Random walks in semigroups: stability and sensitivity

Boris Tsirelson

Tel Aviv University

//www.tau.ac.il/~tsirel/

A talk on RW

July 2007

Durham

EXAMPLE 1 (trivial). $f_-, f_+ : \mathbb{Z} \to \mathbb{Z}$,

T

$$f_{+}$$
 f_{-}
 $f_{-}(x) = x - 1, \quad f_{+}(x) = x + 1$
 $f_{a}(x) = x + a$

EXAMPLE 2. $g_-, g_+ : \mathbb{Z}_+ \to \mathbb{Z}_+,$

$$g_{+} \quad g_{-}$$

$$g_{+}(x) = x + 1, \quad g_{-}(x) = \max(0, x - 1),$$

$$g_{a,b}(x) = a + \max(x, b)$$
for $a, b \in \mathbb{Z}, \ b \ge 0, \ a + b \ge 0.$

$$a + b \underbrace{for a, b \in \mathbb{Z}, \ b \ge 0, \ a + b \ge 0.}$$

EXAMPLE 3. $h_-, h_+ : \mathbb{Z} + \frac{1}{2} \to \mathbb{Z} + \frac{1}{2}$,

$$h_{-}(x) = x - 1$$

$$h_{+}(x) = x + 1$$
 for $x \in \left(\mathbb{Z} + \frac{1}{2}\right) \cap (0, \infty)$,

$$h_{-}(-x) = -h_{-}(x)$$
, $h_{+}(-x) = -h_{+}(x)$.

$$3/2$$

 $1/2$
 $-1/2$
 $-3/2$
 h_{-}
 h_{+}

$$h_{a,b}(x) = \begin{cases} x+a & \text{for } x \ge b, \\ x-a & \text{for } x \le -b, \\ (-1)^{b-x}(a+b) & \text{for } -b \le x \le b; \end{cases}$$

$$b, a+b \in \left(\mathbb{Z}+\frac{1}{2}\right) \cap (0,\infty) = \{\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \dots\}.$$

In fact, $|h_{a,b}(x)| - \frac{1}{2} = g_{a,b}(|x| - \frac{1}{2}).$

Algebraically:

semigroup	generators	relations
G_1	f, f_+	$f_{-}f_{+} = 1 = f_{+}f_{-}$
G_2	g, g_+	$g_{+}g_{-} = 1$
G_3	h,h_+	$h_{+}h_{-} = 1$

 $f_a = f_+^a \text{ or } f_-^{-a} \text{ for } a \in \mathbb{Z};$ $g_{a,b} = g_-^b g_+^{a+b} \text{ for } a, b \in \mathbb{Z}, b \ge 0, a+b \ge 0;$ the same for $h_{a,b}.$

 G_1 is commutative; G_2 and G_3 are isomorphic, noncommutative.

Example 1: a representation of G_1 ; Example 2: a representation of G_2 ; Example 3: a two-sheeted representation of G_2 ? What about three-sheeted? Random walk in a semigroup G with given generators x_{-}, x_{+} :

$$\xi_n(\omega_1, \omega_2, \dots) = x_{\omega_1} \dots x_{\omega_n}$$
 for $\omega_1, \omega_2, \dots = \pm 1$.

Perturbation:

$$\xi_n = \xi_n(\omega_1, \dots), \quad \xi'_n = \xi_n(\omega'_1, \dots),$$
$$\mathbb{E}\omega_k \omega'_k = \begin{cases} +1 & \text{for } k \notin A, \\ 0 & \text{for } k \in A; \end{cases}; \quad |A| = \varepsilon n. \qquad \mathbb{E}\omega_k \omega'_l = 0 \text{ for } k \neq l.$$

Equivalent in the commutative case.

DEF. A function $\varphi: G \to \mathbb{R}$ is *n*-stable if $\mathbb{E}|\varphi(\xi_n) - \varphi(\xi'_n)|^2 \leq \varepsilon$ for all $\varepsilon \in \{\frac{1}{n}, \frac{2}{n}, \dots, 1\}.$

DEF. Metric ρ_n on G (possibly $+\infty$):

$$\rho_n(x, y) = \sup\{|\varphi(x) - \varphi(y)| : \varphi \text{ is } n \text{-stable}\}.$$

Depends on A (left, ..., scattered), unless G is commutative. EXAMPLE 1 (commutative; $G_1 = \{f_a : a \in \mathbb{Z}\} \cong \mathbb{Z}$) $\rho_n(f_a, f_{a+2}) \to 0$ as $n \to \infty$; $\rho_n(f_a, f_{a+1}) = \infty$. $\varphi(x) = \text{const} \cdot \frac{x}{\sqrt{n}}$ is *n*-stable. Roughly, an *n*-stable function of $f_a \in G_1$ is a continuous function of a/\sqrt{n}

and $(-1)^{a}$.

And no wonder; $\xi_n = f_a$ with $a + n \in 2\mathbb{Z}$ always.

EXAMPLE 2 (noncommutative; $G_2 = \{g_{a,b} : a, b \in \mathbb{Z}, b \ge 0, a+b \ge 0\}$) $\xi_n = g_{a,b}$ with $n + a \in \mathbb{Z}$ always (but b can be of any parity). $A = \square \square$: an *n*-stable function of $g_{a,b} \in G_2$ is a continuous function of a/\sqrt{n} and $(-1)^a$, but arbitrary function of b. \square : ... continuous function of $(a-b)/\sqrt{n}$ and $(-1)^{a-b}$, A =but arbitrary function of a + b. $A = \square \square$: continuous function of a/\sqrt{n} , b/\sqrt{n} , $(-1)^a$ and $(-1)^b$. \checkmark : the same. A =1 + 1 + 1 + 1 + 1 + 1 = 1: continuous function of a/\sqrt{n} , b/\sqrt{n} and $(-1)^a$. A =Just two-sheeted! (representation of G_2) Different modes of perturbation lead to different scaling limits.

discrete time $$ <i>n</i> -stable?		scaling limit	→	continuous time
← →				
yes	yes			classical
yes	no			nonclassical
no				not at all

G_1	classical (Brownian motion, white noise)
G_2	nonclassical (Warren's noise of splitting)
$\{-1,+1\}$	not at all

Homomorphism $G_2 \to G_1$,

$$g_{-} \mapsto f_{-},$$

 $g_{+} \mapsto f_{+},$
 $g_{a,b} = g_{-}^{b} g_{+}^{a+b} \mapsto f_{-}^{b} f_{+}^{a+b} = f_{a}.$

Random walk in G_2 ,

$$g_{\omega_1}\ldots g_{\omega_n}=g_{a_n,b_n},$$

and in G_1 ,

$$f_{\omega_1} \dots f_{\omega_n} = f_{a_n}, \qquad a_n = \omega_1 + \dots + \omega_n,$$

related:

$$b_n = 0 - \min(a_0, \dots, a_n),$$

$$a_n + b_n = a_n - \min(a_0, \dots, a_n).$$

$$b_n \begin{cases} \bullet_n \\ \bullet_n \end{cases}$$

Scaling limit:

$$\frac{a_k}{\sqrt{n}} \to w\left(\frac{k}{n}\right), \qquad w = \text{Brownian motion},$$
$$\frac{b_k}{\sqrt{n}} \to -\min_{[0,k/n]} w(\cdot),$$
$$(-1)^{b_k} = (-1)^{\sqrt{n}\min_{[0,k/n]} w(\cdot)} \to ?$$

Warren's noise of splitting:

Brownian paths with independent random signs attached to local minima.

⁽countable, dense)