Intersection of random walks in supercritical dimensions

Peter Mörters
University of Bath

joint work with Xia Chen (Knoxville)

Framework

Let

$$
\left(X^{(1)}(n): n \in \mathbb{N}\right), \ldots,\left(X^{(p)}(n): n \in \mathbb{N}\right)
$$

be $p \geq 2$ independent identically distributed random walks started in the origin and taking values in \mathbb{Z}^{d}.

Framework

Let

$$
\left(X^{(1)}(n): n \in \mathbb{N}\right), \ldots,\left(X^{(p)}(n): n \in \mathbb{N}\right)
$$

be $p \geq 2$ independent identically distributed random walks started in the origin and taking values in \mathbb{Z}^{d}. We shall always assume that the increments of these random walks are symmetric with finite variance.

Framework

Let

$$
\left(X^{(1)}(n): n \in \mathbb{N}\right), \ldots,\left(X^{(p)}(n): n \in \mathbb{N}\right)
$$

be $p \geq 2$ independent identically distributed random walks started in the origin and taking values in \mathbb{Z}^{d}. We shall always assume that the increments of these random walks are symmetric with finite variance.
The number of intersections of these walks can be measured in two natural ways: The intersection local time of the random walks,

$$
I:=\sum_{i_{1}=1}^{\infty} \cdots \sum_{i_{p}=1}^{\infty} 1\left\{X^{(1)}\left(i_{1}\right)=\cdots=X^{(p)}\left(i_{p}\right)\right\}
$$

counts the times when the paths intersect,

Framework

Let

$$
\left(X^{(1)}(n): n \in \mathbb{N}\right), \ldots,\left(X^{(p)}(n): n \in \mathbb{N}\right)
$$

be $p \geq 2$ independent identically distributed random walks started in the origin and taking values in \mathbb{Z}^{d}. We shall always assume that the increments of these random walks are symmetric with finite variance.
The number of intersections of these walks can be measured in two natural ways: The intersection local time of the random walks,

$$
I:=\sum_{i_{1}=1}^{\infty} \cdots \sum_{i_{p}=1}^{\infty} \mathbf{1}\left\{X^{(1)}\left(i_{1}\right)=\cdots=X^{(p)}\left(i_{p}\right)\right\}
$$

counts the times when the paths intersect, whereas the intersection of the ranges

$$
J:=\sum_{x \in \mathbb{Z}^{d}} 1\left\{X^{(1)}\left(i_{1}\right)=\cdots=X^{(p)}\left(i_{p}\right)=x \text { for some }\left(i_{1}, \ldots, i_{p}\right)\right\}
$$

counts the sites where the paths intersect.

Supercritical dimension

Question: When are the random variables I and J finite?

Supercritical dimension

Question: When are the random variables I and J finite?
Back-of-the-envelope calculation:

Supercritical dimension

Question: When are the random variables I and J finite?
Back-of-the-envelope calculation:

$$
I=\sum_{i_{1}=1}^{\infty} \cdots \sum_{i_{p}=1}^{\infty} \mathbf{1}\left\{X^{(1)}\left(i_{1}\right)=\cdots=X^{(p)}\left(i_{p}\right)\right\}
$$

Supercritical dimension

Question: When are the random variables I and J finite?
Back-of-the-envelope calculation:

$$
\begin{aligned}
I & =\sum_{i_{1}=1}^{\infty} \cdots \sum_{i_{p}=1}^{\infty} 1\left\{X^{(1)}\left(i_{1}\right)=\cdots=X^{(p)}\left(i_{p}\right)\right\} \\
& =\sum_{x \in \mathbb{Z}^{d}} \sum_{i_{1}=1}^{\infty} \cdots \sum_{i_{p}=1}^{\infty} 1\left\{X^{(1)}\left(i_{1}\right)=\cdots=X^{(p)}\left(i_{p}\right)=x\right\}
\end{aligned}
$$

Supercritical dimension

Question: When are the random variables I and J finite?
Back-of-the-envelope calculation:

$$
\begin{aligned}
I & =\sum_{i_{1}=1}^{\infty} \cdots \sum_{i_{p}=1}^{\infty} \mathbf{1}\left\{X^{(1)}\left(i_{1}\right)=\cdots=X^{(p)}\left(i_{p}\right)\right\} \\
& =\sum_{x \in \mathbb{Z}^{d}} \sum_{i_{1}=1}^{\infty} \cdots \sum_{i_{p}=1}^{\infty} \mathbf{1}\left\{X^{(1)}\left(i_{1}\right)=\cdots=X^{(p)}\left(i_{p}\right)=x\right\} \\
& =\sum_{x \in \mathbb{Z}^{d}} \prod_{j=1}^{p} \sum_{i=1}^{\infty} \mathbf{1}\left\{X^{(j)}(i)=x\right\} .
\end{aligned}
$$

Supercritical dimension

Question: When are the random variables I and J finite?
Back-of-the-envelope calculation:

Supercritical dimension

Question: When are the random variables I and J finite?
Back-of-the-envelope calculation:

$$
\mathbb{E} I=\sum_{x \in \mathbb{Z}^{d}} \mathbb{E} \prod_{j=1}^{p} \sum_{i=1}^{\infty} 1\left\{X^{(j)}(i)=x\right\}
$$

Supercritical dimension

Question: When are the random variables / and J finite?
Back-of-the-envelope calculation:

$$
\begin{aligned}
\mathbb{E} I & =\sum_{x \in \mathbb{Z}^{d}} \mathbb{E} \prod_{j=1}^{p} \sum_{i=1}^{\infty} 1\left\{X^{(j)}(i)=x\right\} \\
& =\sum_{x \in \mathbb{Z}^{d}} \prod_{j=1}^{p} \mathbb{E} \sum_{i=1}^{\infty} 1\left\{X^{(j)}(i)=x\right\}
\end{aligned}
$$

Supercritical dimension

Question: When are the random variables / and J finite?
Back-of-the-envelope calculation:

$$
\begin{aligned}
\mathbb{E} I & =\sum_{x \in \mathbb{Z}^{d}} \mathbb{E} \prod_{j=1}^{p} \sum_{i=1}^{\infty} \mathbf{1}\left\{X^{(j)}(i)=x\right\} \\
& =\sum_{x \in \mathbb{Z}^{d}} \prod_{j=1}^{p} \mathbb{E} \sum_{i=1}^{\infty} \mathbf{1}\left\{X^{(j)}(i)=x\right\} \\
& =\sum_{x \in \mathbb{Z}^{d}} \prod_{j=1}^{p} \sum_{i=1}^{\infty} \mathbb{P}\left\{X^{(j)}(i)=x\right\}
\end{aligned}
$$

Supercritical dimension

Question: When are the random variables I and J finite?
Back-of-the-envelope calculation:

$$
\begin{aligned}
\mathbb{E} I & =\sum_{x \in \mathbb{Z}^{d}} \mathbb{E} \prod_{j=1}^{p} \sum_{i=1}^{\infty} \mathbf{1}\left\{X^{(j)}(i)=x\right\} \\
& =\sum_{x \in \mathbb{Z}^{d}} \prod_{j=1}^{p} \mathbb{E} \sum_{i=1}^{\infty} 1\left\{X^{(j)}(i)=x\right\} \\
& =\sum_{x \in \mathbb{Z}^{d}} \prod_{j=1}^{p} \sum_{i=1}^{\infty} \mathbb{P}\left\{X^{(j)}(i)=x\right\} \\
& =\sum_{x \in \mathbb{Z}^{d}} \mathbb{G}(x)^{p},
\end{aligned}
$$

Supercritical dimension

Question: When are the random variables / and J finite?
Back-of-the-envelope calculation:

$$
\begin{aligned}
\mathbb{E} I & =\sum_{x \in \mathbb{Z}^{d}} \mathbb{E} \prod_{j=1}^{p} \sum_{i=1}^{\infty} \mathbf{1}\left\{X^{(j)}(i)=x\right\} \\
& =\sum_{x \in \mathbb{Z}^{d}} \prod_{j=1}^{p} \mathbb{E} \sum_{i=1}^{\infty} \mathbf{1}\left\{X^{(j)}(i)=x\right\} \\
& =\sum_{x \in \mathbb{Z}^{d}} \prod_{j=1}^{p} \sum_{i=1}^{\infty} \mathbb{P}\left\{X^{(j)}(i)=x\right\} \\
& =\sum_{x \in \mathbb{Z}^{d}} \mathbb{G}(x)^{p},
\end{aligned}
$$

where $\mathbb{G}(x) \approx(|x|+1)^{2-d}$ is the Green's function.

Supercritical dimension

Question: When are the random variables / and J finite?

Fact (Erdős and Taylor)

$$
\mathbb{P}\{I<\infty\}=\mathbb{P}\{J<\infty\}= \begin{cases}1 & \text { if } p(d-2)>d, \\ 0 & \text { otherwise. }\end{cases}
$$

Supercritical dimension

Question: When are the random variables / and J finite?
Fact (Erdős and Taylor)

$$
\mathbb{P}\{I<\infty\}=\mathbb{P}\{J<\infty\}= \begin{cases}1 & \text { if } p(d-2)>d, \\ 0 & \text { otherwise } .\end{cases}
$$

From now on we assume that $p(d-2)>d$, i.e. we are in supercritical dimensions.

The tails of I and J

The distributions of I and J are unknown.

The tails of I and J

The distributions of I and J are unknown. Khanin, Mazel, Shlosman, Sinai 1994 have studied the upper tail behaviour. They find that, for a sufficiently large,

$$
\exp \left\{-c_{1} a^{\frac{1}{p}}\right\} \leq \mathbb{P}\{I>a\} \leq \exp \left\{-c_{2} a^{\frac{1}{p}}\right\}
$$

The tails of I and J

The distributions of I and J are unknown. Khanin, Mazel, Shlosman, Sinai 1994 have studied the upper tail behaviour. They find that, for a sufficiently large,

$$
\exp \left\{-c_{1} a^{\frac{1}{p}}\right\} \leq \mathbb{P}\{I>a\} \leq \exp \left\{-c_{2} a^{\frac{1}{p}}\right\}
$$

Interestingly, the upper tails of J are substantially lighter. They show that, for all $\varepsilon>0$ and all sufficiently large a,

$$
\exp \left\{-a^{\frac{d-2}{d}+\varepsilon}\right\} \leq \mathbb{P}\{J>a\} \leq \exp \left\{-a^{\frac{d-2}{d}-\varepsilon}\right\}
$$

The tails of I and J

The distributions of I and J are unknown. Khanin, Mazel, Shlosman, Sinai 1994 have studied the upper tail behaviour. They find that, for a sufficiently large,

$$
\exp \left\{-c_{1} a^{\frac{1}{p}}\right\} \leq \mathbb{P}\{I>a\} \leq \exp \left\{-c_{2} a^{\frac{1}{p}}\right\}
$$

Interestingly, the upper tails of J are substantially lighter. They show that, for all $\varepsilon>0$ and all sufficiently large a,

$$
\exp \left\{-a^{\frac{d-2}{d}+\varepsilon}\right\} \leq \mathbb{P}\{J>a\} \leq \exp \left\{-a^{\frac{d-2}{d}-\varepsilon}\right\}
$$

The challenging question lies in understanding the difference of these behaviours, providing sharp estimates for the tails, and understanding the underlying 'optimal strategies' for the random walks.

Some recent progress

van den Berg, Bolthausen and den Hollander 2004 invesitigate the continuous analogue of the intersection of the ranges J :

Some recent progress

van den Berg, Bolthausen and den Hollander 2004 invesitigate the continuous analogue of the intersection of the ranges J :
Let $W_{1}^{\varepsilon}(t)$ and $W_{2}^{\varepsilon}(t)$ be the ε-neighbourhoods of two independent Brownian paths starting at the origin and running for t time units.

Some recent progress

van den Berg, Bolthausen and den Hollander 2004 invesitigate the continuous analogue of the intersection of the ranges J :
Let $W_{1}^{\varepsilon}(t)$ and $W_{2}^{\varepsilon}(t)$ be the ε-neighbourhoods of two independent Brownian paths starting at the origin and running for t time units. They show that, for $d \geq 3$,

$$
\lim _{t \uparrow \infty} \frac{1}{t^{(d-2) / d}} \log \mathbb{P}\left\{\left|W_{1}^{\varepsilon}(\theta t) \cap W_{2}^{\varepsilon}(\theta t)\right| \geq t\right\}=-I_{d}^{\varepsilon}(\theta)
$$

Some recent progress

van den Berg, Bolthausen and den Hollander 2004 invesitigate the continuous analogue of the intersection of the ranges J :
Let $W_{1}^{\varepsilon}(t)$ and $W_{2}^{\varepsilon}(t)$ be the ε-neighbourhoods of two independent Brownian paths starting at the origin and running for t time units. They show that, for $d \geq 3$,

$$
\lim _{t \uparrow \infty} \frac{1}{t^{(d-2) / d}} \log \mathbb{P}\left\{\left|W_{1}^{\varepsilon}(\theta t) \cap W_{2}^{\varepsilon}(\theta t)\right| \geq t\right\}=-I_{d}^{\varepsilon}(\theta)
$$

and, if $d \geq 5$, there exists a critical θ^{*} such that

$$
I_{d}^{\varepsilon}(\theta)=I_{d}^{\varepsilon}\left(\theta^{*}\right) \text { for all } \theta \geq \theta^{*}
$$

Some recent progress

van den Berg, Bolthausen and den Hollander 2004 invesitigate the continuous analogue of the intersection of the ranges J :
Let $W_{1}^{\varepsilon}(t)$ and $W_{2}^{\varepsilon}(t)$ be the ε-neighbourhoods of two independent Brownian paths starting at the origin and running for t time units. They show that, for $d \geq 3$,

$$
\lim _{t \uparrow \infty} \frac{1}{t^{(d-2) / d}} \log \mathbb{P}\left\{\left|W_{1}^{\varepsilon}(\theta t) \cap W_{2}^{\varepsilon}(\theta t)\right| \geq t\right\}=-I_{d}^{\varepsilon}(\theta)
$$

and, if $d \geq 5$, there exists a critical θ^{*} such that

$$
I_{d}^{\varepsilon}(\theta)=I_{d}^{\varepsilon}\left(\theta^{*}\right) \text { for all } \theta \geq \theta^{*}
$$

This strongly suggests that, in the supercritical case $d \geq 5$,

$$
\lim _{t \uparrow \infty} \frac{1}{t^{(d-2) / d}} \log \mathbb{P}\left\{\left|W_{1}^{\varepsilon}(\infty) \cap W_{2}^{\varepsilon}(\infty)\right| \geq t\right\}=-I_{d}^{\varepsilon}\left(\theta^{*}\right)
$$

but their techniques do not allow the treatment of infinite times and this problem, like its discrete counterpart, remains open.

Main result

Let \mathbb{G} be the Green's function of the random walk, defined by

$$
\mathbb{G}(x):=\sum_{n=1}^{\infty} \mathbb{P}\{X(n)=x\} .
$$

Main result

Let \mathbb{G} be the Green's function of the random walk, defined by

$$
\mathbb{G}(x):=\sum_{n=1}^{\infty} \mathbb{P}\{X(n)=x\} .
$$

Note that we are following the (slightly unusual) convention of not summing over the time $n=0$, which has an influence on the value $\mathbb{G}(0)$.

Main result

Let \mathbb{G} be the Green's function of the random walk, defined by

$$
\mathbb{G}(x):=\sum_{n=1}^{\infty} \mathbb{P}\{X(n)=x\} .
$$

Let $q>1$ be the conjugate of p, defined by $p^{-1}+q^{-1}=1$.

Main result

Let \mathbb{G} be the Green's function of the random walk, defined by

$$
\mathbb{G}(x):=\sum_{n=1}^{\infty} \mathbb{P}\{X(n)=x\} .
$$

Let $q>1$ be the conjugate of p, defined by $p^{-1}+q^{-1}=1$. For every nonnegative $h \in L^{q}\left(\mathbb{Z}^{d}\right)$ a bounded, symmetric, positive operator

$$
\mathfrak{A}_{h}: L^{2}\left(\mathbb{Z}^{d}\right) \rightarrow L^{2}\left(\mathbb{Z}^{d}\right)
$$

is defined by

$$
\mathfrak{A}_{h} g(x)=\sqrt{e^{h(x)}-1} \sum_{y \in \mathbb{Z}^{d}} \mathbb{G}(x-y) g(y) \sqrt{e^{h(y)}-1} .
$$

Main result

Let \mathbb{G} be the Green's function of the random walk, defined by

$$
\mathbb{G}(x):=\sum_{n=1}^{\infty} \mathbb{P}\{X(n)=x\} .
$$

Let $q>1$ be the conjugate of p, defined by $p^{-1}+q^{-1}=1$.
For every nonnegative $h \in L^{q}\left(\mathbb{Z}^{d}\right)$ a bounded, symmetric, positive operator

$$
\mathfrak{A}_{h}: L^{2}\left(\mathbb{Z}^{d}\right) \rightarrow L^{2}\left(\mathbb{Z}^{d}\right)
$$

is defined by

$$
\mathfrak{A}_{h} g(x)=\sqrt{e^{h(x)}-1} \sum_{y \in \mathbb{Z}^{d}} \mathbb{G}(x-y) g(y) \sqrt{e^{h(y)}-1} .
$$

Our main result is formulated in terms of the spectral radius

$$
\left\|\mathfrak{A}_{n}\right\|:=\sup \left\{\left\langle g, \mathfrak{A}_{h} g\right\rangle:\|g\|_{2}=1\right\}
$$

of the operator \mathfrak{A}_{h}.

Main result

Theorem 1 (Chen, M 2007)
The upper tail behaviour of the intersection local time I is given as

$$
\lim _{a \nmid \infty \infty} \frac{1}{a^{1 / p}} \log \mathbb{P}\{I>a\}=-p \inf \left\{\|h\|_{G}: h \geq 0 \text { with }\left\|\mathscr{A}_{h}\right\| \geq 1\right\} .
$$

Main result

Theorem 1 (Chen, M 2007)
The upper tail behaviour of the intersection local time I is given as

$$
\lim _{a \neq \infty} \frac{1}{a^{1 / p}} \log \mathbb{P}\{I>a\}=-p \inf \left\{\|h\|_{q}: h \geq 0 \text { with }\left\|\mathfrak{A}_{h}\right\| \geq 1\right\} .
$$

Remark: The optimal strategy for the random walks is to each spend about $a^{1 / p}$ time units in a bounded domain which does not grow with a. Then we get $I \approx a$ from intersections in this domain alone. This strategy makes I large without making J large, thus explaining the different tail behaviour.

Selected ideas of the proof

Selected ideas of the proof

By a Tauberian theorem for any nonnegative X,

$$
\lim _{k \uparrow \infty} \frac{1}{k} \log E\left[\frac{X^{k}}{(k!)^{p}}\right]=-\kappa \quad \Longleftrightarrow \quad \lim _{a \uparrow \infty} \frac{1}{a^{1 / p}} \log P\{X>a\}=-p e^{\kappa / p}
$$

Hence it suffices to study the asympotics of high integer moments of I. There is a (unfortunately rather involved) formula for these moments.

Selected ideas of the proof

By a Tauberian theorem for any nonnegative X,

$$
\lim _{k \uparrow \infty} \frac{1}{k} \log E\left[\frac{X^{k}}{(k!)^{p}}\right]=-\kappa \quad \Longleftrightarrow \quad \lim _{a \uparrow \infty} \frac{1}{a^{1 / p}} \log P\{X>a\}=-p e^{\kappa / p}
$$

Hence it suffices to study the asympotics of high integer moments of I. There is a (unfortunately rather involved) formula for these moments.

$$
I^{k}=\left[\sum_{x \in \mathbb{Z}^{d}} \prod_{j=1}^{p} \sum_{i=1}^{\infty} 1\left\{X^{(j)}(i)=x\right\}\right]^{k}
$$

Selected ideas of the proof

By a Tauberian theorem for any nonnegative X,

$$
\lim _{k \uparrow \infty} \frac{1}{k} \log E\left[\frac{X^{k}}{(k!)^{p}}\right]=-\kappa \quad \Longleftrightarrow \quad \lim _{a \uparrow \infty} \frac{1}{a^{1 / p}} \log P\{X>a\}=-p e^{\kappa / p}
$$

Hence it suffices to study the asympotics of high integer moments of I. There is a (unfortunately rather involved) formula for these moments.

$$
\begin{aligned}
I^{k} & =\left[\sum_{x \in \mathbb{Z}^{d}} \prod_{j=1}^{p} \sum_{i=1}^{\infty} 1\left\{X^{(j)}(i)=x\right\}\right]^{k} \\
& =\sum_{x_{1}, \ldots, x_{k} \in \mathbb{Z}^{d}} \prod_{\ell=1}^{k} \prod_{j=1}^{p} \sum_{i=1}^{\infty} 1\left\{X^{(j)}(i)=x_{\ell}\right\}
\end{aligned}
$$

Selected ideas of the proof

By a Tauberian theorem for any nonnegative X,

$$
\lim _{k \uparrow \infty} \frac{1}{k} \log E\left[\frac{X^{k}}{(k!)^{p}}\right]=-\kappa \quad \Longleftrightarrow \quad \lim _{a \uparrow \infty} \frac{1}{a^{1 / p}} \log P\{X>a\}=-p e^{\kappa / p}
$$

Hence it suffices to study the asympotics of high integer moments of I. There is a (unfortunately rather involved) formula for these moments.

$$
\begin{aligned}
\boldsymbol{I}^{k} & =\left[\sum_{x \in \mathbb{Z}^{d}} \prod_{j=1}^{p} \sum_{i=1}^{\infty} \mathbf{1}\left\{X^{(j)}(i)=x\right\}\right]^{k} \\
& =\sum_{x_{1}, \ldots, x_{k} \in \mathbb{Z}^{d}} \prod_{\ell=1}^{k} \prod_{j=1}^{p} \sum_{i=1}^{\infty} \mathbf{1}\left\{X^{(j)}(i)=x_{\ell}\right\} \\
& =\sum_{x_{1}, \ldots, x_{k} \in \mathbb{Z}^{d}} \prod_{j=1}^{p} \sum_{i_{1}, \ldots, i_{k}=1}^{\infty} \prod_{\ell=1}^{k} \mathbf{1}\left\{X^{(j)}\left(i_{\ell}\right)=x_{\ell}\right\}
\end{aligned}
$$

Selected ideas of the proof

Selected ideas of the proof

$$
\begin{aligned}
& \mathbb{E} I^{k}=\sum_{x_{1}, \ldots, x_{k} \in \mathbb{Z}^{d}}^{\sum_{j=1}^{p} \sum_{i_{1}, \ldots, i_{k}=1}^{\infty} \mathbb{E}_{\ell=1}^{k} 1\left\{X^{(j)}\left(i_{\ell}\right)=X_{\ell}\right\}, ~} \\
& =\sum_{x_{1}, \ldots, x_{k} \in \mathbb{Z}^{d}}\left[\sum_{i_{1}, \ldots, i_{k}} \mathbb{E} \prod_{\ell=1}^{k} 1\left\{X\left(i_{\ell}\right)=x_{\ell}\right\}\right]^{p}
\end{aligned}
$$

Selected ideas of the proof

$$
\begin{aligned}
& \mathbb{E} \ell^{k}=\sum_{X_{1}, \ldots, x \in \in Z^{j}} \prod_{j=1}^{p} \sum_{i, k, k=1}^{\infty} \mathbb{E} \prod_{\ell=1}^{k} 1\left\{X^{\omega}(i)=x_{k}\right\}
\end{aligned}
$$

where \mathcal{E}_{m} is the set of partitions $\left\{\pi_{1}, \ldots, \pi_{m}\right\}$ of $\{1, \ldots, k\}$ into m nonempty sets and $\mathcal{A}(\pi)$ is the set of tuples (x_{1}, \ldots, x_{k}) which are constant on the partitions.

Selected ideas of the proof

$$
\begin{aligned}
& \mathbb{E} I^{k}=\sum_{x_{1}, \ldots, x_{k} \in \mathbb{Z}^{d}}^{\prod_{j=1}^{p} \sum_{i_{1}, \ldots, i_{k}=1}^{\infty} \mathbb{E}_{\ell=1}^{k} 1\left\{X^{(j)}\left(i_{\ell}\right)=X_{\ell}\right\}, ~} \\
& =\sum_{x_{1}, \ldots, x_{k} \in \mathbb{Z}^{d}}\left[\sum_{i_{1}, \ldots, i_{k}} \mathbb{E} \prod_{\ell=1}^{k} 1\left\{X\left(i_{\ell}\right)=x_{\ell}\right\}\right]^{p}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{x_{1}, \ldots, x_{k} \in \mathbb{Z}^{d}}\left[\sum _ { m = 1 } ^ { k } \sum _ { \pi \in \mathcal { E } _ { m } } 1 \{ (x _ { 1 } , \ldots , x _ { k }) \in \mathcal { A } (\pi) \} \sum _ { \sigma \in \mathcal { S } _ { m } } \prod _ { \ell = 1 } ^ { m } \mathbb { T } _ { \ell = 1 } ^ { m } \left(x_{\pi_{\sigma(\ell)}}-x_{\pi},\right.\right.
\end{aligned}
$$

where \mathcal{E}_{m} is the set of partitions $\left\{\pi_{1}, \ldots, \pi_{m}\right\}$ of $\{1, \ldots, k\}$ into m nonempty sets and $\mathcal{A}(\pi)$ is the set of tuples (x_{1}, \ldots, x_{k}) which are constant on the partitions.

Selected ideas of the proof

Let $A \subset \mathbb{Z}^{d}$ be finite. Then we can analyse expressions of the form

$$
\sum_{x_{1}, \ldots, x_{k} \in \mathcal{A}}\left[\sum_{m=1}^{k} \sum_{\pi \in \mathcal{E}_{m}} \mathbf{1}\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathcal{A}(\pi)\right\} \sum_{\sigma \in \mathcal{E}_{m}} \prod_{\ell=1}^{m} G\left(x_{\pi_{\sigma(\ell)}}-x_{\pi_{\sigma}(\ell-1)}\right)\right]^{p}
$$

using

Selected ideas of the proof

Let $A \subset \mathbb{Z}^{d}$ be finite. Then we can analyse expressions of the form

$$
\sum_{x_{1}, \ldots, x_{k} \in A}\left[\sum_{m=1}^{k} \sum_{\pi \in \mathcal{E}_{m}} \mathbf{1}\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathcal{A}(\pi)\right\} \sum_{\sigma \in \mathfrak{S}_{m}} \prod_{\ell=1}^{m} G\left(x_{\pi_{\sigma(\ell)}}-x_{\pi_{\sigma(\ell-1)}}\right)\right]^{p}
$$

using

- large deviations for the empirical measure $L^{x}=\frac{1}{k} \sum_{j=1}^{k} \delta_{x_{j}}$,

Selected ideas of the proof

Let $A \subset \mathbb{Z}^{d}$ be finite. Then we can analyse expressions of the form

$$
\sum_{x_{1}, \ldots, x_{k} \in A}\left[\sum_{m=1}^{k} \sum_{\pi \in \mathcal{E}_{m}} \mathbf{1}\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathcal{A}(\pi)\right\} \sum_{\sigma \in \mathfrak{S}_{m}} \prod_{\ell=1}^{m} G\left(x_{\pi_{\sigma(\ell)}}-x_{\pi_{\sigma(\ell-1)}}\right)\right]^{p}
$$

using

- large deviations for the empirical measure $L^{x}=\frac{1}{k} \sum_{j=1}^{k} \delta_{x_{j}}$,
- Hölder's inequality for the lower bound,

Selected ideas of the proof

Let $A \subset \mathbb{Z}^{d}$ be finite. Then we can analyse expressions of the form

$$
\sum_{x_{1}, \ldots, x_{k} \in A}\left[\sum_{m=1}^{k} \sum_{\pi \in \mathcal{E}_{m}} \mathbf{1}\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathcal{A}(\pi)\right\} \sum_{\sigma \in \mathfrak{S}_{m}} \prod_{\ell=1}^{m} G\left(x_{\pi_{\sigma(\ell)}}-x_{\pi_{\sigma(\ell-1)}}\right)\right]^{p}
$$

using

- large deviations for the empirical measure $L^{x}=\frac{1}{k} \sum_{j=1}^{k} \delta_{x_{j}}$,
- Hölder's inequality for the lower bound,
- the combinatorial fact that

$$
\# \mathcal{E}_{m}=\frac{1}{m!} \sum_{\substack{j_{1}, \ldots, m_{m} \geq 1 \\ j_{1}+\ldots+t_{m}=k}} \frac{k!}{j_{1}!\cdots j_{m}!}
$$

Selected ideas of the proof

Let $A \subset \mathbb{Z}^{d}$ be finite. Then we can analyse expressions of the form

$$
\sum_{x_{1}, \ldots, x_{k} \in A}\left[\sum_{m=1}^{k} \sum_{\pi \in \mathcal{E}_{m}} \mathbf{1}\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathcal{A}(\pi)\right\} \sum_{\sigma \in \mathfrak{S}_{m}} \prod_{\ell=1}^{m} G\left(x_{\pi_{\sigma(\ell)}}-x_{\pi_{\sigma(\ell-1)}}\right)\right]^{p}
$$

using

- large deviations for the empirical measure $L^{x}=\frac{1}{k} \sum_{j=1}^{k} \delta_{x_{j}}$,
- Hölder's inequality for the lower bound,
- the combinatorial fact that

$$
\# \mathcal{E}_{m}=\frac{1}{m!} \sum_{\substack{j_{1}, \ldots, j_{m} \geq 1 \\ j_{1}+\cdots+t_{m}=k}} \frac{k!}{j_{1}!\cdots j_{m}!}
$$

- an easy spectral theorem,

Selected ideas of the proof

Let $A \subset \mathbb{Z}^{d}$ be finite. Then we can analyse expressions of the form

$$
\sum_{x_{1}, \ldots, x_{k} \in A}\left[\sum_{m=1}^{k} \sum_{\pi \in \mathcal{E}_{m}} \mathbf{1}\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathcal{A}(\pi)\right\} \sum_{\sigma \in \mathfrak{S}_{m}} \prod_{\ell=1}^{m} G\left(x_{\pi_{\sigma(\ell)}}-x_{\pi_{\sigma(\ell-1)}}\right)\right]^{p}
$$

using

- large deviations for the empirical measure $L^{x}=\frac{1}{k} \sum_{j=1}^{k} \delta_{x_{j}}$,
- Hölder's inequality for the lower bound,
- the combinatorial fact that

$$
\# \mathcal{E}_{m}=\frac{1}{m!} \sum_{\substack{j_{1}, \ldots, j_{m} \geq 1 \\ j_{1}+\cdots+t_{m}=k}} \frac{k!}{j_{1}!\cdots j_{m}!}
$$

- an easy spectral theorem,
- symmetry (and nothing more!) of the function $G: \mathbb{Z}^{d} \rightarrow(0, \infty)$.

Selected ideas of the proof

We obtain, for finite $A \subset \mathbb{Z}^{d}$ that

$$
\begin{gathered}
\lim _{k \rightarrow \infty} \frac{1}{k} \log \frac{1}{k!} \sum_{x_{1}, \ldots, x_{k} \in A}\left[\sum_{m=1}^{k} \sum_{\pi \in \mathcal{E}_{m}} \mathbf{1}_{\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathcal{A}(\pi)\right\}} \sum_{\sigma \in \mathfrak{S}_{m}} \prod_{\ell=1}^{m} G\left(x_{\pi_{\sigma(\ell)}}-x_{\pi_{\sigma(\ell-1)}}\right)\right]^{p} \\
=-p \log \inf \left\{\|h\|_{q}: h \geq 0 \text { with }\left\|\mathfrak{A}_{h}^{A}\right\| \geq 1\right\}
\end{gathered}
$$

where the self-adjoint operator $\mathfrak{A}_{h}^{A}: L^{2}(A) \rightarrow L^{2}(A)$ is defined by

$$
\mathfrak{A}_{h}^{A} g(x)=\sqrt{e^{h(x)}-1} \sum_{y \in A} G(x-y) \sqrt{e^{h(y)}-1} g(y)
$$

Selected ideas of the proof

We obtain, for finite $A \subset \mathbb{Z}^{d}$ that

$$
\begin{gathered}
\lim _{k \rightarrow \infty} \frac{1}{k} \log \frac{1}{k!} \sum_{x_{1}, \ldots, x_{k} \in A}\left[\sum_{m=1}^{k} \sum_{\pi \in \mathcal{E}_{m}} \mathbf{1}_{\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathcal{A}(\pi)\right\}} \sum_{\sigma \in \mathfrak{S}_{m}} \prod_{\ell=1}^{m} G\left(x_{\pi_{\sigma(\ell)}}-x_{\pi_{\sigma(\ell-1)}}\right)\right]^{p} \\
=-p \log \inf \left\{\|h\|_{q}: h \geq 0 \text { with }\left\|\mathfrak{A}_{h}^{A}\right\| \geq 1\right\}
\end{gathered}
$$

where the self-adjoint operator $\mathfrak{A}_{h}^{A}: L^{2}(A) \rightarrow L^{2}(A)$ is defined by

$$
\mathfrak{A}_{h}^{A} g(x)=\sqrt{e^{h(x)}-1} \sum_{y \in A} G(x-y) \sqrt{e^{h(y)}-1} g(y)
$$

This suffices for the lower bound.

Selected ideas of the proof

We obtain, for finite $A \subset \mathbb{Z}^{d}$ that

$$
\begin{gathered}
\lim _{k \rightarrow \infty} \frac{1}{k} \log \frac{1}{k!} \sum_{x_{1}, \ldots, x_{k} \in A}\left[\sum_{m=1}^{k} \sum_{\pi \in \mathcal{E}_{m}} \mathbf{1}_{\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathcal{A}(\pi)\right\}} \sum_{\sigma \in \mathfrak{S}_{m}} \prod_{\ell=1}^{m} G\left(x_{\pi_{\sigma(\ell)}}-x_{\pi_{\sigma(\ell-1)}}\right)\right]^{p} \\
=-p \log \inf \left\{\|h\|_{q}: h \geq 0 \text { with }\left\|\mathfrak{A}_{h}^{A}\right\| \geq 1\right\}
\end{gathered}
$$

where the self-adjoint operator $\mathfrak{A}_{h}^{A}: L^{2}(A) \rightarrow L^{2}(A)$ is defined by

$$
\mathfrak{A}_{h}^{A} g(x)=\sqrt{e^{h(x)}-1} \sum_{y \in A} G(x-y) \sqrt{e^{h(y)}-1} g(y) .
$$

This suffices for the lower bound. The extension of the upper bound from finite sets A to the entire lattice is nontrivial, because the problem is not exponentially tight: Note that all shifts of A produce the same exponential decay of the upper tails of the intersection local times.

Selected ideas of the proof

We obtain, for finite $A \subset \mathbb{Z}^{d}$ that

$$
\begin{gathered}
\lim _{k \rightarrow \infty} \frac{1}{k} \log \frac{1}{k!} \sum_{x_{1}, \ldots, x_{k} \in A}\left[\sum_{m=1}^{k} \sum_{\pi \in \mathcal{E}_{m}} \mathbf{1}_{\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathcal{A}(\pi)\right\}} \sum_{\sigma \in \mathfrak{S}_{m}} \prod_{\ell=1}^{m} G\left(x_{\pi_{\sigma(\ell)}}-x_{\pi_{\sigma(\ell-1)}}\right)\right]^{p} \\
=-p \log \inf \left\{\|h\|_{q}: h \geq 0 \text { with }\left\|\mathfrak{A}_{h}^{A}\right\| \geq 1\right\}
\end{gathered}
$$

where the self-adjoint operator $\mathfrak{A}_{h}^{A}: L^{2}(A) \rightarrow L^{2}(A)$ is defined by

$$
\mathfrak{A}_{h}^{A} g(x)=\sqrt{e^{h(x)}-1} \sum_{y \in A} G(x-y) \sqrt{e^{h(y)}-1} g(y)
$$

This suffices for the lower bound. The extension of the upper bound from finite sets A to the entire lattice is nontrivial, because the problem is not exponentially tight: Note that all shifts of A produce the same exponential decay of the upper tails of the intersection local times. To overcome this problem, we need to project the full problem onto a finite domain by wrapping it around a torus. The problem retains the given form, but with a different kernel G. We then let the period of the torus go to infinity.

Main result revisited

The upper tail behaviour of the intersection local time I is given as

$$
\lim _{a \notinfty \infty} \frac{1}{a^{1 / p}} \log \mathbb{P}\{I>a\}=-p \inf \left\{\|h\|_{q}: h \geq 0 \text { with }\left\|\mathfrak{A}_{h}\right\| \geq 1\right\} .
$$

Main result revisited

The upper tail behaviour of the intersection local time I is given as

$$
\lim _{a \notinfty \infty} \frac{1}{a^{1 / p}} \log \mathbb{P}\{I>a\}=-p \inf \left\{\|h\|_{q}: h \geq 0 \text { with }\left\|\mathfrak{A}_{h}\right\| \geq 1\right\} .
$$

Remark: It is unsatisfactory that we cannot readily interpret the optimal h in the variational problem in a probabilistic manner. To some extent this is an artefact which is due to the discrete time structure of the random walk.

A related problem

A related problem

For comparison we therefore now look at independent continuous time random walks

$$
\left(X^{(1)}(t): t \geq 0\right), \ldots,\left(X^{(p)}(t): t \geq 0\right)
$$

and let A be their generator given by

$$
A f(x)=\lim _{t \downarrow 0} \frac{\mathbb{E}_{x} f\left(X_{t}\right)-f(x)}{t}
$$

A is a nonpositive definite, symmetric operator on $L^{2}\left(\mathbb{Z}^{d}\right)$.

A related problem

For comparison we therefore now look at independent continuous time random walks

$$
\left(X^{(1)}(t): t \geq 0\right), \ldots,\left(X^{(p)}(t): t \geq 0\right)
$$

and let A be their generator given by

$$
A f(x)=\lim _{t \downarrow 0} \frac{\mathbb{E}_{x} f\left(X_{t}\right)-f(x)}{t}
$$

A is a nonpositive definite, symmetric operator on $L^{2}\left(\mathbb{Z}^{d}\right)$.
We define the intersection local time as

$$
\tilde{\jmath}:=\int_{0}^{\infty} d t_{1} \cdots \int_{0}^{\infty} d t_{p} \mathbf{1}\left\{X^{(1)}\left(t_{1}\right)=\cdots=X^{(p)}\left(t_{p}\right)\right\} .
$$

A related problem

For comparison we therefore now look at independent continuous time random walks

$$
\left(X^{(1)}(t): t \geq 0\right), \ldots,\left(X^{(p)}(t): t \geq 0\right)
$$

and let A be their generator given by

$$
A f(x)=\lim _{t \downarrow 0} \frac{\mathbb{E}_{x} f\left(X_{t}\right)-f(x)}{t}
$$

A is a nonpositive definite, symmetric operator on $L^{2}\left(\mathbb{Z}^{d}\right)$.
We define the intersection local time as

$$
\tilde{l}:=\int_{0}^{\infty} d t_{1} \cdots \int_{0}^{\infty} d t_{p} \mathbf{1}\left\{X^{(1)}\left(t_{1}\right)=\cdots=X^{(p)}\left(t_{p}\right)\right\} .
$$

Again we ask for the upper tail behaviour.

A related problem

Theorem 2 (Chen, M 2007)
The upper tail behaviour of the intersection local time \tilde{I} is given as

$$
\lim _{a \uparrow \infty} \frac{1}{a^{1 / p}} \log \mathbb{P}\{\tilde{l}>a\}=-p \inf \left\{\|\sqrt{-A} g\|_{2}^{2}:\|g\|_{2 p}=1\right\} .
$$

A related problem

Theorem 2 (Chen, M 2007)
The upper tail behaviour of the intersection local time \tilde{I} is given as

$$
\lim _{a \uparrow \infty} \frac{1}{a^{1 / p}} \log \mathbb{P}\{\tilde{I}>a\}=-p \inf \left\{\|\sqrt{-A} g\|_{2}^{2}:\|g\|_{2 p}=1\right\}
$$

Remark: The optimal strategy for the random walks is to have a local time field like

$$
\ell^{(j)}(x):=\int_{0}^{\infty} \mathbf{1}\left\{X^{(j)}(t)=x\right\} \approx a^{1 / p} g^{2}(x)
$$

which implies

$$
\tilde{I}=\sum_{x \in \mathbb{Z}^{d}} \prod_{j=1}^{p} \ell^{(j)}(x) \approx \sum_{x \in \mathbb{Z}^{d}} \prod_{j=1}^{p} a^{1 / p} g^{2}(x)=a .
$$

The probability of a random walk achieving such a local time is

$$
\approx \exp \left\{-a^{1 / p}\|\sqrt{-A} g\|_{2}^{2}\right\},
$$

which resembles the rate functions in Donsker-Varadhan theory.

How do the limits compare?

How do the limits compare?

Our proof follows a similar strategy as in the discrete time case, but there is now an simpler formula for the k th moments

$$
\mathbb{E} \tilde{I}^{k}=\sum_{x_{1}, \ldots, x_{k} \in \mathbb{Z}^{d}}\left[\sum_{\sigma \in \mathfrak{S}_{k}} \prod_{\ell=1}^{k} \mathbb{G}\left(x_{\sigma(\ell-1)}-x_{\sigma(\ell)}\right)\right]^{p}
$$

How do the limits compare?

Our proof follows a similar strategy as in the discrete time case, but there is now an simpler formula for the k th moments

$$
\mathbb{E} \tilde{I}^{k}=\sum_{x_{1}, \ldots, x_{k} \in \mathbb{Z}^{d}}\left[\sum_{\sigma \in \mathfrak{S}_{k}} \prod_{\ell=1}^{k} \mathbb{G}\left(x_{\sigma(\ell-1)}-x_{\sigma(\ell)}\right)\right]^{p}
$$

From this we obtain

$$
\lim _{a \uparrow \infty} \frac{1}{a^{1 / p}} \log \mathbb{P}\{\tilde{I}>a\}=-p \inf \left\{\|h\|_{q}: h \geq 0 \text { with }\left\|\mathfrak{B}_{h}\right\| \geq 1\right\}
$$

where the operator $\mathfrak{B}_{h}: L^{2}\left(\mathbb{Z}^{d}\right) \rightarrow L^{2}\left(\mathbb{Z}^{d}\right)$ is defined by

$$
\mathfrak{B}_{h} g(x)=\sqrt{h(x)} \sum_{y \in \mathbb{Z}^{d}} \mathbb{G}(x-y) g(y) \sqrt{h(y)}
$$

and the Green's function is

$$
\mathbb{G}(x)=\int_{0}^{\infty} \mathbb{P}\{X(t)=x\} d t
$$

How do the limits compare?

The small change in form allows considerable simplification

How do the limits compare?

The small change in form allows considerable simplification

$$
\inf \left\{\|h\|_{q}: h \geq 0 \text { with } \sup _{\|g\|_{2}=1}\left\langle g, \mathfrak{B}_{h} g\right\rangle \geq 1\right\}
$$

How do the limits compare?

The small change in form allows considerable simplification

$$
\begin{aligned}
& \inf \left\{\|h\|_{q}: h \geq 0 \text { with } \sup _{\|g\|_{2}=1}\left\langle g, \mathfrak{B}_{h} g\right\rangle \geq 1\right\} \\
& \quad=\inf \left\{b: \sup _{\substack{\|g\|_{2}=1 \\
\|h\|_{q}=1}}\langle\sqrt{h} g, \mathfrak{G} \sqrt{h} g\rangle \geq 1 / b\right\}
\end{aligned}
$$

where \mathfrak{G} is the Green's operator

$$
\mathfrak{G} f(x):=\sum_{y \in \mathbb{Z}^{d}} \mathbb{G}(x-y) f(y)
$$

How do the limits compare?

The small change in form allows considerable simplification

$$
\begin{aligned}
& \inf \left\{\|h\|_{q}: h \geq 0 \text { with } \sup _{\|g\|_{2}=1}\left\langle g, \mathfrak{B}_{h} g\right\rangle \geq 1\right\} \\
& \quad=\inf \left\{b: \sup _{\substack{\|g\|_{2}=1 \\
\|h\|_{q}=1}}\langle\sqrt{h} g, \mathfrak{G} \sqrt{h} g\rangle \geq 1 / b\right\} \\
& \quad=1 / \sup \left\{\left\langle f^{2 p-1}, \mathfrak{G} f^{2 p-1}\right\rangle:\|f\|_{2 p}=1\right\}=: 1 / \rho .
\end{aligned}
$$

where \mathfrak{G} is the Green's operator

$$
\mathfrak{G} f(x):=\sum_{y \in \mathbb{Z}^{d}} \mathbb{G}(x-y) f(y)
$$

How do the limits compare?

The small change in form allows considerable simplification

$$
\begin{aligned}
& \inf \left\{\|h\|_{G}: h \geq 0 \text { with } \sup _{\|g\|_{2=1}}\left\langle g, \mathfrak{B}_{h} g\right\rangle \geq 1\right\} \\
& \quad=\inf \left\{b: \sup _{\substack{\|g\|_{2=1}=1 \\
\| h h q=1}}\langle\sqrt{h} g, \mathfrak{G} \sqrt{h} g\rangle \geq 1 / b\right\} \\
& \quad=1 / \sup \left\{\left\langle f^{2 p-1}, \mathfrak{G} f^{2 p-1}\right\rangle:\|f\|_{2 p}=1\right\}=: 1 / \rho .
\end{aligned}
$$

where \mathfrak{G} is the Green's operator

$$
\mathfrak{G} f(x):=\sum_{y \in \mathbb{Z}^{d}} \mathbb{G}(x-y) f(y) .
$$

The maximiser f exists and satisfies $\rho f=\mathfrak{G} f^{2 p-1}$.

How do the limits compare?

The small change in form allows considerable simplification

$$
\begin{aligned}
& \inf \{ \left\{h \|_{q}: h \geq 0 \text { with } \sup _{\|g\|_{2}=1}\left\langle g, \mathfrak{B}_{h} g\right\rangle \geq 1\right\} \\
& \quad=\inf \left\{b: \sup _{\substack{\|g\|_{2}=1 \\
\|h\| q=1}}\langle\sqrt{h} g, \mathfrak{G} \sqrt{h} g\rangle \geq 1 / b\right\} \\
& \quad=1 / \sup \left\{\left\langle f^{2 p-1}, \mathfrak{G} f^{2 p-1}\right\rangle:\|f\|_{2 p}=1\right\}=: 1 / \rho .
\end{aligned}
$$

where \mathfrak{G} is the Green's operator

$$
\mathfrak{G} f(x):=\sum_{y \in \mathbb{Z}^{d}} \mathbb{G}(x-y) f(y)
$$

The maximiser f exists and satisfies $\rho f=\mathfrak{G} f^{2 p-1}$. We obtain the final form from $-A \circ \mathfrak{G}=i d$ as

$$
1 / \rho=-\sup \left\{\langle f, A f\rangle:\|f\|_{2 p}=1\right\}=\inf \left\{\|\sqrt{-A} f\|_{2}^{2}:\|f\|_{2 p}=1\right\}
$$

Concluding remarks

Concluding remarks

- We have obtained exact upper tail constants for the intersection local time of independent random walks in supercritical dimensions.

Concluding remarks

- We have obtained exact upper tail constants for the intersection local time of independent random walks in supercritical dimensions.
- Our approach allows a direct treatment of the infinite time horizon avoiding the use of Donsker-Varadhan theory.

Concluding remarks

- We have obtained exact upper tail constants for the intersection local time of independent random walks in supercritical dimensions.
- Our approach allows a direct treatment of the infinite time horizon avoiding the use of Donsker-Varadhan theory.
- We believe that this method has potential to solve some hard problems related to the intersection of the ranges as well. This work is in progress.

