is block diagonal with 1x1 and 2x2 blocks? Original idea: Is it possible to find U_j such that

and K_i are 2x2 saddle-point systems with zero (2,2) block? No, but can detect at each stage whether we should form a 2x2 or 1x1 block. SYMMBK

Lanczos method

Lanczos method

Forms basis Q_j of $\mathcal{K}_j(K, r_0)$ such that

$$KQ_j - Q_jT_j = \gamma_{j+1}q_{j+1}e_{j+1}^T,$$

where

Lanczos method

Forms basis \mathcal{Q}_j of $\mathcal{K}_j(K, r_0)$ such that

$$KQ_j - Q_jT_j = \gamma_{j+1}q_{j+1}e_{j+1}^T,$$

where

At each iteration, solve $T_j v_j = Q_j^T b$ and set $y_j = Q_j v_j$.

SYMMBK (Chandra 1978)

Using Bunch-Parlett (1971), factor $T_j = L_j D_j L_j^T$, where D_j block diagonal with 1x1 and 2x2 blocks.

$$D_j = L_j^{-1} Q_j^T K Q_j L_j^{-T} = S_j^T K S_j$$

Vectors in S_j defined by short-term recurrence formula.

SYMMBK (Chandra 1978)

Using Bunch-Parlett (1971), factor $T_j = L_j D_j L_j^T$, where D_j block diagonal with 1x1 and 2x2 blocks.

$$D_j = L_j^{-1} Q_j^T K Q_j L_j^{-T} = S_j^T K S_j$$

Vectors in S_j defined by short-term recurrence formula.

Stability (Higham 1999): look ahead one Lanczos iteration before making decision whether new entry is in 1x1 or 2x2 pivot. No permutation required.

$$D_j = \begin{bmatrix} D_{j-1} \\ d_j \end{bmatrix},$$

$$D_j v_j = S_j^T b, \quad y_j = S_j v_j,$$

$$y_j = y_{j-1} + s_j d_j^{-1} s_j^T b.$$

SYMMBK (Chandra 1978)

Using Bunch-Parlett (1971), factor $T_j = L_j D_j L_j^T$, where D_j block diagonal with 1x1 and 2x2 blocks.

$$D_j = L_j^{-1} Q_j^T K Q_j L_j^{-T} = S_j^T K S_j$$

Vectors in S_j defined by short-term recurrence formula.

Stability (Higham 1999): look ahead one Lanczos iteration before making decision whether new entry is in 1x1 or 2x2 pivot. No permutation required.

$$D_j = \begin{bmatrix} D_{j-1} \\ d_j \end{bmatrix},$$

$$D_j v_j = S_j^T b, \quad y_j = S_j v_j,$$

$$y_j = y_{j-1} + s_j d_j^{-1} s_j^T b.$$

Note: Marcia (2007) uses Bunch-Marcia factorization - look ahead two Lanczos iterations. Does not need estimate of ||K||.

SYMMLQ (Paige & Saunders 1975) uses $T_j = L_j W_j$. SYMMBK generally has favourable operation counts and but requires one extra vector to be stored.

For SPD problems, SYMMBK reduces to the CG method.

MINRES: $\min_{x_j \in \mathcal{K}_j} \|Kx_j - b\|$ SYMBBK: $\|Kx_j - b\| \le \|L\| \|\widehat{S}_j b\|$, $S = [S_j, \widehat{S}_j]$

SYMMBK vs MINRES

Matlab 2007a

$$P = \begin{bmatrix} H + A^T \overline{W} A & 0 \\ 0 & W \end{bmatrix},$$

$$\gamma = \operatorname{normest}(A)^2 / \operatorname{normest}(H),$$

$$W = \gamma I,$$

$$\overline{W} = \operatorname{diag}(w_1, w_2, \dots, w_m)$$

$$w_i = \begin{cases} 0 & \text{if row } i \text{ in } A \text{ is dense}; \\ \frac{1}{\gamma} & \text{otherwise.} \end{cases}$$

(Rees & Greif, SISC 2007)

$$egin{array}{rcl} \lambda & = & 1, \ \lambda & = & -1, \ \lambda & \in & (-1,0). \end{array}$$

SYMMBK vs MINRES

SYMMBK vs MINRES (cont.)

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T H x + g^T x \quad \text{subject to} \quad Ax = b, x \ge 0.$$

Predictor-corrector interior-point method (solve two KKT systems with same coefficient matrix each iteration) KSIP (n = 1021, m = 1001) After 3 interior-point iterations (SYMMBK tolerance 10^{-2}) Warning: too many negative eigenvalues found > In symmbk2 at 201 In QP_MPC2 at 231

SYMMBK vs MINRES (cont.)

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T H x + g^T x \quad \text{subject to} \quad Ax = b, x \ge 0.$$

Predictor-corrector interior-point method (solve two KKT systems with same coefficient matrix each iteration)

Adaptive tolerance $\min\{10^{-2}, \max\{0.01\mu, 10^{-10}\}\}$

SYMMBK vs MINRES (cont.)

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T H x + g^T x \quad \text{subject to} \quad Ax = b, x \ge 0.$$

Predictor-corrector interior-point method (solve two KKT systems with same coefficient matrix each iteration)

Adaptive tolerance $\min\{10^{-3}, \max\{0.01\mu, 10^{-10}\}\}$

$$\min_{\mathbf{u},f} \frac{1}{2} \|\mathbf{u} - \hat{\mathbf{u}}\|_{2}^{2} + \beta \|f\|_{2}^{2}$$

subject to

$$\begin{aligned} -\nabla^2 \mathbf{u} &= & \text{f in } \Omega = [0, 1]^2 \\ \mathbf{u} &= & \widehat{\mathbf{u}} \text{ on } \delta\Omega, \end{aligned}$$

where

$$\widehat{\mathbf{u}} = \begin{cases} 16(x - \frac{1}{2})^2(y - \frac{1}{2})^2 & \text{if } (x, y) \in \left[0, \frac{1}{2}\right]^2 \\ 0 & \text{otherwise.} \end{cases}$$

$$\beta = 0.01$$

Using bilinear **Q1** elements:

$$\mathcal{A} = \begin{bmatrix} 2\beta M & 0 & -M \\ 0 & M & K^T \\ -M & K & 0 \end{bmatrix}, \quad \mathcal{P} = \begin{bmatrix} 2\beta M & 0 & 0 \\ 0 & M & 0 \\ 0 & 0 & KM^{-1}K \end{bmatrix}$$

Using bilinear **Q1** elements:

$$\mathcal{A} = \begin{bmatrix} 2\beta M & 0 & -M \\ 0 & M & K^T \\ -M & K & 0 \end{bmatrix}, \quad \mathcal{P} = \begin{bmatrix} 2\beta M & 0 & 0 \\ 0 & M & 0 \\ 0 & 0 & KM^{-1}K \end{bmatrix}$$

(Rees, Dollar & Wathen, 2008 Tech Report)

$$\lambda = 1,$$

$$\frac{1}{2} \left(1 + \sqrt{5 + \frac{2\alpha_1 h^4}{\beta}} \right) \leq \lambda \leq \frac{1}{2} \left(1 + \sqrt{5 + \frac{2\alpha_2}{\beta}} \right),$$

$$\frac{1}{2} \left(1 - \sqrt{5 + \frac{2\alpha_2}{\beta}} \right) \leq \lambda \leq \frac{1}{2} \left(1 - \sqrt{5 + \frac{2\alpha_1 h^4}{\beta}} \right).$$

Using bilinear **Q1** elements:

	$2\beta M$	0	-M		$-2eta \widetilde{M}$	0	0
$\mathcal{A} =$	0	M	K^T	$, \mathcal{P} =$	0	\widetilde{M}	0
	-M	K	0		0	0	$\widetilde{K}M^{-1}\widetilde{K}$

h	n	$SYMMBK(10^{-6})$	$SYMMBK(10^{-12})$	$MINRES(10^{-6})$	$\mathrm{MINRES}(10^{-12})$
2^{-2}	27	0.02 (7)	0.04 (12)	0.02 (7)	0.04 (12)
2^{-3}	147	0.03 (7)	0.05 (14)	0.03 (7)	0.05 (14)
2^{-4}	675	0.06 (9)	0.08 (14)	0.06 (9)	0.09 (14)
2^{-5}	2883	0.12 (7)	0.22 (14)	0.12 (7)	0.23 (14)
2^{-6}	11907	0.66 (9)	0.99 (14)	0.67 (9)	1.05 (14)
2^{-7}	48487	2.97 (9)	4.96 (16)	3.04 (9)	5.05 (16)
2^{-8}	195075	14.1 (9)	26.4 (18)	15.6 (9)	25.3 (17)
2^{-9}	783363	71.8 (11)	119 (20)	71.1 (11)	122 (20)

• Would like to track inertia of saddle-point problem

Would like to track inertia of saddle-point problemSYMMBK allows us to do this

Would like to track inertia of saddle-point problem

- SYMMBK allows us to do this
- In our examples, SYMMBK performs similarly to MINRES

- Would like to track inertia of saddle-point problem
- SYMMBK allows us to do this
- In our examples, SYMMBK performs similarly to MINRES
- GALAHAD