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Motivation
Extending understanding of topological/super D-branes and mirror symmetry

Well-known motivation for studying twistor strings:

Alternative description of the AdS/CFT correspondence

New tools for calculating gluon scattering amplitudes

Alternative descriptions of supergravity

My motivation here:

Description of super D-branes?

Relationship between topological and physical D-branes?

Rôle of Calabi-Yau supermanifolds in mirror symmetry?

⇒ Study variations of the usual twistor geometries and the
associated Penrose-Ward transform.
Here: Full dimensional reductions yielding matrix models with
interesting interpretations in terms of D-branes.
The presented results are only a very preliminary step towards
answering the above questions.
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The Twistor Correspondence
The twistor correspondence is a relation between subsets of twistor space and spacetime.

Incidence Relation: ωα = xαα̇λα̇, Twistor: Zi = (ωα, λα̇) ∈ CP 3

Twistor Correspondence

Point xαα̇ corresponds to sphere CP 1 3 λα̇

A twistor Zi is incident to a plane of points xαα̇ = xαα̇
0 + καλα̇.

Decompactification

CP 3 is the twistor space of S4 or S4
c

CP 1 take out ∞
P3 is the twistor space of R4 or C4

CP 1
∞ is described by λα̇ = 0, therefore:

P3 := O(1)⊕O(1) → CP 1

Homog. coords. λα̇ on CP 1 and ωα in fibres
Moduli of sections of P3: xαα̇ ∈ C4
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Underlying Idea of Twistor String Theory
To make contact with string theory, we need to extend this picture supersymmetrically.

Marrying Twistor- and Calabi-Yau geometry

... with supermanifolds: Witten, hep-th/0312171
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Supertwistor Space
The supertwistor space P3|N is a holomorphic vector bundle of rank 3|4N over CP 1.

The Supertwistor Space P3|N

Start from CP 3|N , take out CP 1|N at infinity:

P3|N := C2 ⊗O(1)⊕CN ⊗ΠO(1) → CP 1

Incidence Relations

ωα = xαα̇λα̇

ηi = ηα̇
i λα̇

Double Fibration

P3|N

C4|2N ×CP 1

�
�	

C4|2N

@
@R

First Chern Class of P3|4

TCP 1 2, O(1) 1, ΠO(1) -1, in total: c1 = 0.
Therefore, there exists a holomorphic measure Ω3,0|4,0.
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Outline of the Penrose-Ward Transform on P3|4
The PW-transform takes us from the topological B-model to SDYM theory.

topological B-model on P3|4

m
holomorphic Chern-Simons theory on E → P3|4:∫
Ω3,0|4,0 ∧ tr (A0,1 ∧ ∂̄A0,1 + 2

3A
0,1 ∧ A0,1 ∧ A0,1)

with eom ∂̄A0,1 +A0,1 ∧ A0,1 = 0
m

holomorphic vector bundles over P3|4

m
solutions to the N = 4 SDYM equations on C4|8

Field contents: (fαβ , χ
αi, φ[ij], χ̃

[ijk]
α̇ , G

[ijkl]

α̇β̇
)

fα̇β̇ = 0 , ∇αα̇χ̃
α̇ijk − [χ[i

α, φ
jk]] = 0 ,

∇αα̇χ
αi = 0 , εα̇γ̇∇αα̇G

[ijkl]

γ̇δ̇
+ ... = 0 .

�φij + 2{χαi, χj
α} = 0 ,
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Penrose-Ward Transform on P3|4
τ

Imposing reality conditions simplifies the situation significantly.

Introducing a real structure, the double fibration collapses:

P3|N

C4|2N ×CP 1

�
�	

C4|2N

@
@R −→ P3|N

τ → R
4|2N
τ

(τ±1 related to Kleinian and Euclidean metrics on R
4|2N
τ .)

Now: Field expansion of hCS gauge potential A0,1 available:

Aα =λα̇Aαα̇(x) + ηiχ
i
α(x) + γ 1

2! ηiηj λ̂
α̇ φij

αα̇(x)+

γ2 1
3! ηiηjηk λ̂

α̇ λ̂β̇ χ̃ijk

αα̇β̇
(x) + γ3 1

4! ηiηjηkηl λ̂
α̇ λ̂β̇ λ̂γ̇ Gijkl

αα̇β̇γ̇
(x)

Aλ̄ =γ2ηiηj φ
ij(x)− γ3ηiηjηk λ̂

α̇ χ̃ijk
α̇ (x) + 2γ4ηiηjηkηl λ̂

α̇ λ̂β̇Gijkl

α̇β̇
(x)

Popov, CS, ATMP 9 (2005) 931

This field expansion makes the equivalence hCS↔ SDYM manifest.
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Matrix Models
Matrix models are obtained by dim. reduction or from spacetime noncommutativity.

Two ways of obtaining the matrix models:

Dimensionally reducing the moduli space R4|8 → R0|8:

Making the moduli space R4|8 noncommutative:
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Matrix Models via Dimensional Reduction
Full dimensional reduction yields equivalence between SDYM MM and hCS MQM.

Matrix Model from N = 4 SDYM theory:

S := tr

(
Gα̇β̇

(
−1

2ε
αβ [Aαα̇, Aββ̇]

)
+ ε

2φ
ij [Aαα̇, [Aαα̇, φij ]]+...

)

Matrix Model from N = 4 hCS theory (MQM):

S :=
∫
CP 1

ch

Ωred ∧ tr εαβXα

(
∂̄Xβ +

[
A0,1

CP 1 ,Xβ

])
Ωred := Ω3,0|4,0|

CP 1
ch

Ωred± = ±dλ± ∧ dη±1 . . .dη
±
4

Equivalence explicitly via:

Xα =λα̇Aαα̇ + ηiχ
i
α + γ 1

2! ηiηj λ̂
α̇ φij

αα̇+

γ2 1
3! ηiηjηk λ̂

α̇ λ̂β̇ χ̃ijk

αα̇β̇
+ γ3 1

4! ηiηjηkηl λ̂
α̇ λ̂β̇ λ̂γ̇ Gijkl

αα̇β̇γ̇

Aλ̄ =γ2ηiηj φ
ij − γ3ηiηjηk λ̂

α̇ χ̃ijk
α̇ + 2γ4ηiηjηkηl λ̂

α̇ λ̂β̇Gijkl

α̇β̇
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Matrix Models from Noncommutativity
Functions on the noncommutative moduli space are infinite-dimensional matrices.

Noncommutativity on the moduli space

[x̂αα̇, x̂ββ̇] = iθαα̇ββ̇

with: (κ = ±1)

θ11̇22̇ = −θ22̇11̇ = −2iκεθ and θ12̇21̇ = −θ21̇12̇ = 2iεθ

representation space: two oscillator Fock space with |0, 0〉

â1 ∼ x̂21̇ + x̂12̇ and â2 ∼ x̂22̇ − x̂11̇

derivatives become inner derivations of the above algebra:

∂

∂x̂11̇
f ∼ [x̂22̇, f ] , etc.

integral becomes trace:
∫

d4x f 7→ (2πθ)2 trHf̂
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Matrix Models from Noncommutativity
Sections ω of the bundle defining supertwistor space are now matrix valued.

Noncommutativity on the twistor space

Induced algebra:

[ω̂1
±, ω̂

2
±] = 2(κ− 1)ελ±θ , [ˆ̄ω1

±, ˆ̄ω
2
±] = −2(κ− 1)ελ̄±θ ,

[ω̂1
+, ˆ̄ω

1
+] = 2(κε− λ+λ̄+)θ , [ω̂1

−, ˆ̄ω
1
−] = 2(κελ−λ̄− − 1)θ ,

[ω̂2
+, ˆ̄ω

2
+] = 2(1− εκλ+λ̄+)θ , [ω̂2

−, ˆ̄ω
2
−] = 2(λ−λ̄− − εκ)θ ,

Matrix Models

All operators can be seen as infinite dimensional matrices.
⇒ Matrix models from SDYM and hCS theory
explict equivalence again via field expansion.

Large N limit

N : rank of gauge group, limit N →∞: all MMs equivalent
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D-Brane Interpretation
There is an obvious interpretation of the hCS MM in terms of topological B-branes.

B-Type Topological Branes

D(-1)-, D1-, D3-, and D5-branes

stack of N D-branes comes with rank N vector bundle

effective action: GL(N,C) holomorphic Chern-Simons theory

i.e. F 0,2 = F 2,0 = 0 (stability missing: kd+1 ∧ F 1,1 = γkd)

hCS MM: stack of n D1|4-branes wrapping CP 1|4↪→P3|4.
expand Higgs-fields Xα = X 0

α + X i
αηi + X ij

α ηiηj + . . .

[X 0
1 ,X 0

2 ] = 0 ,

[X i
1,X 0

2 ] + [X 0
1 ,X i

2] = 0 ,

{X i
1,X

j
2 } − {X

j
1 ,X

i
2}+ [X ij

1 ,X
0
2 ] + [X 0

1 ,X
ij
2 ] = 0 ,

bodies X 0
α can be diagonalized: positions of the D1|4-branes

Fermionic directions are “smeared out” even classically.
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D-Brane Interpretation
Physical D-branes: topological D-branes + stability condition.

D-Branes in Type IIB String Theory

D(-1)-, D1-, D3-, ... branes

stack of N D-branes comes with rank N vector bundle

effective action: U(N) SYM reduced from 10 to p+ 1
curved spaces: F 0,2 = F 2,0 = 0 and kd+1 ∧ F 1,1 = γkd

arising Higgs fields: normal fluctuations of D-branes
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ADHM Construction and D-Brane Bound States
There is a nice interpretation of the ADHM construction in terms of D-branes.

Bound state of D3-D(-1)-branes (D9-D5-branes + dim. reduction)

Perspective of D3-brane

D3-D3-strings + BPS condition:
SDYM equations

D(-1)-brane: instanton, nontrivial ch2

Perspective of D(-1)-brane

D(-1)-D(-1)-strings:
N = (0, 1) hypmult., adj. (Aαα̇, χ

i
α)

D(-1)-D3-strings:
N = (0, 1) hypmult., bifund. (wα̇, ψ

i)
D-flatness condition/ADHM eqns.:

i
16π2~σ

α̇
β̇(w̄β̇wα̇ + Āαβ̇Aαα̇) = 0

Witten, hep-th/9510135, Douglas, hep-th/9512077,...
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ADHM and the SDYM Matrix Model
The SDYM Matrix Model is almost equivalent to the ADHM equations.

Perspective of D(-1)-branes

Supersymmetrically extend ADHM eqns.:

Aαα̇ → Aαα̇ + ηi
α̇χiα and wα̇ → wα̇ + ηi

α̇ψi

Drop the D(-1)-D3-strings, i.e. wα̇
!= 0

⇒ SDYM MM equations

How to obtain the full picture?

Incorporate D(-1)-D3-strings in MM
in hCS: D1-D5-strings.
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ADHM and the Extended Matrix Models
The hCS MM can be extended to be equivalent to the ADHM equations.

Extended action

Sext = ShCS MM +
∫
CP 1

ch

Ωred ∧ tr (β∂̄α+ βA0,1

CP 1α)

α=β∗, sections of O(1), fund. and antifund. of GL(N,C)
(α and β bosons not fermions as in Witten, hep-th/0312171)

Equations of motion:

∂̄Xα + [A0,1

CP 1 ,Xα] = 0

[X1,X2]+αβ = 0

∂̄α+A0,1

CP 1α = 0 and ∂̄β+βA0,1

CP 1 = 0
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ADHM and the Extended Matrix Models
Again, the equivalence can be made manifest by a field expansion.

Extended Penrose-Ward transform explicitly

β = λα̇wα̇ + ψiηi + γ 1
2!ηiηj λ̂

α̇ρij
α̇ + γ2 1

3!ηiηjηkλ̂
α̇λ̂β̇σijk

α̇β̇
+ . . .

α = λα̇εα̇β̇w̄
β̇ + . . .

Truncate the SDYM field content (φij , χ̃ijk
α̇ , Gijkl

α̇β̇
= 0):

Higher fields in extension also vanish

This expansion and the hCS MM equations yield
the full ADHM-equations.

Conclusions:

Extended hCS MM dual to full hCS (as SDYM↔ADHM).

D(-1)-D3-brane bound states correspond to
topological D1-D5-brane systems!
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Dimensional Reductions and the Nahm equations
Also for the Nahm-Equations, there is a nice interpretation in terms of D-branes.

Reduction of SDYM eqns. R4 → R3: Bogomolny monopole eqns.

(static) pair of D3 branes with D1-branes in normal directions

Perspective of D3-brane

static D3-D3-strings + BPS cond.:
Bogomolny equations

(three-dimensional SDYM)
D1-branes: monopoles

Perspective of D1-brane

D1-D1-strings: Nahm equations (one-dimensional SDYM)
D1-D3-strings: Nahm boundary conditions

Diaconescu, hep-th/9608163
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Dimensional Reductions and the Nahm equations
For treating the Nahm eqns., one has to change slightly the geometry of twistor space.

Recall

All our MM considerations are based upon
P3|... = O(1)⊕O(1)⊕ ...→ CP 1 and its dim. red. CP 1|4.

The twistor space for the Bogomolny equations is O(2) → CP 1.

New Calabi-Yau supermanifold

Start from Q3|4 = O(2)⊕O(0)⊕C4 ⊗ΠO(1)
Restrict sections Q̂3|4: w1 = yα̇β̇λα̇λβ̇, w2 = y1̇2̇

Dimensional reductions

Q̂3|4 →


P2|4 := O(2)⊕C4 ⊗ΠO(1)
Q̂2|4 := O(0)⊕C4 ⊗ΠO(1)
CP 1|4 := C4 ⊗ΠO(1)
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Dimensional Reductions and the Nahm equations
Different dimensional reductions yield the various field theories in the Nahm construction.

Q̂3|4 = O(2)⊕O(0)⊕C4 ⊗ΠO(1)|res
Upon imposing a reality condition, hCS theory turns into partially
hCS theory (→ CR manifolds, etc.): Equiv. to Bogomolny eqns.

Popov, CS, Wolf, JHEP 10 (2005) 058

P2|4 := O(2)⊕C4 ⊗ΠO(1)

hCS equations from a holomorphic BF-theory:
∫

Ω ∧BF 0,2

equivalent to Bogomolny equations

Q̂2|4 := O(0)⊕C4 ⊗ΠO(1)

hCS equations from a holomorphic BF-theory:
∫

Ω ∧BF 0,2

equivalent to Nahm equations

CP 1|4 := C4 ⊗ΠO(1): again hCS and SDYM matrix models
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D-Brane correspondences
We find a list of correspondences between topological and physical D-branes.

Summing up, we have

D5|4-branes in P3|4 ↔ D3|8-branes in R4|8

D3|4-branes wr. P2|4 in P3|4 or Q̂3|4 ↔ static D3|8-branes in R4|8

D3|4-branes wr. Q̂2|4 in Q̂3|4 ↔ static D1|8-branes in R4|8

D1|4-branes in P3|4 ↔ D(-1|8)-branes in R4|8

straightforward: add diagonal line bundle D2|4, defined by ω1 = ω2

D3|4-branes wrapping D2|4 in P3|4 ↔ D1|8-branes in R4|8 .

Note:

Branes extend only into chiral fermionic dimensions

Branes appear in bound state configurations.
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D-brane configuration equivalences
We had topological-physical D-brane equivalences for ADHM and Nahm construction.

⇐⇒

⇐⇒

But: There are many more.
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Conclusions
Summary and Outlook

Done:

Definition of twistor matrix models

Extension of the matrix models to

full ADHM-equations
full Nahm-equations

Map between topological and physical D-brane bound states

Future Directions:

Study Nahm equations more closely

Study mirror configurations?

Generalize to full Yang-Mills theory

Carry over results from topological strings to physical ones
(e.g. Derived Categories).
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