Random walks in semigroups: stability and sensitivity

Boris Tsirelson

Tel Aviv University
//www.tau.ac.il/~tsirel/

A talk on RW July 2007 Durham

Example 1 (trivial). $f_{-}, f_{+}: \mathbb{Z} \rightarrow \mathbb{Z}$,

$$
\begin{gathered}
f_{-}(x)=x-1, \quad f_{+}(x)=x+1 \\
f_{a}(x)=x+a
\end{gathered}
$$

Example 2. $g_{-}, g_{+}: \mathbb{Z}_{+} \rightarrow \mathbb{Z}_{+}$,

$$
\begin{gathered}
g_{+}(x)=x+1, \quad g_{-}(x)=\max (0, x-1), \\
g_{a, b}(x)=a+\max (x, b) \\
\text { for } a, b \in \mathbb{Z}, b \geq 0, a+b \geq 0 .
\end{gathered}
$$

Example 3. $h_{-}, h_{+}: \mathbb{Z}+\frac{1}{2} \rightarrow \mathbb{Z}+\frac{1}{2}$,

$$
\begin{aligned}
& h_{-}(x)=x-1 \\
& h_{+}(x)=x+1 \\
& h_{-}(-x)=-h_{-}(x), \quad \text { for } x \in\left(\mathbb{Z}+\frac{1}{2}\right) \cap(0, \infty), \\
& h_{+}(-x)=-h_{+}(x) .
\end{aligned}
$$

$h_{a, b}(x)= \begin{cases}x+a & \text { for } x \geq b, \\ x-a & \text { for } x \leq-b, \\ (-1)^{b-x}(a+b) & \text { for }-b \leq x \leq b ;\end{cases}$

$$
b, a+b \in\left(\mathbb{Z}+\frac{1}{2}\right) \cap(0, \infty)=\left\{\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots\right\} .
$$

In fact, $\left|h_{a, b}(x)\right|-\frac{1}{2}=g_{a, b}\left(|x|-\frac{1}{2}\right)$.

Algebraically:
semigroup generators relations

$$
\begin{array}{ccc}
G_{1} & f_{-}, f_{+} & f_{-} f_{+}=1=f_{+} f_{-} \\
G_{2} & g_{-}, g_{+} & g_{+} g_{-}=1 \\
G_{3} & h_{-}, h_{+} & h_{+} h_{-}=1
\end{array}
$$

$f_{a}=f_{+}^{a}$ or f_{-}^{-a} for $a \in \mathbb{Z}$;
$g_{a, b}=g_{-}^{b} g_{+}^{a+b}$ for $a, b \in \mathbb{Z}, b \geq 0, a+b \geq 0 ;$
the same for $h_{a, b}$.
G_{1} is commutative; G_{2} and G_{3} are isomorphic, noncommutative.
Example 1: a representation of G_{1}; Example 2: a representation of G_{2};
Example 3: a two-sheeted representation of G_{2} ? What about three-sheeted?

Random walk in a semigroup G with given generators x_{-}, x_{+}: $\xi_{n}\left(\omega_{1}, \omega_{2}, \ldots\right)=x_{\omega_{1}} \ldots x_{\omega_{n}}$ for $\omega_{1}, \omega_{2}, \cdots= \pm 1$.
Perturbation:
$\xi_{n}=\xi_{n}\left(\omega_{1}, \ldots\right), \quad \xi_{n}^{\prime}=\xi_{n}\left(\omega_{1}^{\prime}, \ldots\right)$,
$\mathbb{E} \omega_{k} \omega_{k}^{\prime}=\left\{\begin{array}{ll}+1 & \text { for } k \notin A, \\ 0 & \text { for } k \in A ;\end{array} ; \quad|A|=\varepsilon n . \quad \mathbb{E} \omega_{k} \omega_{l}^{\prime}=0\right.$ for $k \neq l$.

A :

Equivalent in the commutative case.

Def. A function $\varphi: G \rightarrow \mathbb{R}$ is n-stable if $\mathbb{E}\left|\varphi\left(\xi_{n}\right)-\varphi\left(\xi_{n}^{\prime}\right)\right|^{2} \leq \varepsilon$ for all $\varepsilon \in\left\{\frac{1}{n}, \frac{2}{n}, \ldots, 1\right\}$.
Def. Metric ρ_{n} on G (possibly $+\infty$):

$$
\rho_{n}(x, y)=\sup \{|\varphi(x)-\varphi(y)|: \varphi \text { is } n \text {-stable }\} .
$$

Depends on A (left, \ldots, scattered), unless G is commutative.
Example 1 (commutative; $G_{1}=\left\{f_{a}: a \in \mathbb{Z}\right\} \cong \mathbb{Z}$)
$\rho_{n}\left(f_{a}, f_{a+2}\right) \rightarrow 0$ as $n \rightarrow \infty ;$
$\rho_{n}\left(f_{a}, f_{a+1}\right)=\infty$.
$\varphi(x)=$ const $\cdot \frac{x}{\sqrt{n}}$ is n-stable.
Roughly, an n-stable function of $f_{a} \in G_{1}$ is a continuous function of a / \sqrt{n} and $(-1)^{a}$.

And no wonder; $\xi_{n}=f_{a}$ with $a+n \in 2 \mathbb{Z}$ always.

EXAMPLE 2 (noncommutative; $G_{2}=\left\{g_{a, b}: a, b \in \mathbb{Z}, b \geq 0, a+b \geq 0\right\}$) $\xi_{n}=g_{a, b}$ with $n+a \in \mathbb{Z}$ always (but b can be of any parity).
$A=\square$: an n-stable function of $g_{a, b} \in G_{2}$ is a continuous function of a / \sqrt{n} and $(-1)^{a}$, but arbitrary function of b.
$A=\square: \ldots$ continuous function of $(a-b) / \sqrt{n}$ and $(-1)^{a-b}$, but arbitrary function of $a+b$.
$A=\square:$ continuous function of $a / \sqrt{n}, b / \sqrt{n},(-1)^{a}$ and $(-1)^{b}$.
$A=\overleftrightarrow{\square}$: the same.

Just two-sheeted! (representation of G_{2})
Different modes of perturbation lead to different scaling limits.

Homomorphism $G_{2} \rightarrow G_{1}$,

$$
\begin{aligned}
& g_{-} \mapsto f_{-},
\end{aligned} \quad g_{a, b}=g_{-}^{b} g_{+}^{a+b} \mapsto f_{-}^{b} f_{+}^{a+b}=f_{a}
$$

Random walk in G_{2},

$$
g_{\omega_{1}} \ldots g_{\omega_{n}}=g_{a_{n}, b_{n}},
$$

and in G_{1},

$$
f_{\omega_{1}} \ldots f_{\omega_{n}}=f_{a_{n}}, \quad a_{n}=\omega_{1}+\cdots+\omega_{n}
$$

related:

$$
\begin{gathered}
b_{n}=0-\min \left(a_{0}, \ldots, a_{n}\right), \\
a_{n}+b_{n}=a_{n}-\min \left(a_{0}, \ldots, a_{n}\right) .
\end{gathered}
$$

Scaling limit:

$$
\begin{gathered}
\frac{a_{k}}{\sqrt{n}} \rightarrow w\left(\frac{k}{n}\right), \quad w=\text { Brownian motion, } \\
\frac{b_{k}}{\sqrt{n}} \rightarrow-\min _{[0, k / n]} w(\cdot) \\
(-1)^{b_{k}}=(-1)^{\sqrt{n} \min _{[0, k / n]} w(\cdot)} \rightarrow ?
\end{gathered}
$$

Warren's noise of splitting:

Brownian paths with independent random signs attached to local minima.

