Intersection of random walks in supercritical dimensionsJ

Peter Morters

University of Bath

joint work with Xia Chen (Knoxville)



Let

(XP(n) : neN),...,(XP(n) : neN)
taking values in Z7.

be p > 2 independent identically distributed random walks started in the origin and
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Let

(XW(n) : neN),...,(X?(n) : n€N)

be p > 2 independent identically distributed random walks started in the origin and
taking values in Z¢. We shall always assume that the increments of these random
walks are symmetric with finite variance.
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Let

(XP(n) : n€N),...,(XP(n) : n€N)
be p > 2 independent identically distributed random walks started in the origin and
taking values in Z?. We shall always assume that the increments of these random
walks are symmetric with finite variance.

The number of intersections of these walks can be measured in two natural ways: The
intersection local time of the random walks,

| = i..-il{x(”(h) == X(")(ip)},

counts the times when the paths intersect,
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Let

(XP(n) : n€N),...,(XP(n) : n€N)
be p > 2 independent identically distributed random walks started in the origin and

taking values in Z?. We shall always assume that the increments of these random
walks are symmetric with finite variance.

The number of intersections of these walks can be measured in two natural ways: The
intersection local time of the random walks,

(e o) (e o)
| = Z Z 11) = = X(P)(ip)}v
=1 ip=1

counts the times when the paths intersect, whereas the intersection of the ranges

J:= Z HXO(i) = = XP(ip) = x for some (i1, ..., i»)}

xezd

counts the sites where the paths intersect.
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Question: When are the random variables / and J finite?
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Question: When are the random variables / and J finite?
Back-of-the-envelope calculation:
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Back-of-the-envelope calculation:

Question: When are the random variables / and J finite?

| =

oo}

oo
=1

. Z I{X(l)(il) - X(p)(ip)}
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Question: When are the random variables | and J finite?
Back-of-the-envelope calculation

ip=1

=30 X @) = = X))

f: f: I{X(l)(l ) —
x€zd =1

ip=1

= X(jp) = x}
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Question: When are the random variables | and J finite?
Back-of-the-envelope calculation
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Question: When are the random variables | and J finite?
Back-of-the-envelope calculation:

«0O)>» «Fr «=Z» « =) = o>



Question: When are the random variables | and J finite?
Back-of-the-envelope calculation:

El = ZdlEf[ i 1{X9(i) = x}

j=1 i=1
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Question: When are the random variables | and J finite?
Back-of-the-envelope calculation:

Jj=1i=1

El = ZdlEf[ i 1{X9(i) = x}

i=1
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Question: When are the random variables | and J finite?
Back-of-the-envelope calculation:
j=1 i=1

El = ZdJEf[ i 1{X9(i) = x}

i=1

= HIEZ 1{XY(i) = x}

xezd j=1 i=1
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Question: When are the random variables | and J finite?
Back-of-the-envelope calculation:

Jj=1i=1

El = ZdJEf[ i 1{X9(i) = x}

= HIEZ 1{XY(i) = x}

xezd j=1 i=1

= Z G(X)P)

xezd
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Question: When are the random variables | and J finite?
Back-of-the-envelope calculation:

Jj=1i=1

El = ZdJEf[ i 1{X9(i) = x}

i=1

= HIEZ 1{XY(i) = x}

xezd j=1 i=1
=Y G(x),

xezd
where G(x) = (|x| +1)>~ is the Green's function

«O>» «Fr «E>» «E>» = waQ>

= > JID o r{x9) = x}



Question: When are the random variables / and J finite?

1 ifp(d—2)>d,
0

otherwise.
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Question: When are the random variables / and J finite?

1 if p(d—2)>d,
0 otherwise.

]P’{I<oo}=]P’{J<oo}={

From now on we assume that p(d — 2) > d, i.e. we are in supercritical dimensions.
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The distributions of / and J are unknown.
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The distributions of | and J are unknown. Khanin, Mazel, Shlosman, Sinai 1994 have
studied the upper tail behaviour. They find that, for a sufficiently large,

exp { — C1a%} <P{l >a} <exp{-— cza%}.
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The distributions of | and J are unknown. Khanin, Mazel, Shlosman, Sinai 1994 have
studied the upper tail behaviour. They find that, for a sufficiently large,

exp { — Cla%} <P{l >a} <exp{-— cza%}.
€ > 0 and all sufficiently large a,

Interestingly, the upper tails of J are substantially lighter. They show that, for all

exp { — a%ﬁ} <P{J>a} <exp{— a%*s}
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The distributions of | and J are unknown. Khanin, Mazel, Shlosman, Sinai 1994 have
studied the upper tail behaviour. They find that, for a sufficiently large,

exp { — C1a%} <P{l >a} <exp{-— cza%}.
€ > 0 and all sufficiently large a,

Interestingly, the upper tails of J are substantially lighter. They show that, for all

d—2 d—2
exp{—ad “}<P{U>a}<exp{—-a 7 }

The challenging question lies in understanding the difference of these behaviours,
providing sharp estimates for the tails, and understanding the underlying ‘optimal
strategies’ for the random walks.
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van den Berg, Bolthausen and den Hollander 2004 invesitigate the continuous
analogue of the intersection of the ranges J:
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van den Berg, Bolthausen and den Hollander 2004 invesitigate the continuous
analogue of the intersection of the ranges J:

Let Wi (t) and W5 (t) be the e-neighbourhoods of two independent Brownian paths
starting at the origin and running for t time units.
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van den Berg, Bolthausen and den Hollander 2004 invesitigate the continuous
analogue of the intersection of the ranges J:

Let Wi (t) and W5 (t) be the e-neighbourhoods of two independent Brownian paths
starting at the origin and running for t time units. They show that, for d > 3,
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_ Some recent proptess

van den Berg, Bolthausen and den Hollander 2004 invesitigate the continuous
analogue of the intersection of the ranges J:

Let Wi (t) and W5 (t) be the e-neighbourhoods of two independent Brownian paths
starting at the origin and running for t time units. They show that, for d > 3,

lim — L log P{| Wi (0t) N W5 (0t)| > t} = —15(0),

thoo t(d—2)/d
and, if d > 5, there exists a critical #* such that

15(0) = I5(6%) for all 0 > 0~
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van den Berg, Bolthausen and den Hollander 2004 invesitigate the continuous
analogue of the intersection of the ranges J:

Let Wy (t) and Ws (t) be the e-neighbourhoods of two independent Brownian paths
starting at the origin and running for t time units. They show that, for d > 3,

and, if d > 5, there exists a critical #* such that
15(0) = 135(07) for all 6 > 0*.
This strongly suggests that, in the supercritical case d > 5,

but their techniques do not allow the treatment of infinite times and this problem, like
its discrete counterpart, remains open.
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Let G be the Green's function of the random walk, defined by

G(x) = ZIP’{X(n) = x}.

n=1
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Let G be the Green's function of the random walk, defined by

G(x) = ZIP’{X(n) = x}.

n=1

Note that we are following the (slightly unusual) convention of not summing over the
time n = 0, which has an influence on the value G(0).
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Let G be the Green's function of the random walk, defined by

G(x) = ZIP’{X(n) = x}.

n=1

Let g > 1 be the conjugate of p, defined by p™* + g7t =1
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Let G be the Green's function of the random walk, defined by

G(x) = ZIP’{X(n) = x}.

n=1

Let g > 1 be the conjugate of p, defined by p~* + g~ = 1.

For every nonnegative h € L9(Z%) a bounded, symmetric, positive operator
is defined by

Ap: L2(2%) — 1*(29)

yezd
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Main r
Let G be the Green's function of the random walk, defined by

G(x) = Z]P’{X(n) = x}.

Let g > 1 be the conjugate of p, defined by p~ + ¢~ = 1.
is defined by

For every nonnegative h € L9(Z%) a bounded, symmetric, positive operator

Ap: L2(2%) — 1*(29)

yezd

Ang(x) = Vet =1 3" G(x — y)gly) Ve —1.

of the operator 2.

[An]l = sup { (g, Ang) : llgll2=1}
_ Intersection of random walks in supercritical dimensions

Our main result is formulated in terms of the spectral radius

[m]

=

DA



The upper tail behaviour of the intersection local time / is given as

lim —— logP{/ >a} = —pinf {||hllq : h >0 with ||| >1}.
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Main result

Theorem 1 (Chen, M 2007)

The upper tail behaviour of the intersection local time / is given as

. 1 . .
J%Tom logP{l > a} = —p inf{||hllq : h >0 with ||As|| > 1}.

Remark: The optimal strategy for the random walks is to each spend about a'/* time
units in a bounded domain which does not grow with a. Then we get / ~ a from
intersections in this domain alone. This strategy makes / large without making J large,
thus explaining the different tail behaviour.

Peter Morters Intersection of random walks in supercritical dimensions
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By a Tauberian theorem for any nonnegative X,
k
I|m Iog E[ X

T

lim
aloo

> log P{X > a} = —pe"/
Hence it suffices to study the asympotics of high integer moments of /. There is a
(unfortunately rather involved) formula for these moments
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By a Tauberian theorem for any nonnegative X,

K
I|m IogE[(ij)p] —Kk = a||T|11o

> log P{X > a} = —pe"/
Hence it suffices to study the asympotics of high integer moments of /. There is a
(unfortunately rather involved) formula for these moments

xezd j=1 i=1
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Selec
By a Tauberian theorem for any nonnegative X,
. X*
klle Iog E[

T

lim
aloo

> log P{X > a} = —pe"/
Hence it suffices to study the asympotics of high integer moments of /. There is a
(unfortunately rather involved) formula for these moments

SIS X000 = x)
[ 7d =1 i—1

> I ux2(0) =x}
seoox€zd =1 j=1 i=1
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By a Tauberian theorem for any nonnegative X,
. X*
klle Iog E[

T

lim
aloo

5 log P{X > a} = —pe"/
Hence it suffices to study the asympotics of high integer moments of /. There is a
(unfortunately rather involved) formula for these moments

SIS 1000 = )
[ 7d =1 i—1

p o
> T Hx00) =}
seoox€zd =1 j=1 i=1
14 o] k
> I
1o x( €29 J=1 i1yeenyif=1£=1

> JTHXe) = x}
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P oo

K
Ef=>" 1] >
X11-.-1Xk€Zd =1 i,

k
E[[1x0) = x}
=1 =1
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si- 2 Y

k
EJ[1H{X(ie) = x}
s €Zd j=1i1,...,ik=1  £=1

S LB

: l{X(ig)ZXg}]P
ioeix £=1

.....



Selected
E/f =

Loxe€zd j=11g,..

Z H Z EHI{XU)(Ie)—Xe}

S £=1

- T[T

m=1r€&n

3 [.Z EH 1{X(ir) = xz}]

=1
distinct

W eAm) Y BI[1XG) = )]

where &y, is the set of partitions {71,
A(7) is the set of tuples (x1,

..., mm} of {1,..., k} into m nonempty sets and
..., xk) which are constant on the partitions.

a
_ Intersection of random walks in supercritical dimensions
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E/* = Z H Z EHl{xw(w) =x}
Lox €29 J=1in,eig=1 £=1
. P
- Y [ eIl =)
x1,.i.,xk€Zd i1yl £=1
K
S [Z S Hla,ex) €AMY S IEHI{X(JZ)_XM}]
X1,-<-,Xk€Zd m=1nr€&y s Jm =1
distinct
d P
SED SR DD DETICTINFAENIETE Sl § (ICRMEE. |
X1yeee X €29 m=1n€ln oceGyt=1
where &y, is the set of partitions {m1,...,mm} of {1,..., k} into m nonempty sets and
A(7) is the set of tuples (xi,...,xx) which are constant on the partitions.
O <> «=» «2» I HAC



1y XkEA m=17€EER
using

Let A C Z7 be finite. Then we can analyse expressions of the form
X1

oG, L=1
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Let A C Z7 be finite. Then we can analyse expressions of the form

1y XkEA m=17€EER
using

oG, L=1

SO e ) €AY S TT6 (nny — e )]

O large deviations for the empirical measure L*

1 k
% 2j-1 0%
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Let A C Z7 be finite. Then we can analyse expressions of the form

1y XkEA m=17€EER
using

ceEGy L=1

SO e ) €AY S TT6 (nny — e )]

O large deviations for the empirical measure L*

_ 15~k
— k Luj=1 5va
O Holder's inequality for the lower bound,
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Sel

using

Let A C Z7 be finite. Then we can analyse expressions of the form
X1y, Xk EA |:mzl TEEM

k m
P
Z Z Z H(x, ..., x) € A(m)} Z H G(Xﬂa(e) - X"a(lfl)):l
ceEGy L=1
O large deviations for the empirical measure L*

O Holder's inequality for the lower bound,
@ the combinatorial fact that

_ 1k

= % 2j=1 0%
1 k!

#5m = m E P ]
L gz UM
it im=k
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Selecte
Let A C Z7 be finite. Then we can analyse expressions of the form
X1y, Xk EA |:mzl TEEM
using

k m
P
Z Z Z H(x, ..., x) € A(m)} Z H G(Xﬂa(e) - X"a(lfl)):l
ceEGy L=1
O large deviations for the empirical measure L*

O Holder's inequality for the lower bound,
@ the combinatorial fact that

_1\k
— k £Luj=1 5)9'1
1 k!
#n=on 2 g
Jeeaim>1
it Him=k
O an easy spectral theorem,
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Let A C Z7 be finite. Then we can analyse expressions of the form
X1y, Xk EA |:mzl TEEM
using

> X e e Am) X TT6 b X))

ceEGy L=1
O large deviations for the empirical measure L*
O Holder's inequality for the lower bound,
O the combinatorial fact that

1

1 k

k 2oj=1 O,
1 k!
#em =10 > Tl !
e dm>1
i Him=k
O an easy spectral theorem,
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© symmetry (and nothing more!) of the function G: Z¢ — (0, c0).
_ Intersection of random walks in supercritical dimensions



We obtain, for finite A C Z9 that
. 1
k— oo

K
lim %Iogﬂ Z [Z Z Lo, x)eAr

15 Xk EA m=17€ER

m

oc€G, =1

P
)} Z HG(XWa(e) _X'”a(l—l))]
—ploginf {||hllq : h> 0 with [|2;]| > 1},

where the self-adjoint operator 27 : L>(A) — L?(A) is defined by

YEA

«4O0)>» «Fr «=Z» « =) = o>
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Sel

We obtain, for finite A C Z9 that

k

1

lim - log > [Z D YoameAn
X150, Xk EA m=17€E

m

oc€G, =1

P
)} Z HG(XWa(e) _Xﬂ'a(l—l))]
—ploginf {||hllq : h> 0 with [|2;]| > 1},

where the self-adjoint operator 2 : L?(A) — L?(A) is defined by

YEA

Ang(x) = Vel — 13 " G(x —y) Veh) —1g(y)
This suffices for the lower bound.
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Selected ideas of the proof

We obtain, for finite A C Z9 that

11 d -
Jim Ztog 2 > [0 Lpscamy 2o T 6 (g = Xmin)]

X150, Xk EA m=17€E oceGyL=1
= —ploginf {||hllq : h>0 with |25 > 1},
where the self-adjoint operator 2} : L?(A) — L?(A) is defined by
Ang(x) = Vel —1 > G(x—y) Ve —1g(y).
yEA

This suffices for the lower bound. The extension of the upper bound from finite sets A
to the entire lattice is nontrivial, because the problem is not exponentially tight: Note
that all shifts of A produce the same exponential decay of the upper tails of the
intersection local times.

Peter Morters Intersection of random walks in supercritical dimensions



Selected ideas of the proof

We obtain, for finite A C Z9 that

11 d -
Jim Ztog 2 > [0 Lpscamy 2o T 6 (g = Xmin)]

X150, Xk EA m=17€E oEG, L=

= —ploginf {||hllq : h >0 with [|24] > 1},

SN

where the self-adjoint operator 2} : L?(A) — L?(A) is defined by

Ang(x) = Ve —1% " G(x—y) Vert) —1g(y).

YEA

This suffices for the lower bound. The extension of the upper bound from finite sets A
to the entire lattice is nontrivial, because the problem is not exponentially tight: Note
that all shifts of A produce the same exponential decay of the upper tails of the
intersection local times. To overcome this problem, we need to project the full problem
onto a finite domain by wrapping it around a torus. The problem retains the given
form, but with a different kernel G. We then let the period of the torus go to infinity.

Peter Morters Intersection of random walks in supercritical dimensions



The upper tail behaviour of the intersection local time / is given as
lim

aloo

1
Y logP{/ > a} = —p inf {||Allq : h >0 with ||As]| >1}.
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The upper tail behaviour of the intersection local time / is given as

I|m — Iog]P’{I >a} =—pinf{||hllq :

h >0 with ||| > 1}
Remark: It is unsatisfactory that we cannot readily interpret the optimal h in the

variational problem in a probabilistic manner. To some extent this is an artefact which
is due to the discrete time structure of the random walk
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For comparison we therefore now look at independent continuous time random walks

XW(t) : t>0),...,(XP(t) : t>0)
and let A be their generator given by

o Elf(X:) — f(x)
Af(x) = |tli1(’)l _— 7

t
A is a nonpositive definite, symmetric operator on L*(Z9).

«O>» «Fr «E>» «E>» = waQ>



For comparison we therefore now look at independent continuous time random walks

XW(t) : t>0),...,(XP(t) : t>0)
and let A be their generator given by

o Elf(X:) — f(x)
Af(x) = |tli1(’)l _— 7

t
A is a nonpositive definite, symmetric operator on L*(Z9).
We define the intersection local time as

7;:/ dtl---/ dty XV (t) = - - = X (8,)}.
0 0
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For comparison we therefore now look at independent continuous time random walks

XW(t) : t>0),...,(XP(t) : t>0)
and let A be their generator given by

Af(x) = Iti[rol

E.f(Xe) — f(x)
We define the intersection local time as

t
A is a nonpositive definite, symmetric operator on L*(Z9).

7;:/ dtl---/ dty XV (1) = - - = XP (1)}
0 0
Again we ask for the upper tail behaviour.

_ Intersection of random walks in supercritical dimensions
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The upper tail behaviour of the intersection local time Tis given as

. 1 - .
lim s logP{/ >a} =—p |nf{||\/—Ag||§ : gl =1} .

«0O)>» «Fr «=Z» « =) = o>




A related problem

Theorem 2 (Chen, M 2007)

The upper tail behaviour of the intersection local time Tis given as

lim —Iog]P’{l>a} = —pinf {||vV- gH2 lgll2p =1} .

aloo al/
Remark: The optimal strategy for the random walks is to have a local time field like

9 (x / 1{XV(t) = x} = a/Pg°(x),
which implies

7= Z ﬁﬂm(x) ~ Z ﬁal/pgz(x) —
xezd j=1 xezd j=1

The probability of a random walk achieving such a local time is
~ 1/p 2
~exp{ —a'"|[V=Agll,},

which resembles the rate functions in Donsker-Varadhan theory.

Peter Morters Intersection of random walks in supercritical dimensions
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simpler formula for the kth moments

Our proof follows a similar strategy as in the discrete time case, but there is now an

ceG L=1

k
Elf= Y [ > [I60Geey —Xa(e))r~
X1y-ee Xk €29
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From this we obtain

Our proof follows a similar strategy as in the discrete time case, but there is now an
simpler formula for the kth moments

ceG L=1

k
Elf= Y [ > [I60Geey —Xa(e))r~
1y Xy €24

1 - . .
lim Y logP{l > a} = —p inf{||Allq : h >0 with |B,| >1},
where the operator B,: L*(Z%) — L?(Z9) is defined by

Brg(x) = Vh(x) > G(x—y)g(y) Vh(y)
and the Green's function is

yezd

G(x) = / PX(t) = x} dt.
0
_ Intersection of random walks in supercritical dimensions
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The small change in form allows considerable simplification

inf {|[Allg : h>0with sup (g,Brg)>1}
|

gll2=1
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The small change in form allows considerable simplification

inf {|[Allg : h>0with sup (g,Brg)>1}
|

gll2=1

=inf{b: sup (Vhg,&Vhg)>1/b}
llgll2=1
[Ihllg=1

where & is the Green's operator

yezd
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The small change in form allows considerable simplification

inf {|[Allg : h>0with sup (g,Brg)>1}
|

gll2=1

=inf{b: sup (Vhg,&Vhg)>1/b}
llgll2=1
[Ihllg=1

where & is the Green's operator

=1/sup {(FP7H, 8FP7N) 1 |f|lp = 1} = 1/p.

yezd
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Bf(x) = > G(x —y)f(y).



The small change in form allows considerable simplification

inf {||Allg : h>0with sup (g,Brg) >1}
gll2=1

=inf{b: sup (Vhg,&Vhg)>1/b}
llgll2=1
IIhllg=1

where & is the Green's operator

= 1/sup {71,665 ¢ [[flap =1} = 1/p

Bf(x) = > G(x —y)f(y).

yezd
The maximiser f exists and satisfies pf = &f>P~1,

_ Intersection of random walks in supercritical dimensions
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The small change in form allows considerable simplification

inf {||Allg : h>0with sup (g,Brg) >1}
gll2=1
=inf{b: sup (Vhg,&Vhg)>1/b}
llgll2=1
”ﬂ£:1
where & is the Green's operator

=1/sup {(FPH, &P ¢ |f|lp =1} =:1/p.

yezd

Bf(x) = > G(x —y)f(y).
—Ao® = id as

The maximiser f exists and satisfies pf = &f2*~1. We obtain the final form from

. 2
1/p=—sup {{F,Af) : [[fllsp =1} = mf{”\/—AFH2 Ifll2p =1}
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@ We have obtained exact upper tail constants for the intersection local time of
independent random walks in supercritical dimensions.
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@ We have obtained exact upper tail constants for the intersection local time of
independent random walks in supercritical dimensions.

@ Our approach allows a direct treatment of the infinite time horizon avoiding the
use of Donsker-Varadhan theory.



Conclu

@ We have obtained exact upper tail constants for the intersection local time of
independent random walks in supercritical dimensions.

@ Our approach allows a direct treatment of the infinite time horizon avoiding the
use of Donsker-Varadhan theory.

O We believe that this method has potential to solve some hard problems related
to the intersection of the ranges as well. This work is in progress.
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