Symmetric iterative solvers for symmetric saddle-point problems

Sue Dollar and Nick Gould

Nonlinear programming problems

Many methods for solution of

$$
\min _{x \in \mathbb{R}^{n}} F(x) \quad \text { subject to } \quad A x=b, C x \geq 0
$$

involve solving a sequence of equality programming problems of the form

$$
\min _{p \in \mathbb{R}^{n}} \frac{1}{2} p^{T} H p+g^{T} p \quad \text { subject to } \quad A p=-d .
$$

Nonlinear programming problems

Many methods for solution of

$$
\min _{x \in \mathbb{R}^{n}} F(x) \quad \text { subject to } \quad A x=b, C x \geq 0
$$

involve solving a sequence of equality programming problems of the form

$$
\min _{p \in \mathbb{R}^{n}} \frac{1}{2} p^{T} H p+g^{T} p \quad \text { subject to } \quad A p=-d
$$

Karush-Kuhn-Tucker equations:

$$
\left[\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
p \\
-\lambda
\end{array}\right]=\left[\begin{array}{c}
-g \\
-d
\end{array}\right]
$$

Methods for solving KKT system

$$
\left[\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
p \\
-\lambda
\end{array}\right]=\left[\begin{array}{c}
-g \\
-d
\end{array}\right]
$$

Direct sparse methods

Methods for solving KKT system

$$
\left[\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
p \\
-\lambda
\end{array}\right]=\left[\begin{array}{c}
-g \\
-d
\end{array}\right]
$$

Direct sparse methods Black box

Methods for solving KKT system

$$
\left[\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
p \\
-\lambda
\end{array}\right]=\left[\begin{array}{c}
-g \\
-d
\end{array}\right]
$$

Direct sparse methods
Black box
Inertia revealing

Methods for solving KKT system

$$
\left[\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
p \\
-\lambda
\end{array}\right]=\left[\begin{array}{c}
-g \\
-d
\end{array}\right]
$$

Direct sparse methods
Black box
Inertia revealing
\square May have problems with very large problems

Methods for solving KKT system

$$
\left[\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
p \\
-\lambda
\end{array}\right]=\left[\begin{array}{c}
-g \\
-d
\end{array}\right]
$$

Direct sparse methods
Black box
Inertia revealing
May have problems with very large problems
MINRES

Methods for solving KKT system

$$
\left[\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
p \\
-\lambda
\end{array}\right]=\left[\begin{array}{c}
-g \\
-d
\end{array}\right]
$$

Direct sparse methods
Black box

- Inertia revealing

May have problems with very large problems
MINRES
\square Short-term recurrence

Methods for solving KKT system

$$
\left[\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
p \\
-\lambda
\end{array}\right]=\left[\begin{array}{c}
-g \\
-d
\end{array}\right]
$$Direct sparse methods

Black box
Inertia revealing
May have problems with very large problems
\square MINRES
\square Short-term recurrence
\square Symmetric and positive-definite preconditioner

Methods for solving KKT system

$$
\left[\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
p \\
-\lambda
\end{array}\right]=\left[\begin{array}{c}
-g \\
-d
\end{array}\right]
$$Direct sparse methods

Black box
Inertia revealing
May have problems with very large problems
\square MINRES
\square Short-term recurrence
\square Symmetric and positive-definite preconditionerNot inertia revealing

Methods for solving KKT system

$$
\left[\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
p \\
-\lambda
\end{array}\right]=\left[\begin{array}{c}
-g \\
-d
\end{array}\right]
$$

Direct sparse methods

- Black box
\square Inertia revealing
\square May have problems with very large problems
- MINRES
\square Short-term recurrence
\square Symmetric and positive-definite preconditioner
\square Not inertia revealing
Projected PCG

Methods for solving KKT system

$$
\left[\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
p \\
-\lambda
\end{array}\right]=\left[\begin{array}{c}
-g \\
-d
\end{array}\right]
$$

Direct sparse methods

- Black box
\square Inertia revealing
\square May have problems with very large problems
- MINRES
\square Short-term recurrence
\square Symmetric and positive-definite preconditionerNot inertia revealing
\square Projected PCG
\square Short-term recurrence

Methods for solving KKT system

$$
\left[\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
p \\
-\lambda
\end{array}\right]=\left[\begin{array}{c}
-g \\
-d
\end{array}\right]
$$

Direct sparse methods

- Black box

Inertia revealing
\square May have problems with very large problems

- MINRES
\square Short-term recurrence
\square Symmetric and positive-definite preconditioner
\square Not inertia revealing
\square Projected PCG
\square Short-term recurrence
\square Inertia revealing

Methods for solving KKT system

$$
\left[\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
p \\
-\lambda
\end{array}\right]=\left[\begin{array}{c}
-g \\
-d
\end{array}\right]
$$Direct sparse methods

Black box
Inertia revealing
May have problems with very large problems
\square MINRES
$\square_{\text {Short-term recurrence }}$
\square Symmetric and positive-definite preconditionerNot inertia revealing
\square Projected PCGShort-term recurrenceInertia revealing
\square Uses constraint preconditioner $\left[\begin{array}{cc}G & A^{T} \\ A & 0\end{array}\right]$

Inertia revealing property

$$
\begin{aligned}
& \min _{p \in \mathbb{R}^{n}} \frac{1}{2} p^{T} H p+g^{T} p \text { subject to } A p=-d . \quad \text { (EQP) } \\
& n \\
& m \underbrace{\left[\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right]}_{K}\left[\begin{array}{c}
p \\
-\lambda
\end{array}\right]=\left[\begin{array}{c}
-g \\
-d
\end{array}\right]
\end{aligned}
$$

Inertia revealing property

$$
\begin{aligned}
& \min _{p \in \mathbb{R}^{n}} \frac{1}{2} p^{T} H p+g^{T} p \text { subject to } A p=-d . \quad \text { (EQP) } \\
& n \\
& m \underbrace{\left[\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right]}_{K}\left[\begin{array}{c}
p \\
-\lambda
\end{array}\right]=\left[\begin{array}{c}
-g \\
-d
\end{array}\right]
\end{aligned}
$$

Theorem (Gould 1985): Let A have full row rank and Z be such that $A Z=0$ and $\operatorname{rank}\left(A^{T}, Z\right)=n$. Then
\square (EQP) has a strong minimizer iff $Z^{T} H Z$ is positive definite;
(EQP) has weak minimizer if $Z^{T} H Z$ is positive semi-definite with $Z^{T} H Z$ singular and equations consistent;
\square Otherwise, (EQP) has no finite solution.

Inertia revealing property

$$
\begin{aligned}
& \min _{p \in \mathbb{R}^{n}} \frac{1}{2} p^{T} H p+g^{T} p \text { subject to } A p=-d . \quad \text { (EQP) } \\
& n \\
& m \underbrace{\left[\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right]}_{K}\left[\begin{array}{c}
p \\
-\lambda
\end{array}\right]=\left[\begin{array}{c}
-g \\
-d
\end{array}\right]
\end{aligned}
$$

Theorem (Gould 1985): Let A have full row rank and Z be such that $A Z=0$ and $\operatorname{rank}\left(A^{T}, Z\right)=n$. Then
\square (EQP) has a strong minimizer iff $Z^{T} H Z$ is positive definite;
(EQP) has weak minimizer if $Z^{T} H Z$ is positive semi-definite with $Z^{T} H Z$ singular and equations consistent;

Otherwise, (EQP) has no finite solution.
PPCG method derived by applying PCG to problem of form $Z^{T} H Z p_{z}=r_{z}$ with preconditioner $Z^{T} G Z$

Inertia revealing property

$$
\begin{aligned}
& \min _{p \in \mathbb{R}^{n}} \frac{1}{2} p^{T} H p+g^{T} p \quad \text { subject to } A p=-d . \quad \text { (EQP) } \\
& n \\
& m \underbrace{\left[\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right]}_{K}\left[\begin{array}{c}
p \\
-\lambda
\end{array}\right]=\left[\begin{array}{c}
-g \\
-d
\end{array}\right]
\end{aligned}
$$

Theorem (Gould 1985): Let A have full row rank and n_{-}and n_{0} be the number of negative and zero eigenvalues of K. Then
(EQP) has a strong minimizer iff $n_{-}=m$ and $n_{0}=0 ;$
\square (EQP) has weak minimizer iff $n_{-}=m, n_{0}>0$ and equation consistent;
\square Otherwise, (EQP) has no finite solution.

Requirements

We would like to form an iterative method that
\square is a short-term recurrence scheme;
\square is inertia revealing;
performs similarly to MINRES.

Can we build a basis \mathcal{U}_{j} for the Krylov subspace

$$
\mathcal{K}_{j}\left(K, r_{0}\right)=\operatorname{span}\left\{r_{0}, K r_{0}, K^{2} r_{0}, \ldots, K^{j} r_{0}\right\}
$$

such that $U_{j}^{T} K U_{j}$ is block diagonal with 1×1 and 2×2 blocks?

Can we build a basis \mathcal{U}_{j} for the Krylov subspace

$$
\mathcal{K}_{j}\left(K, r_{0}\right)=\operatorname{span}\left\{r_{0}, K r_{0}, K^{2} r_{0}, \ldots, K^{j} r_{0}\right\}
$$

such that $U_{j}^{T} K U_{j}$ is block diagonal with 1 x 1 and 2×2 blocks?
Original idea: Is it possible to find U_{j} such that

and K_{i} are 2×2 saddle-point systems with zero $(2,2)$ block?

Can we build a basis \mathcal{U}_{j} for the Krylov subspace

$$
\mathcal{K}_{j}\left(K, r_{0}\right)=\operatorname{span}\left\{r_{0}, K r_{0}, K^{2} r_{0}, \ldots, K^{j} r_{0}\right\}
$$

such that $U_{j}^{T} K U_{j}$ is block diagonal with 1 x 1 and 2×2 blocks?
Original idea: Is it possible to find U_{j} such that

$$
U_{j}^{T} K U_{j}=\left[\begin{array}{cccccc}
K_{1} & & & & & \\
& \ddots & & & & \\
& & K_{m} & & & \\
& & & k_{m+1} & & \\
& & & & \ddots & \\
& & & & & k_{j-m+1}
\end{array}\right]
$$

and K_{i} are 2×2 saddle-point systems with zero $(2,2)$ block?
No, but can detect at each stage whether we should form a 2×2 or 1×1 block.

Can we build a basis \mathcal{U}_{j} for the Krylov subspace

$$
\mathcal{K}_{j}\left(K, r_{0}\right)=\operatorname{span}\left\{r_{0}, K r_{0}, K^{2} r_{0}, \ldots, K^{j} r_{0}\right\}
$$

such that $U_{j}^{T} K U_{j}$ is block diagonal with 1 x 1 and 2×2 blocks?
Original idea: Is it possible to find U_{j} such that

$$
U_{j}^{T} K U_{j}=\left[\begin{array}{cccccc}
K_{1} & & & & & \\
& \ddots & & & & \\
& & K_{m} & & & \\
& & & k_{m+1} & & \\
& & & & \ddots & \\
& & & & & k_{j-m+1}
\end{array}\right]
$$

and K_{i} are 2×2 saddle-point systems with zero $(2,2)$ block?
No, but can detect at each stage whether we should form a 2×2 or 1 x 1 block.
SYMMBK

Lanczos method

$$
\begin{gathered}
n \\
m
\end{gathered} \underbrace{\left[\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right]}_{K} \underbrace{\left[\begin{array}{c}
p \\
-\lambda
\end{array}\right]}_{y}=\underbrace{\left[\begin{array}{c}
-g \\
-d
\end{array}\right]}_{b}
$$

Lanczos method

Forms basis \mathcal{Q}_{j} of $\mathcal{K}_{j}\left(K, r_{0}\right)$ such that

$$
K Q_{j}-Q_{j} T_{j}=\gamma_{j+1} q_{j+1} e_{j+1}^{T}
$$

where

$$
T_{j}=\left[\begin{array}{ccccc}
\delta_{0} & \gamma_{1} & & & \\
\gamma_{1} & \delta_{1} & \ddots & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \delta_{j-1} & \gamma_{j} \\
& & & \gamma_{j} & \delta_{j}
\end{array}\right]=Q_{j}^{T} K Q_{j}
$$

Lanczos method

$$
m \underbrace{}_{K} m \underbrace{\left[\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right]}_{y} \underbrace{\left[\begin{array}{c}
p \\
-\lambda
\end{array}\right]}_{b}=\underbrace{\left[\begin{array}{c}
-g \\
-d
\end{array}\right]}_{b}
$$

Forms basis \mathcal{Q}_{j} of $\mathcal{K}_{j}\left(K, r_{0}\right)$ such that

$$
K Q_{j}-Q_{j} T_{j}=\gamma_{j+1} q_{j+1} e_{j+1}^{T}
$$

where

$$
T_{j}=\left[\begin{array}{ccccc}
\delta_{0} & \gamma_{1} & & & \\
\gamma_{1} & \delta_{1} & \ddots & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \delta_{j-1} & \gamma_{j} \\
& & & \gamma_{j} & \delta_{j}
\end{array}\right]=Q_{j}^{T} K Q_{j} .
$$

At each iteration, solve $T_{j} v_{j}=Q_{j}^{T} b$ and set $y_{j}=Q_{j} v_{j}$.

SYMMBK (Chandra 1978)

Using Bunch-Parlett (1971), factor $T_{j}=L_{j} D_{j} L_{j}^{T}$, where D_{j} block diagonal with 1x1 and 2×2 blocks.

$$
D_{j}=L_{j}^{-1} Q_{j}^{T} K Q_{j} L_{j}^{-T}=S_{j}^{T} K S_{j}
$$

Vectors in S_{j} defined by short-term recurrence formula.

SYMMBK (Chandra 1978)

Using Bunch-Parlett (1971), factor $T_{j}=L_{j} D_{j} L_{j}^{T}$, where D_{j} block diagonal with 1x1 and 2×2 blocks.

$$
D_{j}=L_{j}^{-1} Q_{j}^{T} K Q_{j} L_{j}^{-T}=S_{j}^{T} K S_{j}
$$

Vectors in S_{j} defined by short-term recurrence formula.
Stability (Higham 1999): look ahead one Lanczos iteration before making decision whether new entry is in 1×1 or 2×2 pivot. No permutation required.

$$
\begin{aligned}
D_{j} & =\left[\begin{array}{ll}
D_{j-1} & \\
& d_{j}
\end{array}\right], \\
D_{j} v_{j} & =S_{j}^{T} b, \quad y_{j}=S_{j} v_{j}, \\
y_{j} & =y_{j-1}+s_{j} d_{j}^{-1} s_{j}^{T} b .
\end{aligned}
$$

SYMMBK (Chandra 1978)

Using Bunch-Parlett (1971), factor $T_{j}=L_{j} D_{j} L_{j}^{T}$, where D_{j} block diagonal with 1x1 and 2×2 blocks.

$$
D_{j}=L_{j}^{-1} Q_{j}^{T} K Q_{j} L_{j}^{-T}=S_{j}^{T} K S_{j}
$$

Vectors in S_{j} defined by short-term recurrence formula.
Stability (Higham 1999): look ahead one Lanczos iteration before making decision whether new entry is in 1×1 or 2×2 pivot. No permutation required.

$$
\begin{aligned}
D_{j} & =\left[\begin{array}{ll}
D_{j-1} & \\
& d_{j}
\end{array}\right] \\
D_{j} v_{j} & =S_{j}^{T} b, \quad y_{j}=S_{j} v_{j} \\
y_{j} & =y_{j-1}+s_{j} d_{j}^{-1} s_{j}^{T} b
\end{aligned}
$$

Note: Marcia (2007) uses Bunch-Marcia factorization - look ahead two Lanczos iterations. Does not need estimate of $\|K\|$.
SYMMLQ (Paige \& Saunders 1975) uses $T_{j}=L_{j} W_{j}$. SYMMBK generally has favourable operation counts and but requires one extra vector to be stored.
For SPD problems, SYMMBK reduces to the CG method.
MINRES: $\min _{x_{j} \in \mathcal{K}_{j}}\left\|K x_{j}-b\right\| \quad$ SYMBBK: $\left\|K x_{j}-b\right\| \leq\|L\|\left\|\widehat{S}_{j} b\right\|, S=\left[S_{j}, \widehat{S}_{j}\right]$

SYMMBK vs MINRES

Matlab 2007a

$$
\begin{aligned}
P & =\left[\begin{array}{cc}
H+A^{T} \bar{W} A & 0 \\
0 & W
\end{array}\right] \\
\gamma & =\operatorname{normest}(A)^{2} / \operatorname{normest}(H) \\
W & =\gamma I, \\
\bar{W} & =\operatorname{diag}\left(w_{1}, w_{2}, \ldots, w_{m}\right) \\
w_{i} & =\left\{\begin{array}{cc}
0 & \text { if row } i \text { in } A \text { is dense } \\
\frac{1}{\gamma} & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

(Rees \& Greif, SISC 2007)

$$
\begin{aligned}
& \lambda=1 \\
& \lambda=-1 \\
& \lambda \in(-1,0)
\end{aligned}
$$

SYMMBK vs MINRES

CVXQP1_M $(n=1000, m=500)$

$\operatorname{KSIP}(n=1021, m=1001)$

SYMMBK vs MINRES (cont.)

$$
\min _{x \in \mathbb{R}^{n}} \frac{1}{2} x^{T} H x+g^{T} x \quad \text { subject to } \quad A x=b, x \geq 0 .
$$

Predictor-corrector interior-point method (solve two KKT systems with same coefficient matrix each iteration)
KSIP ($n=1021, m=1001$)
After 3 interior-point iterations (SYMMBK tolerance 10^{-2})
Warning: too many negative eigenvalues found
> In symmbk2 at 201
In QP_MPC2 at 231

SYMMBK vs MINRES (cont.)

$$
\min _{x \in \mathbb{R}^{n}} \frac{1}{2} x^{T} H x+g^{T} x \quad \text { subject to } \quad A x=b, x \geq 0
$$

Predictor-corrector interior-point method (solve two KKT systems with same coefficient matrix each iteration)

Adaptive tolerance $\min \left\{10^{-2}, \max \left\{0.01 \mu, 10^{-10}\right\}\right\}$

SYMMBK vs MINRES (cont.)

$$
\min _{x \in \mathbb{R}^{n}} \frac{1}{2} x^{T} H x+g^{T} x \quad \text { subject to } \quad A x=b, x \geq 0
$$

Predictor-corrector interior-point method (solve two KKT systems with same coefficient matrix each iteration)

Adaptive tolerance $\min \left\{10^{-3}, \max \left\{0.01 \mu, 10^{-10}\right\}\right\}$

PDE-constrained problem

$$
\min _{u, \pm} \frac{1}{2}\|\mathrm{u}-\widehat{\mathrm{u}}\|_{2}^{2}+\beta\|£\|_{2}^{2}
$$

subject to

$$
\begin{aligned}
-\nabla^{2} \mathrm{u} & =\mathrm{f} \text { in } \Omega=[0,1]^{2} \\
\mathrm{u} & =\widehat{\mathrm{u}} \text { on } \delta \Omega
\end{aligned}
$$

where

$$
\begin{aligned}
& \widehat{\mathrm{u}}=\left\{\begin{array}{cc}
16\left(x-\frac{1}{2}\right)^{2}\left(y-\frac{1}{2}\right)^{2} & \text { if }(x, y) \in\left[0, \frac{1}{2}\right]^{2} \\
0 & \text { otherwise } .
\end{array}\right. \\
& \beta=0.01
\end{aligned}
$$

PDE-constrained problem

Using bilinear Q1 elements:

$$
\mathcal{A}=\left[\begin{array}{ccc}
2 \beta M & 0 & -M \\
0 & M & K^{T} \\
-M & K & 0
\end{array}\right], \quad \mathcal{P}=\left[\begin{array}{ccc}
2 \beta M & 0 & 0 \\
0 & M & 0 \\
0 & 0 & K M^{-1} K
\end{array}\right]
$$

PDE-constrained problem

Using bilinear Q1 elements:

$$
\mathcal{A}=\left[\begin{array}{ccc}
2 \beta M & 0 & -M \\
0 & M & K^{T} \\
-M & K & 0
\end{array}\right], \quad \mathcal{P}=\left[\begin{array}{ccc}
2 \beta M & 0 & 0 \\
0 & M & 0 \\
0 & 0 & K M^{-1} K
\end{array}\right]
$$

(Rees, Dollar \& Wathen, 2008 Tech Report)

$$
\begin{aligned}
\lambda & =1 \\
\frac{1}{2}\left(1+\sqrt{5+\frac{2 \alpha_{1} h^{4}}{\beta}}\right) \leq \lambda & \leq \frac{1}{2}\left(1+\sqrt{5+\frac{2 \alpha_{2}}{\beta}}\right) \\
\frac{1}{2}\left(1-\sqrt{5+\frac{2 \alpha_{2}}{\beta}}\right) \leq \lambda & \leq \frac{1}{2}\left(1-\sqrt{5+\frac{2 \alpha_{1} h^{4}}{\beta}}\right) .
\end{aligned}
$$

PDE-constrained problem

Using bilinear Q1 elements:

$$
\mathcal{A}=\left[\begin{array}{ccc}
2 \beta M & 0 & -M \\
0 & M & K^{T} \\
-M & K & 0
\end{array}\right], \quad \mathcal{P}=\left[\begin{array}{ccc}
2 \beta \widetilde{M} & 0 & 0 \\
0 & \widetilde{M} & 0 \\
0 & 0 & \widetilde{K} M^{-1} \widetilde{K}
\end{array}\right]
$$

h	n	SYMMBK $\left(10^{-6}\right)$	SYMMBK $\left(10^{-12}\right)$	MINRES $\left(10^{-6}\right)$	MINRES $\left(10^{-12}\right)$
2^{-2}	27	$0.02(7)$	$0.04(12)$	$0.02(7)$	$0.04(12)$
2^{-3}	147	$0.03(7)$	$0.05(14)$	$0.03(7)$	$0.05(14)$
2^{-4}	675	$0.06(9)$	$0.08(14)$	$0.06(9)$	$0.09(14)$
2^{-5}	2883	$0.12(7)$	$0.22(14)$	$0.12(7)$	$0.23(14)$
2^{-6}	11907	$0.66(9)$	$0.99(14)$	$0.67(9)$	$1.05(14)$
2^{-7}	48487	$2.97(9)$	$4.96(16)$	$3.04(9)$	$5.05(16)$
2^{-8}	195075	$14.1(9)$	$26.4(18)$	$15.6(9)$	$25.3(17)$
2^{-9}	783363	$71.8(11)$	$119(20)$	$71.1(11)$	$122(20)$

Conclusions

- Would like to track inertia of saddle-point problem

Conclusions

- Would like to track inertia of saddle-point problem

SYMMBK allows us to do this

Conclusions

- Would like to track inertia of saddle-point problem
\square SYMMBK allows us to do this
In our examples, SYMMBK performs similarly to MINRES

Conclusions

- Would like to track inertia of saddle-point problem
\square SYMMBK allows us to do this
- In our examples, SYMMBK performs similarly to MINRES

GALAHAD

