Limit laws for one-dimensional random walks in random environment in the Kesten-Kozlov-Spitzer regime

Christophe Sabot, Univ. Lyon 1

Joint work with N. Enriquez and O. Zindy
http://hal.archives-ouvertes.fr/hal-00137770 http://hal.archives-ouvertes.fr/hal-00137772

At each site $x \in \mathbb{Z}$, we choose $\omega_{x} \in(0,1)$ independently with the same law μ : we denote by

$$
P=\mu^{\otimes \mathbb{Z}}
$$

the law of the environment.
The law of the Markov chain (X_{n}) in environment $\left(\omega_{x}\right)$ is given by

$$
\begin{gathered}
P_{\omega}\left(X_{n+1}=x+1 \mid X_{n}=x\right)=\omega_{x} \\
P_{\omega}\left(X_{n+1}=x-1 \mid X_{n}=x\right)=1-\omega_{x}
\end{gathered}
$$

We denote by

$$
\mathbb{P}(\cdot)=E\left(P_{\omega}(\cdot)\right)
$$

the annealed law.

Beta case: $\mu \sim \operatorname{Beta}(\alpha, \beta)$, i.e. has density

$$
\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1} \mathbb{1}_{(0,1)}(x)
$$

For $i \in \mathbb{Z}$ we set

$$
\rho_{i}=\frac{1-\omega_{i}}{\omega_{i}} .
$$

Theorem 1 (Solomon, 75)
i) If $E\left(\log \left(\rho_{0}\right)\right)<0$, then

$$
\lim _{n \rightarrow \infty} X_{n}=+\infty, \quad \mathbb{P} \text { p.s. }
$$

If $E\left(\log \left(\rho_{0}\right)\right)=0$ then X_{n} is recurrent (Sinaï's walk)
ii) If $E\left(\rho_{0}\right)<1$ then

$$
\lim _{n \rightarrow \infty} \frac{X_{n}}{n}=v_{\infty}=\frac{1-E\left(\rho_{0}\right)}{1+E\left(\rho_{0}\right)}, \quad \mathbb{P} \text { p.s. }
$$

If $\mu \sim \operatorname{Beta}(\alpha, \beta)$:

$$
\begin{gathered}
E\left(\log \rho_{0}\right)<0 \text { iff } \alpha>\beta \\
E\left(\rho_{0}\right)<1 \text { iff } \alpha>\beta+1 \\
v_{\infty}=\frac{\alpha-\beta-1}{\alpha+\beta-1}
\end{gathered}
$$

Finer behaviour is related to the function $s \mapsto$ $E\left(\rho_{0}^{s}\right)$
and to the solution of the equation

$$
E\left(\rho_{0}^{\kappa}\right)=1
$$

Let $\tau(n)=\inf \left\{k, X_{k}=n\right\}$.
Theorem 2 (Kesten-Kozlov-Spitzer, 75) Suppose the distribution of $\log \left(\rho_{0}\right)$ is non-arithmetic and there exists $\kappa>0$ such that

$$
E\left(\rho_{0}^{\kappa}\right)=1, \quad E\left(\rho_{0}^{\kappa} \log ^{+}\left(\rho_{0}\right)\right)<\infty .
$$

i) If $\kappa<1$ then

$$
\frac{\tau(n)}{n^{1 / \kappa}} \xrightarrow{\text { law }} L_{\kappa}
$$

where L_{κ} is a positive stable law with index κ.
ii) For $\kappa=1$

$$
\frac{\tau(n)}{n \log n} \xrightarrow{\text { law }} c
$$

where c is a positive constant.
iii) Fluctuation for $1 \leq \kappa<2$.

For $\kappa<1, L_{\kappa}$ is determined by its Laplace transform

$$
e^{-d \lambda^{\kappa}}
$$

Question: what is the value of d ? KKS's proof is based on the tail estimate of the variable

$$
\begin{gathered}
R=\rho_{1}+\rho_{1} \rho_{2}+\cdots+\rho_{1} \cdots \rho_{n}+\cdots \\
P(R \geq t) \sim C_{K} t^{-\kappa}
\end{gathered}
$$

Theorem 3 (Enriquez, S., Zindy) For $\kappa<1$

$$
d=2^{\kappa} \frac{\pi \kappa^{2}}{\sin (\pi \kappa)} C_{K}^{2} E\left(\rho_{0}^{\kappa} \log \rho_{0}\right)
$$

i.e.

$$
\frac{\tau(n)}{n^{1 / \kappa}} \xrightarrow{\text { law }} 2\left(\frac{\pi \kappa^{2}}{\sin (\pi \kappa)} C_{K}^{2} E\left(\rho_{0}^{\kappa} \log \rho_{0}\right)\right)^{\frac{1}{\kappa}} \mathcal{S}_{\kappa}^{c a}
$$

where $\mathcal{S}_{\kappa}^{c a}$ is the normalized stable distribution with index κ and Laplace transform $e^{-\lambda^{\kappa}}$.

$$
\frac{X_{n}}{n^{\kappa}} \xrightarrow{\text { law }} \frac{\sin (\pi \kappa)}{2^{\kappa} \pi \kappa^{2} C_{K}^{2} E\left(\rho_{0}^{\kappa} \log \rho_{0}\right)}\left(\frac{1}{\mathcal{S}_{\kappa}^{c a}}\right)^{\frac{1}{\kappa}}
$$

Corollary 1 (The Beta case): If $\mu \sim \operatorname{Beta}(\alpha, \beta)$, then

$$
\begin{gathered}
\kappa=\alpha-\beta \\
d=\frac{\pi 2^{\alpha-\beta}}{\sin (\pi(\alpha-\beta))} \cdot \frac{\psi(\alpha)-\psi(\beta)}{B(\alpha, \beta)^{2}}
\end{gathered}
$$

where $\psi(z)=(\log \Gamma(z))^{\prime}$ is the dilogarithm and $B(\alpha, \beta)=\Gamma(\alpha) \Gamma(\beta) / \Gamma(\alpha+\beta)$.

This comes from a result of Chamayou et Letac
Proposition 1 (Chamayou, Letac)
In the Beta case

$$
R \stackrel{l a w}{=} \frac{1-W}{W}
$$

where $W \sim \operatorname{Beta}(\alpha-\beta, \beta)$.
This implies $C_{K}=\frac{1}{(\alpha-\beta) B(\alpha, \beta)}$
Remark: The r.v. R has the following probabilistic expression

$$
R=E_{\omega}(\sharp\{\text { crossings } 1 \rightarrow 0\})
$$

In general, we derived a probabilistic representation of C_{K} and d, which is easy to evaluate numerically.

The case $\kappa=1$

In the case $\kappa=1$, Kesten's constant is always explicit (this is due to Goldie) and equal to $C_{K}=1 / E\left(\rho_{0} \log \left(\rho_{0}\right)\right)$. We strongly believe that the constant c in the limit should be equal to $c=\frac{1}{2 C_{K}^{2} E\left(\rho_{0} \log \rho_{0}\right)}$, which would give the remarkably simple result

$$
X_{n} /\left(\frac{n}{\log n}\right) \rightarrow E\left(\rho_{0} \log \left(\rho_{0}\right)\right) / 2
$$

in probability. We still have small technical problems to treat this critical case!

Sinai's potential

$$
V_{x}(\omega)= \begin{cases}\sum_{k=1}^{x} \log \rho_{k}, & x \geq 0 \\ V_{0}=0 & \\ V_{x}(\omega)=\sum_{k=x+1}^{0} \log \rho_{k}, & x \leq 0\end{cases}
$$

$E\left(\log \left(\rho_{0}\right)\right)<0$ implies that $\lim _{\infty} V_{k}=-\infty$. The random walk X_{n} descends along the potential (V_{x}).

For example if $a<b<c$

$$
P_{\omega}^{b}(\tau(a)<\tau(c))=\frac{\sum_{k=b}^{c-1} e^{V_{k}}}{\sum_{k=a}^{c-1} e^{V_{k}}}
$$

and if $c>0$

$$
E_{\omega}^{0}(\tau(c))=\sum_{\substack{i \leq c-1 \\ 0 \leq j \leq c-1, j \geq i}} e^{V_{j}-V_{i}} .
$$

Weak descending ladder epochs : $e_{0}=0$

$$
e_{i+1}=\inf \left\{k>e_{i}, V_{k} \leq V_{e_{i}}\right\}
$$

The height of the excursion

$$
H_{i}=\sup \left\{V_{k}-V_{e_{i}}, k \in\left[e_{i}, e_{i+1}\right]\right\} .
$$

$\left(H_{i}\right)_{i \geq 0}$ is an iid sequence and (Iglehart)

$$
P\left(H_{0} \geq h\right) \sim C_{I} e^{-\kappa h}
$$

where

$$
C_{I}=\frac{\left(1-E\left(e^{\kappa V\left(e_{1}\right)}\right)\right)^{2}}{\kappa E\left(\rho_{0}^{\kappa} \log \left(\rho_{0}\right)\right) E\left(e_{1}\right)} .
$$

This is related to the renewal theory and to the tail of the absolute maximum $S=\max \left\{V_{k}, k \geq\right.$ 0\}

$$
P(S \geq h) \sim C_{F} e^{-\kappa h}
$$

where

$$
\frac{C_{I}}{C_{F}}=1-E\left(e^{\kappa V\left(e_{1}\right)}\right)
$$

We consider $\tau\left(e_{n}\right)$ the time to cross n excursions and

$$
\mathbb{E}\left(e^{-\lambda \frac{\tau\left(e_{n}\right)}{n^{1 / \kappa}}}\right)
$$

We have
$\tau\left(e_{n}\right)=\tau\left(0, e_{1}\right)+\tau\left(e_{1}, e_{2}\right)+\cdots+\tau\left(e_{n-1}, e_{n}\right)$.
The time $\tau\left(e_{i}, e_{i+1}\right)$ is roughly of order $e^{H_{i}}$, hence

$$
\mathbb{P}\left(\tau\left(e_{i}, e_{i+1}\right) \geq t\right) \asymp t^{-\kappa}
$$

and $\tau\left(e_{i}, e_{i}+1\right)$ has a heavy tail for $\kappa \leq 1$. Hence, only a few count, well separated, and we can consider them as independent.
This leads to

$$
\mathbb{E}\left(\left.e^{-\lambda \frac{\tau\left(e_{1}\right)}{n^{1 / \kappa}}} \right\rvert\, V_{k} \geq 0 \forall k \leq 0\right)^{n}
$$

since $P\left(\cdot \mid V_{k} \geq 0 \forall k \leq 0\right)$ is the shape of the potential around a ladder time e_{i}.

The RW (X_{n}) tries a geometric number of times N to reach the level e_{1} and finally succeed

$$
\tau\left(e_{1}\right)=F_{1}+\cdots+F_{N}+S
$$

When H is large the parameter of N is close to 1 : we can neglect S and consider $\tau\left(e_{1}\right)$ as a geometric r.v. with parameter $E_{\omega}\left(\tau\left(e_{1}\right)\right)$.

$$
E_{\omega}\left(\tau\left(e_{1}\right)\right) \sim E_{\omega}(F) E_{\omega}(N) \sim 2 e^{H} M_{1} M_{2}
$$

where

$$
M_{1}=\sum_{k=-\infty}^{T_{H}} e^{-V_{k}}, \quad M_{2}=\sum_{k=0}^{e_{1}} e^{V_{k}-H}
$$

where $T_{H}=\inf \left\{k \geq 0, V_{k}=H\right\}$ is the first time where the level H is reached. This analysis leads to

$$
\begin{aligned}
& E\left(\left.\int_{0}^{\infty} e^{-u} e^{-2 \frac{u \lambda}{n^{1 / \kappa} \kappa_{e} M_{1} M_{2}}} d u \right\rvert\, V_{k} \geq 0 \forall k \leq 0\right)^{n} \\
= & \left(1-\int_{0}^{\infty} e^{-u}\left(1-H\left(\frac{u \lambda}{n^{1 / \kappa}}\right)\right) d u\right)^{n}
\end{aligned}
$$

where

$$
H(v)=E\left(e^{-2 v Z} \mid V_{k} \geq 0 \forall k \leq 0\right)
$$

and

$$
Z=e^{H} M_{1} M_{2}
$$

By Tauber theorem, this leads to understand the tail of Z. Since only the large H count we can freely condition by the event $\{H=S\}$, where $S=\max \left\{V_{k}, \forall k \geq 0\right\}$ and we set

$$
\mathcal{I}=\{H=S\} \cap\left\{V_{k} \geq 0 \forall k \leq 0\right\} .
$$

we also replace M_{2} by the full sum

$$
M_{2}=\sum_{k=0}^{\infty} e^{V_{k}-H} .
$$

Under $P(\cdot \mid \mathcal{I})$ we have the symmetry

$$
\left(V_{k}\right) \stackrel{l a w}{=}\left(H-V_{T_{H}-k}\right)
$$

and

$$
M_{1} \stackrel{l a w}{=} M_{2}
$$

In fact, for large H, M_{1}, M_{2} and H are asymptotically independent (this is obtained by a delicate almost coupling argument).

$$
P\left(e^{H} M_{1} M_{2} \geq t \mid \mathcal{I}\right) \sim C_{I} E\left(M_{1}^{-\kappa}\right)^{2}
$$

To understand the asymptotic shape of M_{1}, we use the Girsanov transform: let

$$
\tilde{\mu}(d \rho)=\rho^{\kappa} \mu(d \rho)
$$

and \tilde{P} the associated law on the environment. When H is large, the path ($V_{0}, \cdots, V_{T_{H}}$) behaves like (V_{k}) under $\tilde{P}\left(\cdot \mid V_{k}>0 \forall k>0\right)$. Hence, we have

$$
P(Z \geq t \mid \mathcal{I}) \sim C_{Z} t^{-\kappa}
$$

where

$$
C_{Z}=C_{I} E\left(M^{-\kappa}\right)^{2}
$$

where

$$
M=\sum_{-\infty}^{\infty} e^{-V_{k}}
$$

and where $\left(V_{k}\right)_{k \leq 0}$ is distributed under $P\left(\cdot \mid V_{k} \geq\right.$ $0 \forall k \leq 0)$ and ${ }^{-}\left(V_{k}\right)_{k \geq 0}$ is distributed under $\tilde{P}\left(\cdot \mid V_{k}>0 \forall k>0\right)$.

This gives an expression of the limit law in terms of the $E\left(M^{-\kappa}\right)$ and the constant C_{I} (which is explicit).

Remark that the Kesten r.v.

$$
\begin{aligned}
R & =1+\rho_{1}+\rho_{1} \rho_{2}+\cdots \\
& =e^{S} M_{2}
\end{aligned}
$$

Using similar arguments we can get

$$
P(R \geq t) \sim C_{K} t^{-\kappa}
$$

where

$$
C_{K}=C_{F} E\left(M^{-\kappa}\right)
$$

This relates the constant C_{Z} to C_{K} and gives the result.

