Bifurcation Phenomena in the Flow through a Sudden Expansion in a Pipe

Andrew Cliffe ${ }^{1}$, Ed Hall ${ }^{1}$, Paul Houston ${ }^{1}$, Eric Phipps ${ }^{2}$ and Andy Salinger ${ }^{2}$
${ }^{1}$ University of Nottingham
${ }^{2}$ Sandia National Laboratories
LMS Durham Symposium
Computational Linear Algebra for Partial Differential Equations July 2008

Acknowledgements

This work is supported by the EPSRC under grants EP/E013724/1 and EP/F01340X/1.

Overview

- Introduction
- Bifurcation in the presence of $O(2)$ symmetry
- A posteriori error estimation
- Numerical results
- Summary and conclusions

Introduction

- Bifurcation phenomena in open systems:

Introduction

- Bifurcation phenomena in open systems:
- Flow past a cylinder in a channel.

Jackson JFM 1987; Cliffe and Tavener JFM 2004.

Introduction

- Bifurcation phenomena in open systems:
- Flow past a cylinder in a channel.

Jackson JFM 1987; Cliffe and Tavener JFM 2004.

- Z_{2} symmetry-breaking Hopf bifurcation.

Flow past a cylinder

Introduction

- Bifurcation phenomena in open systems:
- Flow past a cylinder in a channel.

Jackson JFM 1987; Cliffe and Tavener JFM 2004.

- Z_{2} symmetry-breaking Hopf bifurcation.

Introduction

- Bifurcation phenomena in open systems:
- Flow past a cylinder in a channel.

Jackson JFM 1987; Cliffe and Tavener JFM 2004.

- Z_{2} symmetry-breaking Hopf bifurcation.
- Flow through a sudden expansion in a channel.

Fearn, Mullin and Cliffe JFM 1990.

Introduction

- Bifurcation phenomena in open systems:
- Flow past a cylinder in a channel.

Jackson JFM 1987; Cliffe and Tavener JFM 2004.

- Z_{2} symmetry-breaking Hopf bifurcation.
- Flow through a sudden expansion in a channel.

Fearn, Mullin and Cliffe JFM 1990.

- Steady, Z_{2} symmetry-breaking bifurcation.

Channel with a Sudden Expansion - $\mathrm{Re}=20$

Channel with a Sudden Expansion - $\mathrm{Re}=25$

Channel with a Sudden Expansion - $\mathrm{Re}=30$

Channel with a Sudden Expansion - Re $=35$

Channel with a Sudden Expansion - Re $=40$

Channel with a Sudden Expansion - $\mathrm{Re}=45$

Channel with a Sudden Expansion $-\operatorname{Re}=50$

Andrew Cliffe
Bifurcation Phenomena in a Pipe Expansion

Channel with a Sudden Expansion - $\mathrm{Re}=55$

Andrew Cliffe
Bifurcation Phenomena in a Pipe Expansion

Channel with a Sudden Expansion $-\mathrm{Re}=60$

Andrew Cliffe
Bifurcation Phenomena in a Pipe Expansion

Channel with a Sudden Expansion - $\mathrm{Re}=65$

Channel with a Sudden Expansion - $\mathrm{Re}=70$

Channel with a Sudden Expansion - $\mathrm{Re}=75$

Channel with a Sudden Expansion - $\mathrm{Re}=80$

Andrew Cliffe

Channel with a Sudden Expansion - $\mathrm{Re}=85$

Andrew Cliffe

Channel with a Sudden Expansion $-\mathrm{Re}=90$

Andrew Cliffe

Channel with a Sudden Expansion - $\mathrm{Re}=95$

Andrew Cliffe

Channel with a Sudden Expansion - Re $=100$

Andrew Cliffe

Introduction

- Bifurcation phenomena in open systems:
- Flow past a cylinder in a channel.

Jackson JFM 1987; Cliffe and Tavener JFM 2004.

- Z_{2} symmetry-breaking Hopf bifurcation.
- Flow through a sudden expansion in a channel.

Fearn, Mullin and Cliffe JFM 1990.

- Steady, Z_{2} symmetry-breaking bifurcation.

Introduction

- Bifurcation phenomena in open systems:
- Flow past a cylinder in a channel. Jackson JFM 1987; Cliffe and Tavener JFM 2004.
- Z_{2} symmetry-breaking Hopf bifurcation.
- Flow through a sudden expansion in a channel.

Fearn, Mullin and Cliffe JFM 1990.

- Steady, Z_{2} symmetry-breaking bifurcation.
- Flow past a sphere in a pipe.

Tavener PoF 1994; Cliffe, Spence and Tavener IJNMF 2000.

Introduction

- Bifurcation phenomena in open systems:
- Flow past a cylinder in a channel.

Jackson JFM 1987; Cliffe and Tavener JFM 2004.

- Z_{2} symmetry-breaking Hopf bifurcation.
- Flow through a sudden expansion in a channel.

Fearn, Mullin and Cliffe JFM 1990.

- Steady, Z_{2} symmetry-breaking bifurcation.
- Flow past a sphere in a pipe.

Tavener PoF 1994; Cliffe, Spence and Tavener IJNMF 2000.

- Steady, $O(2)$ symmetry-breaking bifurcation.

Introduction

- Bifurcation phenomena in open systems:
- Flow past a cylinder in a channel.

Jackson JFM 1987; Cliffe and Tavener JFM 2004.

- Z_{2} symmetry-breaking Hopf bifurcation.
- Flow through a sudden expansion in a channel.

Fearn, Mullin and Clife JFM 1990.

- Steady, Z_{2} symmetry-breaking bifurcation.
- Flow past a sphere in a pipe.

Tavener PoF 1994; Cliffe, Spence and Tavener IJNMF 2000.

- Steady, $O(2)$ symmetry-breaking bifurcation.
- Flow through a sudden expansion in a pipe.

Introduction

- Bifurcation phenomena in open systems:
- Flow past a cylinder in a channel.

Jackson JFM 1987; Cliffe and Tavener JFM 2004.

- Z_{2} symmetry-breaking Hopf bifurcation.
- Flow through a sudden expansion in a channel.

Fearn, Mullin and Cliffe JFM 1990.

- Steady, Z_{2} symmetry-breaking bifurcation.
- Flow past a sphere in a pipe.

Tavener PoF 1994; Cliffe, Spence and Tavener IJNMF 2000.

- Steady, $O(2)$ symmetry-breaking bifurcation.
- Flow through a sudden expansion in a pipe.
- Previous experimental studies inconclusive.

Introduction

- Bifurcation phenomena in open systems:
- Flow past a cylinder in a channel.

Jackson JFM 1987; Cliffe and Tavener JFM 2004.

- Z_{2} symmetry-breaking Hopf bifurcation.
- Flow through a sudden expansion in a channel.

Fearn, Mullin and Cliffe JFM 1990.

- Steady, Z_{2} symmetry-breaking bifurcation.
- Flow past a sphere in a pipe.

Tavener PoF 1994; Cliffe, Spence and Tavener IJNMF 2000.

- Steady, $O(2)$ symmetry-breaking bifurcation.
- Flow through a sudden expansion in a pipe.
- Previous experimental studies inconclusive.
- Current project:
- Mullin and Seddon in Manchester and at the MRRC in Cambridge.

Introduction

- Bifurcation phenomena in open systems:
- Flow past a cylinder in a channel.

Jackson JFM 1987; Cliffe and Tavener JFM 2004.

- Z_{2} symmetry-breaking Hopf bifurcation.
- Flow through a sudden expansion in a channel.

Fearn, Mullin and Cliffe JFM 1990.

- Steady, Z_{2} symmetry-breaking bifurcation.
- Flow past a sphere in a pipe.

Tavener PoF 1994; Cliffe, Spence and Tavener IJNMF 2000.

- Steady, $O(2)$ symmetry-breaking bifurcation.
- Flow through a sudden expansion in a pipe.
- Previous experimental studies inconclusive.
- Current project:
- Mullin and Seddon in Manchester and at the MRRC in Cambridge.
- Cliffe, Hall and Houston in Nottingham; Phipps and Salinger at Sandia.

Introduction

- Problem definition and properties:

Introduction

- Problem definition and properties:

Introduction

- Problem definition and properties:

- Navier-Stokes equations.

Introduction

- Problem definition and properties:

- Navier-Stokes equations.
- Parameters: Reynolds number, $R e$, and expansion ratio, E.

Introduction

- Problem definition and properties:

- Navier-Stokes equations.
- Parameters: Reynolds number, $R e$, and expansion ratio, E.
- $O(2)$ symmetry.

Bifurcation in the Presence of $O(2)$ Symmetry

- Bifurcation with $O(2)$ symmetry.

Golubitsky, Stewart and Schaeffer 1988; Healey and Treacy IJNME 1991; Aston SIAM JMA 1991; Cliffe, Spence and Tavener IJNMF 2000.

Bifurcation in the Presence of $O(2)$ Symmetry

- Bifurcation with $O(2)$ symmetry.

Golubitsky, Stewart and Schaeffer 1988; Healey and Treacy IJNME 1991; Aston SIAM JMA 1991; Cliffe, Spence and Tavener IJNMF 2000.

- Consider a problem of the form

$$
M y_{t}+f(y, R)=0, \quad y(t) \in \mathbb{H}, \quad R \in \mathbb{R}
$$

Bifurcation in the Presence of $O(2)$ Symmetry

- Bifurcation with $O(2)$ symmetry.

Golubitsky, Stewart and Schaeffer 1988; Healey and Treacy IJNME 1991; Aston SIAM JMA 1991; Cliffe, Spence and Tavener IJNMF 2000.

- Consider a problem of the form

$$
M y_{t}+f(y, R)=0, \quad y(t) \in \mathbb{H}, \quad R \in \mathbb{R}
$$

- \mathbb{H} is a Hilbert space.

Bifurcation in the Presence of $O(2)$ Symmetry

- Bifurcation with $O(2)$ symmetry.

Golubitsky, Stewart and Schaeffer 1988; Healey and Treacy IJNME 1991; Aston SIAM JMA 1991; Cliffe,
Spence and Tavener IJNMF 2000.

- Consider a problem of the form

$$
M y_{t}+f(y, R)=0, \quad y(t) \in \mathbb{H}, \quad R \in \mathbb{R}
$$

- \mathbb{H} is a Hilbert space.
- $f: \mathbb{H} \times \mathbb{R} \mapsto \mathbb{H}$ is a non-linear operator.

Bifurcation in the Presence of $O(2)$ Symmetry

- Bifurcation with $O(2)$ symmetry.

Golubitsky, Stewart and Schaeffer 1988; Healey and Treacy IJNME 1991; Aston SIAM JMA 1991; Cliffe,
Spence and Tavener IJNMF 2000.

- Consider a problem of the form

$$
M y_{t}+f(y, R)=0, \quad y(t) \in \mathbb{H}, \quad R \in \mathbb{R}
$$

- \mathbb{H} is a Hilbert space.
- $f: \mathbb{H} \times \mathbb{R} \mapsto \mathbb{H}$ is a non-linear operator.
- $M: \mathbb{H} \mapsto \mathbb{H}$ is a linear operator.

Bifurcation in the Presence of $O(2)$ Symmetry

- Bifurcation with $O(2)$ symmetry.

Golubitsky, Stewart and Schaeffer 1988; Healey and Treacy IJNME 1991; Aston SIAM JMA 1991; Cliffe,
Spence and Tavener IJNMF 2000.

- Consider a problem of the form

$$
M y_{t}+f(y, R)=0, \quad y(t) \in \mathbb{H}, \quad R \in \mathbb{R}
$$

- \mathbb{H} is a Hilbert space.
- $f: \mathbb{H} \times \mathbb{R} \mapsto \mathbb{H}$ is a non-linear operator.
- $M: \mathbb{H} \mapsto \mathbb{H}$ is a linear operator.
- The problem has $O(2)$ symmetry.

Bifurcation in the Presence of $O(2)$ Symmetry

- Action of $O(2)$ on \mathbb{H}

$$
\begin{aligned}
O(2) \times \mathbb{H} & \mapsto \mathbb{H}, \\
(\gamma, y) & \mapsto \rho_{\gamma}(y) \equiv \gamma \cdot y .
\end{aligned}
$$

Bifurcation in the Presence of $O(2)$ Symmetry

- Action of $O(2)$ on \mathbb{H}

$$
\begin{aligned}
O(2) \times \mathbb{H} & \mapsto \mathbb{H}, \\
(\gamma, y) & \mapsto \rho_{\gamma}(y) \equiv \gamma \cdot y .
\end{aligned}
$$

- The mapping $\rho_{\gamma}: \mathbb{H} \mapsto \mathbb{H}$ is linear.

Bifurcation in the Presence of $O(2)$ Symmetry

- Action of $O(2)$ on \mathbb{H}

$$
\begin{aligned}
O(2) \times \mathbb{H} & \mapsto \mathbb{H}, \\
(\gamma, y) & \mapsto \rho_{\gamma}(y) \equiv \gamma \cdot y .
\end{aligned}
$$

- The mapping $\rho_{\gamma}: \mathbb{H} \mapsto \mathbb{H}$ is linear.
- If $\gamma_{1}, \gamma_{2} \in O(2)$ then $\gamma_{1} \cdot\left(\gamma_{2} \cdot y\right)=\left(\gamma_{1} \gamma_{2}\right) \cdot y$.

Bifurcation in the Presence of $O(2)$ Symmetry

- Action of $O(2)$ on \mathbb{H}

$$
\begin{aligned}
O(2) \times \mathbb{H} & \mapsto \mathbb{H}, \\
(\gamma, y) & \mapsto \rho_{\gamma}(y) \equiv \gamma \cdot y .
\end{aligned}
$$

- The mapping $\rho_{\gamma}: \mathbb{H} \mapsto \mathbb{H}$ is linear.
- If $\gamma_{1}, \gamma_{2} \in O(2)$ then $\gamma_{1} \cdot\left(\gamma_{2} \cdot y\right)=\left(\gamma_{1} \gamma_{2}\right) \cdot y$.
- The mapping, ρ, that takes γ to ρ_{γ} is called a representation of $O(2)$ on \mathbb{H}.

Bifurcation in the Presence of $O(2)$ Symmetry

- $O(2)$ equivariance

$$
\begin{aligned}
\rho_{\gamma} M & =M \rho_{\gamma}, \quad \forall \gamma \in O(2) \\
\rho_{\gamma} f(y, R) & =f\left(\rho_{\gamma}(y), R\right), \quad \forall \gamma \in O(2) .
\end{aligned}
$$

Bifurcation in the Presence of $O(2)$ Symmetry

- $O(2)$ equivariance

$$
\begin{aligned}
\rho_{\gamma} M & =M \rho_{\gamma}, \quad \forall \gamma \in O(2) \\
\rho_{\gamma} f(y, R) & =f\left(\rho_{\gamma}(y), R\right), \quad \forall \gamma \in O(2) .
\end{aligned}
$$

- If y is a solution, then $\rho_{\gamma}(y)$ is also a solution.

Bifurcation in the Presence of $O(2)$ Symmetry

- $O(2)$ equivariance

$$
\begin{aligned}
\rho_{\gamma} M & =M \rho_{\gamma}, \quad \forall \gamma \in O(2) \\
\rho_{\gamma} f(y, R) & =f\left(\rho_{\gamma}(y), R\right), \quad \forall \gamma \in O(2) .
\end{aligned}
$$

- If y is a solution, then $\rho_{\gamma}(y)$ is also a solution.
- $\mathbb{H}^{O(2)}=\left\{y \in \mathbb{H}, y=\rho_{\gamma}(y), \forall \gamma \in O(2)\right\}$.

Bifurcation in the Presence of $O(2)$ Symmetry

- $O(2)$ equivariance

$$
\begin{aligned}
\rho_{\gamma} M & =M \rho_{\gamma}, \quad \forall \gamma \in O(2) \\
\rho_{\gamma} f(y, R) & =f\left(\rho_{\gamma}(y), R\right), \quad \forall \gamma \in O(2) .
\end{aligned}
$$

- If y is a solution, then $\rho_{\gamma}(y)$ is also a solution.
- $\mathbb{H}^{O(2)}=\left\{y \in \mathbb{H}, y=\rho_{\gamma}(y), \forall \gamma \in O(2)\right\}$.
- Differentiating gives

$$
\rho_{\gamma} f_{y}(y, R)=f_{y}\left(\rho_{\gamma}(y), R\right) \rho_{\gamma},
$$

Bifurcation in the Presence of $O(2)$ Symmetry

- $O(2)$ equivariance

$$
\begin{aligned}
\rho_{\gamma} M & =M \rho_{\gamma}, \quad \forall \gamma \in O(2) \\
\rho_{\gamma} f(y, R) & =f\left(\rho_{\gamma}(y), R\right), \quad \forall \gamma \in O(2) .
\end{aligned}
$$

- If y is a solution, then $\rho_{\gamma}(y)$ is also a solution.
- $\mathbb{H}^{O(2)}=\left\{y \in \mathbb{H}, y=\rho_{\gamma}(y), \forall \gamma \in O(2)\right\}$.
- Differentiating gives

$$
\rho_{\gamma} f_{y}(y, R)=f_{y}\left(\rho_{\gamma}(y), R\right) \rho_{\gamma},
$$

so that if $y \in \mathbb{H}^{O(2)}$ and $A=f_{y}\left(y_{O(2)}, R\right)$ then

$$
\rho_{\gamma} A=A \rho_{\gamma} .
$$

Bifurcation in the Presence of $O(2)$ Symmetry

- Standard decomposition

$$
\mathbb{H}=\sum_{m=0}^{\infty} \oplus \mathbb{V}_{m}, \quad \mathbb{V}_{m} \perp \mathbb{V}_{l}, \quad m \neq 1
$$

where the \mathbb{V}_{m} are $O(2)$ invariant.

Bifurcation in the Presence of $O(2)$ Symmetry

- Standard decomposition

$$
\mathbb{H}=\sum_{m=0}^{\infty} \oplus \mathbb{V}_{m}, \quad \mathbb{V}_{m} \perp \mathbb{V}_{l}, \quad m \neq 1
$$

where the \mathbb{V}_{m} are $O(2)$ invariant.

- Eigenvalue problem

$$
\lambda M \phi=A \phi, \quad \phi \in \mathbb{H},
$$

Bifurcation in the Presence of $O(2)$ Symmetry

- Standard decomposition

$$
\mathbb{H}=\sum_{m=0}^{\infty} \oplus \mathbb{V}_{m}, \quad \mathbb{V}_{m} \perp \mathbb{V}_{l}, \quad m \neq 1
$$

where the \mathbb{V}_{m} are $O(2)$ invariant.

- Eigenvalue problem

$$
\lambda M \phi=A \phi, \quad \phi \in \mathbb{H},
$$

decouples into the infinite set of simpler eigenvalue problems

$$
\lambda M_{m} \phi=A_{m} \phi, \quad \phi \in \mathbb{V}_{m}, \quad m=0,1,2, \ldots
$$

Bifurcation in the Presence of $O(2)$ Symmetry

- Navier-Stokes in cylindrical coordinates

$$
\begin{aligned}
\mathbb{H} & =W^{1,2}(\Omega)^{3} \times L^{2}(\Omega), \\
y & =\left(\begin{array}{l}
u_{r}(r, \theta, z) \\
u_{\theta}(r, \theta, z) \\
u_{z}(r, \theta, z) \\
p(r, \theta, z)
\end{array}\right)
\end{aligned}
$$

Bifurcation in the Presence of $O(2)$ Symmetry

- Navier-Stokes in cylindrical coordinates

$$
\begin{aligned}
\mathbb{H} & =W^{1,2}(\Omega)^{3} \times L^{2}(\Omega), \\
y & =\left(\begin{array}{l}
u_{r}(r, \theta, z) \\
u_{\theta}(r, \theta, z) \\
u_{z}(r, \theta, z) \\
p(r, \theta, z)
\end{array}\right)
\end{aligned}
$$

- Action of $O(2)$ on \mathbb{H}

$$
\begin{aligned}
R_{\alpha}\left(\begin{array}{c}
u_{r}(r, \theta, z) \\
u_{\theta}(r, \theta, z) \\
u_{z}(r, \theta, z) \\
p(r, \theta, z)
\end{array}\right) & =\left(\begin{array}{c}
u_{r}(r, \theta+\alpha, z) \\
u_{\theta}(r, \theta+\alpha, z) \\
u_{z}(r, \theta+\alpha, z) \\
p(r, \theta+\alpha, z)
\end{array}\right), \\
S\left(\begin{array}{c}
u_{r}(r, \theta, z) \\
u_{\theta}(r, \theta, z) \\
u_{z}(r, \theta, z) \\
p(r, \theta, z)
\end{array}\right) & =\left(\begin{array}{c}
u_{r}(r,-\theta, z) \\
-u_{\theta}(r,-\theta, z) \\
u_{z}(r,-\theta, z) \\
p(r,-\theta, z)
\end{array}\right)
\end{aligned}
$$

Bifurcation in the Presence of $O(2)$ Symmetry

- Subspaces \mathbb{V}_{m}

$$
\mathbb{V}_{m}=\operatorname{Span}\left\{\left(\begin{array}{c}
u_{r}^{m}(r, z) \cos (m \theta) \\
u_{\theta}(r, z) \sin (m \theta) \\
u_{z}(r, z) \cos (m \theta) \\
p(r, z) \cos (m \theta)
\end{array}\right),\left(\begin{array}{c}
u_{r}^{m}(r, z) \sin (m \theta) \\
u_{\theta}(r, z) \cos (m \theta) \\
u_{z}(r, z) \sin (m \theta) \\
p(r, z) \sin (m \theta)
\end{array}\right)\right\} .
$$

Bifurcation in the Presence of $O(2)$ Symmetry

- Subspaces \mathbb{V}_{m}

$$
\mathbb{V}_{m}=\operatorname{Span}\left\{\left(\begin{array}{c}
u_{r}^{m}(r, z) \cos (m \theta) \\
u_{\theta}(r, z) \sin (m \theta) \\
u_{z}(r, z) \cos (m \theta) \\
p(r, z) \cos (m \theta)
\end{array}\right),\left(\begin{array}{c}
u_{r}^{m}(r, z) \sin (m \theta) \\
u_{\theta}(r, z) \cos (m \theta) \\
u_{z}(r, z) \sin (m \theta) \\
p(r, z) \sin (m \theta)
\end{array}\right)\right\} .
$$

- Note that the eigenvalue problems

$$
\lambda M_{m} \phi=A_{m} \phi, \quad \phi \in \mathbb{V}_{m}, \quad m=0,1,2, \ldots
$$

only have to be discretised in (r, z).

Bifurcation in the Presence of $O(2)$ Symmetry

- Subspaces \mathbb{V}_{m}

$$
\mathbb{V}_{m}=\operatorname{Span}\left\{\left(\begin{array}{c}
u_{r}^{m}(r, z) \cos (m \theta) \\
u_{\theta}(r, z) \sin (m \theta) \\
u_{z}(r, z) \cos (m \theta) \\
p(r, z) \cos (m \theta)
\end{array}\right),\left(\begin{array}{c}
u_{r}^{m}(r, z) \sin (m \theta) \\
u_{\theta}(r, z) \cos (m \theta) \\
u_{z}(r, z) \sin (m \theta) \\
p(r, z) \sin (m \theta)
\end{array}\right)\right\} .
$$

- Note that the eigenvalue problems

$$
\lambda M_{m} \phi=A_{m} \phi, \quad \phi \in \mathbb{V}_{m}, \quad m=0,1,2, \ldots
$$

only have to be discretised in (r, z).

- Can study stability to three dimensional disturbances using a sequence of two dimensional problems.

Discretisation

- Discontinuous Galerkin.

Discretisation

- Discontinuous Galerkin.
- Quadrilateral elements with tensor product polynomials bases.

Discretisation

- Discontinuous Galerkin.
- Quadrilateral elements with tensor product polynomials bases.
- Need to find most dangerous eigenvalue.

Discretisation

- Discontinuous Galerkin.
- Quadrilateral elements with tensor product polynomials bases.
- Need to find most dangerous eigenvalue.
- Solve eigenvalue problem using modified Cayley transform and ARPACK (cf Alastair Spence's lectures).

A posteriori error estimation

- Simple illustration of basic ideas:

Bangerth \& Rannacher 2003

A posteriori error estimation

- Simple illustration of basic ideas:

Bangerth \& Rannacher 2003

- Suppose $\mathbf{A}, \mathbf{A}_{h} \in \mathbb{R}^{n \times n}, \mathbf{b}, \mathbf{b}_{h} \in \mathbb{R}^{n}$ and $\mathbf{x}, \mathbf{x}_{h} \in \mathbb{R}^{n}$ satisfy

$$
\mathbf{A x}=\mathbf{b}, \quad \mathbf{A}_{h} \mathbf{x}_{h}=\mathbf{b}_{h}
$$

A posteriori error estimation

- Simple illustration of basic ideas:

Bangerth \& Rannacher 2003

- Suppose $\mathbf{A}, \mathbf{A}_{h} \in \mathbb{R}^{n \times n}, \mathbf{b}, \mathbf{b}_{h} \in \mathbb{R}^{n}$ and $\mathbf{x}, \mathbf{x}_{h} \in \mathbb{R}^{n}$ satisfy

$$
\mathbf{A x}=\mathbf{b}, \quad \mathbf{A}_{h} \mathbf{x}_{h}=\mathbf{b}_{h}
$$

- Suppose $\mathbf{A}_{h} \rightarrow \mathbf{A}$ as $h \rightarrow 0$.

A posteriori error estimation

- Simple illustration of basic ideas:

Bangerth \& Rannacher 2003

- Suppose $\mathbf{A}, \mathbf{A}_{h} \in \mathbb{R}^{n \times n}, \mathbf{b}, \mathbf{b}_{h} \in \mathbb{R}^{n}$ and $\mathbf{x}, \mathbf{x}_{h} \in \mathbb{R}^{n}$ satisfy

$$
\mathbf{A x}=\mathbf{b}, \quad \mathbf{A}_{h} \mathbf{x}_{h}=\mathbf{b}_{h}
$$

- Suppose $\mathbf{A}_{h} \rightarrow \mathbf{A}$ as $h \rightarrow 0$.
- Approximation error $\mathbf{e}=\mathbf{x}-\mathbf{x}_{h}$.

A posteriori error estimation

- Simple illustration of basic ideas:

Bangerth \& Rannacher 2003

- Suppose $\mathbf{A}, \mathbf{A}_{h} \in \mathbb{R}^{n \times n}, \mathbf{b}, \mathbf{b}_{h} \in \mathbb{R}^{n}$ and $\mathbf{x}, \mathbf{x}_{h} \in \mathbb{R}^{n}$ satisfy

$$
\mathbf{A x}=\mathbf{b}, \quad \mathbf{A}_{h} \mathbf{x}_{h}=\mathbf{b}_{h}
$$

- Suppose $\mathbf{A}_{h} \rightarrow \mathbf{A}$ as $h \rightarrow 0$.
- Approximation error $\mathbf{e}=\mathbf{x}-\mathbf{x}_{h}$.
- Truncation error $\tau=\mathbf{A}_{h} \mathbf{x}-\mathbf{b}_{h}$.

A posteriori error estimation

- Simple illustration of basic ideas:

Bangerth \& Rannacher 2003

- Suppose $\mathbf{A}, \mathbf{A}_{h} \in \mathbb{R}^{n \times n}, \mathbf{b}, \mathbf{b}_{h} \in \mathbb{R}^{n}$ and $\mathbf{x}, \mathbf{x}_{h} \in \mathbb{R}^{n}$ satisfy

$$
\mathbf{A x}=\mathbf{b}, \quad \mathbf{A}_{h} \mathbf{x}_{h}=\mathbf{b}_{h}
$$

- Suppose $\mathbf{A}_{h} \rightarrow \mathbf{A}$ as $h \rightarrow 0$.
- Approximation error $\mathbf{e}=\mathbf{x}-\mathbf{x}_{h}$.
- Truncation error $\tau=\mathbf{A}_{h} \mathbf{x}-\mathbf{b}_{h}$.
- Residual $\rho=\mathbf{b}-\mathbf{A x}$.

A posteriori error estimation

- A priori error analysis:

A posteriori error estimation

- A priori error analysis:

$$
\mathbf{A}_{h} \mathbf{e}=\mathbf{A}_{h} \mathbf{x}-\mathbf{A}_{h} \mathbf{x}_{h}
$$

A posteriori error estimation

- A priori error analysis:

$$
\mathbf{A}_{h} \mathbf{e}=\mathbf{A}_{h} \mathbf{x}-\mathbf{A}_{h} \mathbf{x}_{h}=\mathbf{A}_{h} \mathbf{x}-\mathbf{b}_{h}
$$

A posteriori error estimation

- A priori error analysis:

$$
\mathbf{A}_{h} \mathbf{e}=\mathbf{A}_{h} \mathbf{x}-\mathbf{A}_{h} \mathbf{x}_{h}=\mathbf{A}_{h} \mathbf{x}-\mathbf{b}_{h}=\tau
$$

A posteriori error estimation

- A priori error analysis:

$$
\mathbf{A}_{h} \mathbf{e}=\mathbf{A}_{h} \mathbf{x}-\mathbf{A}_{h} \mathbf{x}_{h}=\mathbf{A}_{h} \mathbf{x}-\mathbf{b}_{h}=\tau
$$

- This leads to

$$
\|\mathbf{e}\| \leq\left\|\mathbf{A}_{h}^{-1}\right\|\|\tau\|
$$

A posteriori error estimation

- A priori error analysis:

$$
\mathbf{A}_{h} \mathbf{e}=\mathbf{A}_{h} \mathbf{x}-\mathbf{A}_{h} \mathbf{x}_{h}=\mathbf{A}_{h} \mathbf{x}-\mathbf{b}_{h}=\tau
$$

- This leads to

$$
\|\mathbf{e}\| \leq\left\|\mathbf{A}_{h}^{-1}\right\|\|\tau\|
$$

- A posteriori error analysis:

A posteriori error estimation

- A priori error analysis:

$$
\mathbf{A}_{h} \mathbf{e}=\mathbf{A}_{h} \mathbf{x}-\mathbf{A}_{h} \mathbf{x}_{h}=\mathbf{A}_{h} \mathbf{x}-\mathbf{b}_{h}=\tau
$$

- This leads to

$$
\|\mathbf{e}\| \leq\left\|\mathbf{A}_{h}^{-1}\right\|\|\tau\|
$$

- A posteriori error analysis:

$$
\mathbf{A} \mathbf{e}=\mathbf{A} \mathbf{x}-\mathbf{A} \mathbf{x}_{h}
$$

A posteriori error estimation

- A priori error analysis:

$$
\mathbf{A}_{h} \mathbf{e}=\mathbf{A}_{h} \mathbf{x}-\mathbf{A}_{h} \mathbf{x}_{h}=\mathbf{A}_{h} \mathbf{x}-\mathbf{b}_{h}=\tau
$$

- This leads to

$$
\|\mathbf{e}\| \leq\left\|\mathbf{A}_{h}^{-1}\right\|\|\tau\|
$$

- A posteriori error analysis:

$$
\mathbf{A} \mathbf{e}=\mathbf{A} \mathbf{x}-\mathbf{A} \mathbf{x}_{h}=\mathbf{b}-\mathbf{A} \mathbf{x}_{h}
$$

A posteriori error estimation

- A priori error analysis:

$$
\mathbf{A}_{h} \mathbf{e}=\mathbf{A}_{h} \mathbf{x}-\mathbf{A}_{h} \mathbf{x}_{h}=\mathbf{A}_{h} \mathbf{x}-\mathbf{b}_{h}=\tau
$$

- This leads to

$$
\|\mathbf{e}\| \leq\left\|\mathbf{A}_{h}^{-1}\right\|\|\tau\|
$$

- A posteriori error analysis:

$$
\mathbf{A} \mathbf{e}=\mathbf{A} \mathbf{x}-\mathbf{A} \mathbf{x}_{h}=\mathbf{b}-\mathbf{A} \mathbf{x}_{h}=\rho
$$

A posteriori error estimation

- A priori error analysis:

$$
\mathbf{A}_{h} \mathbf{e}=\mathbf{A}_{h} \mathbf{x}-\mathbf{A}_{h} \mathbf{x}_{h}=\mathbf{A}_{h} \mathbf{x}-\mathbf{b}_{h}=\tau
$$

- This leads to

$$
\|\mathbf{e}\| \leq\left\|\mathbf{A}_{h}^{-1}\right\|\|\tau\|
$$

- A posteriori error analysis:

$$
\mathbf{A} \mathbf{e}=\mathbf{A} \mathbf{x}-\mathbf{A} \mathbf{x}_{h}=\mathbf{b}-\mathbf{A} \mathbf{x}_{h}=\rho .
$$

- This leads to

$$
\|\mathbf{e}\| \leq\left\|\mathbf{A}^{-1}\right\|\|\rho\|
$$

A posteriori error estimation

- Goal-oriented a priori error analysis:

A posteriori error estimation

- Goal-oriented a priori error analysis:
- Estimate and control the error in some linear functional of the solution, J.

A posteriori error estimation

- Goal-oriented a priori error analysis:
- Estimate and control the error in some linear functional of the solution, J.

$$
J(\mathbf{e})=J(\mathbf{x})-J\left(\mathbf{x}_{h}\right)
$$

A posteriori error estimation

- Goal-oriented a priori error analysis:
- Estimate and control the error in some linear functional of the solution, J.

$$
J(\mathbf{e})=J(\mathbf{x})-J\left(\mathbf{x}_{h}\right)=(\mathbf{e}, \mathbf{j})
$$

A posteriori error estimation

- Goal-oriented a priori error analysis:
- Estimate and control the error in some linear functional of the solution, J.

$$
J(\mathbf{e})=J(\mathbf{x})-J\left(\mathbf{x}_{h}\right)=(\mathbf{e}, \mathbf{j}) .
$$

- Consider the solution, \mathbf{z}, of the dual problem

$$
\mathbf{A}^{\top} \mathbf{z}=\mathbf{j}
$$

A posteriori error estimation

- Goal-oriented a priori error analysis:
- Estimate and control the error in some linear functional of the solution, J.

$$
J(\mathbf{e})=J(\mathbf{x})-J\left(\mathbf{x}_{h}\right)=(\mathbf{e}, \mathbf{j})
$$

- Consider the solution, \mathbf{z}, of the dual problem

$$
\mathbf{A}^{\top} \mathbf{z}=\mathbf{j}
$$

- The error can be written

A posteriori error estimation

- Goal-oriented a priori error analysis:
- Estimate and control the error in some linear functional of the solution, J.

$$
J(\mathbf{e})=J(\mathbf{x})-J\left(\mathbf{x}_{h}\right)=(\mathbf{e}, \mathbf{j})
$$

- Consider the solution, \mathbf{z}, of the dual problem

$$
\mathbf{A}^{\top} \mathbf{z}=\mathbf{j}
$$

- The error can be written

$$
J(\mathbf{e})=(\mathbf{e}, \mathbf{j})
$$

A posteriori error estimation

- Goal-oriented a priori error analysis:
- Estimate and control the error in some linear functional of the solution, J.

$$
J(\mathbf{e})=J(\mathbf{x})-J\left(\mathbf{x}_{h}\right)=(\mathbf{e}, \mathbf{j})
$$

- Consider the solution, \mathbf{z}, of the dual problem

$$
\mathbf{A}^{\top} \mathbf{z}=\mathbf{j}
$$

- The error can be written

$$
J(\mathbf{e})=(\mathbf{e}, \mathbf{j})=\left(\mathbf{e}, \mathbf{A}^{\top} \mathbf{z}\right)
$$

A posteriori error estimation

- Goal-oriented a priori error analysis:
- Estimate and control the error in some linear functional of the solution, J.

$$
J(\mathbf{e})=J(\mathbf{x})-J\left(\mathbf{x}_{h}\right)=(\mathbf{e}, \mathbf{j})
$$

- Consider the solution, \mathbf{z}, of the dual problem

$$
\mathbf{A}^{\top} \mathbf{z}=\mathbf{j}
$$

- The error can be written

$$
J(\mathbf{e})=(\mathbf{e}, \mathbf{j})=\left(\mathbf{e}, \mathbf{A}^{\top} \mathbf{z}\right)=(\mathbf{A} \mathbf{e}, \mathbf{z})
$$

A posteriori error estimation

- Goal-oriented a priori error analysis:
- Estimate and control the error in some linear functional of the solution, J.

$$
J(\mathbf{e})=J(\mathbf{x})-J\left(\mathbf{x}_{h}\right)=(\mathbf{e}, \mathbf{j})
$$

- Consider the solution, \mathbf{z}, of the dual problem

$$
\mathbf{A}^{\top} \mathbf{z}=\mathbf{j}
$$

- The error can be written

$$
J(\mathbf{e})=(\mathbf{e}, \mathbf{j})=\left(\mathbf{e}, \mathbf{A}^{\top} \mathbf{z}\right)=(\mathbf{A} \mathbf{e}, \mathbf{z})=(\rho, \mathbf{z})
$$

- Goal-oriented a priori error analysis:
- Estimate and control the error in some linear functional of the solution, J.

$$
J(\mathbf{e})=J(\mathbf{x})-J\left(\mathbf{x}_{h}\right)=(\mathbf{e}, \mathbf{j}) .
$$

- Consider the solution, \mathbf{z}, of the dual problem

$$
\mathbf{A}^{\top} \mathbf{z}=\mathbf{j}
$$

- The error can be written

$$
J(\mathbf{e})=(\mathbf{e}, \mathbf{j})=\left(\mathbf{e}, \mathbf{A}^{\top} \mathbf{z}\right)=(\mathbf{A} \mathbf{e}, \mathbf{z})=(\rho, \mathbf{z})
$$

- This gives the weighted a posteriori error estimate

$$
|J(\mathbf{e})|=\left|\sum_{i=1}^{n} \rho_{i} \mathbf{z}_{i}\right|
$$

- Goal-oriented a priori error analysis:
- Estimate and control the error in some linear functional of the solution, J.

$$
J(\mathbf{e})=J(\mathbf{x})-J\left(\mathbf{x}_{h}\right)=(\mathbf{e}, \mathbf{j})
$$

- Consider the solution, \mathbf{z}, of the dual problem

$$
\mathbf{A}^{\top} \mathbf{z}=\mathbf{j}
$$

- The error can be written

$$
J(\mathbf{e})=(\mathbf{e}, \mathbf{j})=\left(\mathbf{e}, \mathbf{A}^{\top} \mathbf{z}\right)=(\mathbf{A} \mathbf{e}, \mathbf{z})=(\rho, \mathbf{z})
$$

- This gives the weighted a posteriori error estimate

$$
|J(\mathbf{e})|=\left|\sum_{i=1}^{n} \rho_{i} \mathbf{z}_{i}\right| \leq \sum_{i=1}^{n}\left|\rho_{i}\right|\left|\mathbf{z}_{i}\right|
$$

A posteriori error estimation

- Apply to extended systems for eigenvalue problem or for bifurcation point.

A posteriori error estimation

- Apply to extended systems for eigenvalue problem or for bifurcation point.
- Take the linear functional to be the eigenvalue or the bifurcation parameter.

A posteriori error estimation

- Apply to extended systems for eigenvalue problem or for bifurcation point.
- Take the linear functional to be the eigenvalue or the bifurcation parameter.
- Solve the dual problems using higher order interpolation.

A posteriori error estimation

- Apply to extended systems for eigenvalue problem or for bifurcation point.
- Take the linear functional to be the eigenvalue or the bifurcation parameter.
- Solve the dual problems using higher order interpolation.
- Details (which are complicated) are omitted:

$$
\lambda-\lambda_{h}=\sum_{\kappa \in \mathcal{T}_{h}} \eta_{\kappa} \equiv \sum_{\kappa \in \mathcal{T}_{h}} \eta_{\kappa}^{0}+\eta_{k}^{m},
$$

A posteriori error estimation

- Apply to extended systems for eigenvalue problem or for bifurcation point.
- Take the linear functional to be the eigenvalue or the bifurcation parameter.
- Solve the dual problems using higher order interpolation.
- Details (which are complicated) are omitted:

$$
\lambda-\lambda_{h}=\sum_{\kappa \in \mathcal{T}_{h}} \eta_{\kappa} \equiv \sum_{\kappa \in \mathcal{T}_{h}} \eta_{\kappa}^{0}+\eta_{k}^{m},
$$

- Iterative solves of bordered systems.

Solution of bordered systems

- Need to solve

$$
\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
\mathbf{C}^{\top} & \mathbf{D}
\end{array}\right)\binom{\mathbf{x}}{\mathbf{y}}=\binom{\mathbf{f}}{\mathbf{g}}
$$

where

$$
\begin{aligned}
\mathbf{A} & \in \mathbb{R}^{n \times n}, \\
\mathbf{B}, \mathbf{C} & \in \mathbb{R}^{n \times m}, \\
\mathbf{D} & \in \mathbb{R}^{m \times m} .
\end{aligned}
$$

Solution of bordered systems

- Need to solve

$$
\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
\mathbf{C}^{\top} & \mathbf{D}
\end{array}\right)\binom{\mathbf{x}}{\mathbf{y}}=\binom{\mathbf{f}}{\mathbf{g}}
$$

where

$$
\begin{aligned}
\mathbf{A} & \in \mathbb{R}^{n \times n}, \\
\mathbf{B}, \mathbf{C} & \in \mathbb{R}^{n \times m}, \\
\mathbf{D} & \in \mathbb{R}^{m \times m} .
\end{aligned}
$$

- Rewrite as

$$
\left(\begin{array}{cc}
\mathbf{D} & C^{\top} \\
\mathbf{B} & \mathbf{A}
\end{array}\right)\binom{\mathbf{y}}{\mathbf{x}}=\binom{\mathbf{g}}{\mathbf{f}}
$$

Solution of bordered systems

- Use Householder QR algorithm

$$
\binom{\mathbf{D}^{\top}}{\mathbf{C}}=\mathbf{Q}\binom{\mathbf{R}}{\mathbf{0}}
$$

where

$$
\mathbf{Q}=\mathbf{I}+\mathbf{U} \mathbf{T} \mathbf{U}^{\top}
$$

and

$$
\begin{aligned}
\mathbf{Q}, \mathbf{I} & \in \mathbb{R}^{(n+m) \times(n+m)}, \quad \mathbf{Q} \text { - orthogonal, } \quad \mathbf{I} \text { - identity } \\
\mathbf{R}, \mathbf{T} & \in \mathbb{R}^{m \times m}, \quad \text { upper triangular } \\
\mathbf{0} & \in \mathbb{R}^{n \times m}, \\
\mathbf{U} & \in \mathbb{R}^{(n+m) \times m} .
\end{aligned}
$$

Solution of bordered systems

- It follows that

$$
\left(\begin{array}{cc}
\mathbf{D} & \mathbf{C}^{\top} \\
\mathbf{B} & \mathbf{A}
\end{array}\right) \mathbf{Q}=\left(\begin{array}{cc}
\mathbf{R}^{\top} & \mathbf{0} \\
\hat{\mathbf{B}} & \hat{\mathbf{A}}
\end{array}\right)
$$

where

$$
\begin{aligned}
& \hat{\mathbf{B}}=\mathbf{B}+\left(\mathbf{B} \mathbf{U}_{1}+\mathbf{A} \mathbf{U}_{2}\right) \mathbf{T} \mathbf{U}_{1}^{\top}, \\
& \hat{\mathbf{A}}=\mathbf{A}+\left(\mathbf{B U _ { 1 }}+\mathbf{A} \mathbf{U}_{2}\right) \mathbf{T} \mathbf{U}_{2}^{\top}
\end{aligned}
$$

and

$$
\mathbf{U}=\binom{\mathbf{U}_{1}}{\mathbf{U}_{2}}, \quad \mathbf{U}_{1} \in \mathbb{R}^{m \times m}, \quad \mathbf{U}_{2} \in \mathbb{R}^{n \times m}
$$

Solution of bordered systems

- It follows that

$$
\left(\begin{array}{cc}
\mathbf{D} & \mathbf{C}^{\top} \\
\mathbf{B} & \mathbf{A}
\end{array}\right) \mathbf{Q}=\left(\begin{array}{cc}
\mathbf{R}^{\top} & \mathbf{0} \\
\hat{\mathbf{B}} & \hat{\mathbf{A}}
\end{array}\right)
$$

where

$$
\begin{aligned}
& \hat{\mathbf{B}}=\mathbf{B}+\left(\mathbf{B} \mathbf{U}_{1}+\mathbf{A} \mathbf{U}_{2}\right) \mathbf{T} \mathbf{U}_{1}^{\top} \\
& \hat{\mathbf{A}}=\mathbf{A}+\left(\mathbf{B U _ { 1 }}+\mathbf{A} \mathbf{U}_{2}\right) \mathbf{T} \mathbf{U}_{2}^{\top}
\end{aligned}
$$

and

$$
\mathbf{U}=\binom{\mathbf{U}_{1}}{\mathbf{U}_{2}}, \quad \mathbf{U}_{1} \in \mathbb{R}^{m \times m}, \quad \mathbf{U}_{2} \in \mathbb{R}^{n \times m}
$$

- Note: $\hat{\mathbf{A}}$ is a rank m modification of \mathbf{A} that is non-singular.

Solution of bordered systems

- Solve the block triangular system

$$
\left(\begin{array}{cc}
\mathbf{R}^{\top} & \mathbf{0} \\
\hat{\mathbf{B}} & \hat{\mathbf{A}}
\end{array}\right)\binom{\mathbf{v}}{\mathbf{u}}=\binom{\mathbf{g}}{\mathbf{f}} .
$$

Solution of bordered systems

- Solve the block triangular system

$$
\left(\begin{array}{cc}
\mathbf{R}^{\top} & \mathbf{0} \\
\hat{\mathbf{B}} & \hat{\mathbf{A}}
\end{array}\right)\binom{\mathbf{v}}{\mathbf{u}}=\binom{\mathbf{g}}{\mathbf{f}} .
$$

- Solve small triangular system for \mathbf{v}.

Solution of bordered systems

- Solve the block triangular system

$$
\left(\begin{array}{cc}
\mathbf{R}^{\top} & \mathbf{0} \\
\hat{\mathbf{B}} & \hat{\mathbf{A}}
\end{array}\right)\binom{\mathbf{v}}{\mathbf{u}}=\binom{\mathbf{g}}{\mathbf{f}} .
$$

- Solve small triangular system for \mathbf{v}.
- Use (P)GMRES for

$$
\hat{\mathbf{A}} \mathbf{u}=\mathbf{f}-\hat{\mathbf{B}} \mathbf{v} .
$$

Solution of bordered systems

- Solve the block triangular system

$$
\left(\begin{array}{cc}
\mathbf{R}^{\top} & \mathbf{0} \\
\hat{\mathbf{B}} & \hat{\mathbf{A}}
\end{array}\right)\binom{\mathbf{v}}{\mathbf{u}}=\binom{\mathbf{g}}{\mathbf{f}} .
$$

- Solve small triangular system for \mathbf{v}.
- Use (P)GMRES for

$$
\hat{\mathbf{A}} \mathbf{u}=\mathbf{f}-\hat{\mathbf{B}} \mathbf{v} .
$$

- Use the preconditioner for \mathbf{A} to precondition $\hat{\mathbf{A}}$.

Solution of bordered systems

- Solve the block triangular system

$$
\left(\begin{array}{cc}
\mathbf{R}^{\top} & \mathbf{0} \\
\hat{\mathbf{B}} & \hat{\mathbf{A}}
\end{array}\right)\binom{\mathbf{v}}{\mathbf{u}}=\binom{\mathbf{g}}{\mathbf{f}} .
$$

- Solve small triangular system for \mathbf{v}.
- Use (P)GMRES for

$$
\hat{\mathbf{A}} \mathbf{u}=\mathbf{f}-\hat{\mathbf{B}} \mathbf{v} .
$$

- Use the preconditioner for \mathbf{A} to precondition Â.
- Finally

$$
\binom{\mathbf{y}}{\mathbf{x}}=\mathbf{Q}\binom{\mathbf{v}}{\mathbf{u}} .
$$

Solution of bordered systems

- Solve the block triangular system

$$
\left(\begin{array}{cc}
\mathbf{R}^{\top} & \mathbf{0} \\
\hat{\mathbf{B}} & \hat{\mathbf{A}}
\end{array}\right)\binom{\mathbf{v}}{\mathbf{u}}=\binom{\mathbf{g}}{\mathbf{f}} .
$$

- Solve small triangular system for \mathbf{v}.
- Use (P)GMRES for

$$
\hat{\mathbf{A}} \mathbf{u}=\mathbf{f}-\hat{\mathbf{B}} \mathbf{v} .
$$

- Use the preconditioner for \mathbf{A} to precondition $\hat{\mathbf{A}}$.
- Finally

$$
\binom{\mathbf{y}}{\mathbf{x}}=\mathbf{Q}\binom{\mathbf{v}}{\mathbf{u}} .
$$

- Large scale, distributed memory parallel implementation (LOCA, Trilinos).

Sudden Expansion in a Channel: Error Effectivities

- $r: R=3: 1$
- $R e=35$
- Eigenvalue $=0.00613553131999$

Mesh No	No. Eles	Eig. Dof	Error	$\frac{\left\|\sum_{\kappa \in \mathcal{T}_{h}} \eta_{\kappa}\right\|}{\text { Error }}$	$\frac{\mid \sum_{\kappa \in \mathcal{T}_{h} \eta_{\kappa}^{m}}}{\text { Error }}$
	760	16720	$6.027 \mathrm{E}-05$	1.92	0.14
2	1387	30514	$1.540 \mathrm{E}-05$	2.47	0.96
3	2479	54538	$9.795 \mathrm{E}-06$	1.98	1.16
4	4387	96514	$6.327 \mathrm{E}-06$	1.58	0.98
5	7645	168190	$3.845 \mathrm{E}-06$	1.33	0.80
6	13243	291346	$2.231 \mathrm{E}-06$	1.16	0.67
7	22585	496870	$1.281 \mathrm{E}-06$	1.00	0.56

Sudden Expansion in a Channel: Mesh under Refinement

Mesh after 5 refinement steps

Contour plot of \mathbf{z}_{x}^{m}

Sudden Expansion in a Channel: Mesh Detail under Refinement

Mesh detail near expansion

Contour plot of \mathbf{z}_{y}^{0} near expansion

Sudden Expansion in a Channel: Error Convergence

Cylindrical Blockage in a Channel: Error Effectivities

- $r: R=1: 2$
- $R e=100$
- Eigenvalue $=0.114789963956350+2.116719676204527 i$

Mesh No	No. Eles	Eig. Dof	Error	$\frac{\left\|\sum_{\kappa \in \mathcal{T}_{h}} \eta_{\kappa}\right\|}{\text { Error }}$	$\frac{\left\|\sum_{\kappa \in \mathcal{T}_{h}} \eta_{\kappa}^{m}\right\|}{\text { Error }}$
1	816	17952	$8.966 \mathrm{E}-02$	1.08	$4.51 \mathrm{E}-02$
2	1443	31746	$2.229 \mathrm{E}-03$	1.54	0.55
3	2577	56694	$1.455 \mathrm{E}-04$	1.31	0.68
4	4590	100980	$4.089 \mathrm{E}-05$	0.980	0.53
5	8190	180180	$1.033 \mathrm{E}-05$	1.01	0.81
6	14400	316800	$3.870 \mathrm{E}-06$	0.946	0.51
7	24843	546546	$1.060 \mathrm{E}-06$	1.00	0.97

Cylindrical Blockage in a Channel: Mesh under Refinement

Full Mesh

Mesh Detail near Blockage

Contour plot of z_{y}^{0} near blockage

Cylindrical Blockage in a Channel: Error Convergence

Spherical Blockage in a Pipe: Error Effectivities

- $r: R=1: 2$
- $R e=350$
- Eigenvalue $=0.015358133759879$

Mesh No	No. Eles	Eig. Dof	Error	$\frac{\left\|\sum_{\kappa \in \mathcal{T}_{h}} \eta_{\kappa}\right\|}{\text { Error }}$	$\frac{\mid \sum_{\kappa \in \mathcal{T}_{h} \eta_{\kappa}^{m} \mid}^{\text {Error }}}{1.0}$
1	1016	31496	$1.384 \mathrm{E}-01$	1.68	$1.14 \mathrm{E}-02$
2	1793	55583	$2.552 \mathrm{E}-03$	2.01	2.70
3	3158	97898	$4.877 \mathrm{E}-04$	0.94	0.67
4	5624	174344	$2.467 \mathrm{E}-05$	1.02	1.14
5	10301	319331	$2.111 \mathrm{E}-06$	1.08	2.69

Spherical Blockage in a Pipe: Mesh under Refinement

Full Mesh

Mesh Detail near Blockage

Contour plot of \mathbf{z}_{r}^{0} near blockage

Spherical Blockage in a Pipe: Error Convergence

Pipe with a Sudden Expansion: Experimental Results

- Tom Mullin and James Seddon, University of Manchester.

Pipe with a Sudden Expansion: Experimental Results

- Tom Mullin and James Seddon, University of Manchester.
- New MRI flow visualisation techniques - MRRC in Cambridge.

Pipe with a Sudden Expansion: Experimental Results

- Tom Mullin and James Seddon, University of Manchester.
- New MRI flow visualisation techniques - MRRC in Cambridge.
- Preliminary experiments indicate presence of steady bifurcation at $R e \approx 1100$.

Pipe with a Sudden Expansion: Experimental Results

- Tom Mullin and James Seddon, University of Manchester.
- New MRI flow visualisation techniques - MRRC in Cambridge.
- Preliminary experiments indicate presence of steady bifurcation at $R e \approx 1100$.
- Onset of time dependence at $R e \approx 1500$.

Pipe with a Sudden Expansion: Eigenvalues with Re

- $R e=1300$

Mesh No.	No. Eles	Eig. Dofs	Eigenvalue	$\left\|\sum_{\kappa \in \mathcal{T}_{\eta}} \eta_{\kappa}\right\|$
1	20000	420000	$0.167241 \mathrm{E}-02$	$1.741 \mathrm{E}-06$
2	34565	725865	$0.167194 \mathrm{E}-02$	$1.914 \mathrm{E}-06$
3	65909	1384089	$0.167218 \mathrm{E}-02$	$9.771 \mathrm{E}-07$
4	111956	2351076	$0.167243 \mathrm{E}-02$	$5.765 \mathrm{E}-07$

Pipe with a Sudden Expansion: Eigenvalues with Re

Summary and Conclusions

- Successfully applied DG and goal-oriented a posteriori error estimation to stability analysis of incompressible Navier-Stokes equations.

Summary and Conclusions

- Successfully applied DG and goal-oriented a posteriori error estimation to stability analysis of incompressible Navier-Stokes equations.
- There is a steady, supercritical, $O(2)$-symmetry-breaking bifurcation at Reynolds number approximately 5000.

Summary and Conclusions

- Successfully applied DG and goal-oriented a posteriori error estimation to stability analysis of incompressible Navier-Stokes equations.
- There is a steady, supercritical, $O(2)$-symmetry-breaking bifurcation at Reynolds number approximately 5000.
- Sadly, this has nothing to do with what is seen in the experiments!
- Successfully applied DG and goal-oriented a posteriori error estimation to stability analysis of incompressible Navier-Stokes equations.
- There is a steady, supercritical, $O(2)$-symmetry-breaking bifurcation at Reynolds number approximately 5000.
- Sadly, this has nothing to do with what is seen in the experiments!
- Next steps:
- Apply goal-oriented a posteriori error estimation directly to critical Reynolds number.
- Successfully applied DG and goal-oriented a posteriori error estimation to stability analysis of incompressible Navier-Stokes equations.
- There is a steady, supercritical, $O(2)$-symmetry-breaking bifurcation at Reynolds number approximately 5000.
- Sadly, this has nothing to do with what is seen in the experiments!
- Next steps:
- Apply goal-oriented a posteriori error estimation directly to critical Reynolds number.
- Investigate effect of perturbations that destroy the $O(2)$ symmetry.
- Successfully applied DG and goal-oriented a posteriori error estimation to stability analysis of incompressible Navier-Stokes equations.
- There is a steady, supercritical, $O(2)$-symmetry-breaking bifurcation at Reynolds number approximately 5000.
- Sadly, this has nothing to do with what is seen in the experiments!
- Next steps:
- Apply goal-oriented a posteriori error estimation directly to critical Reynolds number.
- Investigate effect of perturbations that destroy the $O(2)$ symmetry.
- Conclusion:
- In fluid mechanics we still need theory, computation and experiment!

Channel with a Sudden Expansion - Re $=35$

Channel with a Sudden Expansion - Re $=40$

Channel with a Sudden Expansion - $\mathrm{Re}=45$

Channel with a Sudden Expansion $-\operatorname{Re}=50$

Andrew Cliffe
Bifurcation Phenomena in a Pipe Expansion

Channel with a Sudden Expansion - $\mathrm{Re}=55$

Andrew Cliffe
Bifurcation Phenomena in a Pipe Expansion

Channel with a Sudden Expansion $-\mathrm{Re}=60$

Andrew Cliffe
Bifurcation Phenomena in a Pipe Expansion

Channel with a Sudden Expansion - $\mathrm{Re}=65$

Channel with a Sudden Expansion - $\mathrm{Re}=70$

Channel with a Sudden Expansion - $\mathrm{Re}=75$

Channel with a Sudden Expansion - $\mathrm{Re}=80$

Andrew Cliffe

Channel with a Sudden Expansion - $\mathrm{Re}=85$

Andrew Cliffe

Channel with a Sudden Expansion $-\mathrm{Re}=90$

Andrew Cliffe

Channel with a Sudden Expansion - $\mathrm{Re}=95$

Andrew Cliffe

Channel with a Sudden Expansion - Re $=100$

Andrew Cliffe

