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Framework

Let
(X (1)(n) : n ∈ N), . . . , (X (p)(n) : n ∈ N)

be p ≥ 2 independent identically distributed random walks started in the origin and
taking values in Z

d .
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Framework

Let
(X (1)(n) : n ∈ N), . . . , (X (p)(n) : n ∈ N)

be p ≥ 2 independent identically distributed random walks started in the origin and
taking values in Z

d . We shall always assume that the increments of these random
walks are symmetric with finite variance.

The number of intersections of these walks can be measured in two natural ways: The
intersection local time of the random walks,

I :=

∞
X

i1=1

· · ·
∞

X

ip=1

1{X (1)(i1) = · · · = X
(p)(ip)},

counts the times when the paths intersect,
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Framework

Let
(X (1)(n) : n ∈ N), . . . , (X (p)(n) : n ∈ N)

be p ≥ 2 independent identically distributed random walks started in the origin and
taking values in Z

d . We shall always assume that the increments of these random
walks are symmetric with finite variance.

The number of intersections of these walks can be measured in two natural ways: The
intersection local time of the random walks,

I :=

∞
X

i1=1

· · ·
∞

X

ip=1

1{X (1)(i1) = · · · = X
(p)(ip)},

counts the times when the paths intersect, whereas the intersection of the ranges

J :=
X

x∈Zd

1{X (1)(i1) = · · · = X
(p)(ip) = x for some (i1, . . . , ip)}

counts the sites where the paths intersect.
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Supercritical dimension

Question: When are the random variables I and J finite?
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Supercritical dimension

Question: When are the random variables I and J finite?
Back-of-the-envelope calculation:

I =
∞

X

i1=1

· · ·
∞

X

ip=1

1{X (1)(i1) = · · · = X
(p)(ip)}

=
X

x∈Zd

∞
X

i1=1

· · ·
∞

X

ip=1

1{X (1)(i1) = · · · = X
(p)(ip) = x}
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Supercritical dimension

Question: When are the random variables I and J finite?
Back-of-the-envelope calculation:

I =
∞

X

i1=1

· · ·
∞

X

ip=1

1{X (1)(i1) = · · · = X
(p)(ip)}

=
X

x∈Zd

∞
X

i1=1

· · ·
∞

X

ip=1

1{X (1)(i1) = · · · = X
(p)(ip) = x}

=
X

x∈Zd

p
Y

j=1

∞
X

i=1

1{X (j)(i) = x}.

Peter Mörters Intersection of random walks in supercritical dimensions



Supercritical dimension

Question: When are the random variables I and J finite?
Back-of-the-envelope calculation:
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Supercritical dimension

Question: When are the random variables I and J finite?
Back-of-the-envelope calculation:

EI =
X

x∈Zd

E

p
Y

j=1

∞
X

i=1

1{X (j)(i) = x}

Peter Mörters Intersection of random walks in supercritical dimensions



Supercritical dimension

Question: When are the random variables I and J finite?
Back-of-the-envelope calculation:

EI =
X

x∈Zd

E

p
Y

j=1

∞
X

i=1

1{X (j)(i) = x}

=
X

x∈Zd

p
Y

j=1

E

∞
X

i=1

1{X (j)(i) = x}

Peter Mörters Intersection of random walks in supercritical dimensions



Supercritical dimension

Question: When are the random variables I and J finite?
Back-of-the-envelope calculation:

EI =
X

x∈Zd

E

p
Y

j=1

∞
X

i=1

1{X (j)(i) = x}

=
X

x∈Zd

p
Y

j=1

E

∞
X

i=1

1{X (j)(i) = x}

=
X

x∈Zd

p
Y

j=1

∞
X

i=1

P{X (j)(i) = x}
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Supercritical dimension

Question: When are the random variables I and J finite?
Back-of-the-envelope calculation:

EI =
X

x∈Zd

E

p
Y

j=1

∞
X

i=1

1{X (j)(i) = x}

=
X

x∈Zd

p
Y

j=1

E

∞
X

i=1

1{X (j)(i) = x}

=
X

x∈Zd

p
Y

j=1

∞
X

i=1

P{X (j)(i) = x}

=
X

x∈Zd

G(x)p ,
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Supercritical dimension

Question: When are the random variables I and J finite?
Back-of-the-envelope calculation:

EI =
X

x∈Zd

E

p
Y

j=1

∞
X

i=1

1{X (j)(i) = x}

=
X

x∈Zd

p
Y

j=1

E

∞
X

i=1

1{X (j)(i) = x}

=
X

x∈Zd

p
Y

j=1

∞
X

i=1

P{X (j)(i) = x}

=
X

x∈Zd

G(x)p ,

where G(x) ≈ (|x | + 1)2−d is the Green’s function.
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Supercritical dimension

Question: When are the random variables I and J finite?

Fact (Erdős and Taylor)

P{I < ∞} = P{J < ∞} =



1 if p(d − 2) > d ,
0 otherwise.
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Supercritical dimension

Question: When are the random variables I and J finite?

Fact (Erdős and Taylor)

P{I < ∞} = P{J < ∞} =



1 if p(d − 2) > d ,
0 otherwise.

From now on we assume that p(d − 2) > d , i.e. we are in supercritical dimensions.
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The tails of I and J

The distributions of I and J are unknown.
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The tails of I and J

The distributions of I and J are unknown. Khanin, Mazel, Shlosman, Sinai 1994 have
studied the upper tail behaviour. They find that, for a sufficiently large,

exp
˘

− c1a
1
p

¯

≤ P
˘

I > a
¯

≤ exp
˘

− c2a
1
p

¯

.
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The tails of I and J

The distributions of I and J are unknown. Khanin, Mazel, Shlosman, Sinai 1994 have
studied the upper tail behaviour. They find that, for a sufficiently large,

exp
˘

− c1a
1
p

¯

≤ P
˘

I > a
¯

≤ exp
˘

− c2a
1
p

¯

.

Interestingly, the upper tails of J are substantially lighter. They show that, for all
ε > 0 and all sufficiently large a,

exp
˘

− a
d−2

d
+ε¯

≤ P
˘

J > a
¯

≤ exp
˘

− a
d−2

d
−ε¯

.
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The tails of I and J

The distributions of I and J are unknown. Khanin, Mazel, Shlosman, Sinai 1994 have
studied the upper tail behaviour. They find that, for a sufficiently large,

exp
˘

− c1a
1
p

¯

≤ P
˘

I > a
¯

≤ exp
˘

− c2a
1
p

¯

.

Interestingly, the upper tails of J are substantially lighter. They show that, for all
ε > 0 and all sufficiently large a,

exp
˘

− a
d−2

d
+ε¯

≤ P
˘

J > a
¯

≤ exp
˘

− a
d−2

d
−ε¯

.

The challenging question lies in understanding the difference of these behaviours,
providing sharp estimates for the tails, and understanding the underlying ‘optimal
strategies’ for the random walks.
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Some recent progress

van den Berg, Bolthausen and den Hollander 2004 invesitigate the continuous
analogue of the intersection of the ranges J:
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Some recent progress

van den Berg, Bolthausen and den Hollander 2004 invesitigate the continuous
analogue of the intersection of the ranges J:
Let W ε

1 (t) and W ε
2 (t) be the ε-neighbourhoods of two independent Brownian paths

starting at the origin and running for t time units.
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Some recent progress

van den Berg, Bolthausen and den Hollander 2004 invesitigate the continuous
analogue of the intersection of the ranges J:
Let W ε

1 (t) and W ε
2 (t) be the ε-neighbourhoods of two independent Brownian paths

starting at the origin and running for t time units. They show that, for d ≥ 3,

lim
t↑∞

1

t(d−2)/d
log P

˘˛

˛W
ε
1 (θt) ∩ W

ε
2 (θt)

˛

˛ ≥ t
¯

= −I
ε
d (θ),
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Some recent progress

van den Berg, Bolthausen and den Hollander 2004 invesitigate the continuous
analogue of the intersection of the ranges J:
Let W ε

1 (t) and W ε
2 (t) be the ε-neighbourhoods of two independent Brownian paths

starting at the origin and running for t time units. They show that, for d ≥ 3,

lim
t↑∞

1

t(d−2)/d
log P

˘˛

˛W
ε
1 (θt) ∩ W

ε
2 (θt)

˛

˛ ≥ t
¯

= −I
ε
d (θ),

and, if d ≥ 5, there exists a critical θ∗ such that

I
ε
d (θ) = I

ε
d (θ∗) for all θ ≥ θ∗.
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Some recent progress

van den Berg, Bolthausen and den Hollander 2004 invesitigate the continuous
analogue of the intersection of the ranges J:
Let W ε

1 (t) and W ε
2 (t) be the ε-neighbourhoods of two independent Brownian paths

starting at the origin and running for t time units. They show that, for d ≥ 3,

lim
t↑∞

1

t(d−2)/d
log P

˘˛

˛W
ε
1 (θt) ∩ W

ε
2 (θt)

˛

˛ ≥ t
¯

= −I
ε
d (θ),

and, if d ≥ 5, there exists a critical θ∗ such that

I
ε
d (θ) = I

ε
d (θ∗) for all θ ≥ θ∗.

This strongly suggests that, in the supercritical case d ≥ 5,

lim
t↑∞

1

t(d−2)/d
log P

˘˛

˛W
ε
1 (∞) ∩ W

ε
2 (∞)

˛

˛ ≥ t
¯

= −I
ε
d (θ∗),

but their techniques do not allow the treatment of infinite times and this problem, like
its discrete counterpart, remains open.
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Main result

Let G be the Green’s function of the random walk, defined by

G(x) :=
∞

X

n=1

P{X (n) = x}.
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Main result

Let G be the Green’s function of the random walk, defined by

G(x) :=
∞

X

n=1

P{X (n) = x}.

Note that we are following the (slightly unusual) convention of not summing over the
time n = 0, which has an influence on the value G(0).
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Main result

Let G be the Green’s function of the random walk, defined by

G(x) :=
∞

X

n=1

P{X (n) = x}.

Let q > 1 be the conjugate of p, defined by p−1 + q−1 = 1.
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Main result

Let G be the Green’s function of the random walk, defined by

G(x) :=
∞

X

n=1

P{X (n) = x}.

Let q > 1 be the conjugate of p, defined by p−1 + q−1 = 1.
For every nonnegative h ∈ Lq(Zd ) a bounded, symmetric, positive operator

Ah : L
2(Zd ) → L

2(Zd )

is defined by

Ahg(x) =
p

eh(x) − 1
X

y∈Zd

G(x − y)g(y)
p

eh(y) − 1 .
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Main result

Let G be the Green’s function of the random walk, defined by

G(x) :=
∞

X

n=1

P{X (n) = x}.

Let q > 1 be the conjugate of p, defined by p−1 + q−1 = 1.
For every nonnegative h ∈ Lq(Zd ) a bounded, symmetric, positive operator

Ah : L
2(Zd ) → L

2(Zd )

is defined by

Ahg(x) =
p

eh(x) − 1
X

y∈Zd

G(x − y)g(y)
p

eh(y) − 1 .

Our main result is formulated in terms of the spectral radius

‖Ah‖ := sup
˘

〈g , Ahg〉 : ‖g‖2 = 1
¯

of the operator Ah.
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Main result

Theorem 1 (Chen, M 2007)

The upper tail behaviour of the intersection local time I is given as

lim
a↑∞

1

a1/p
log P

˘

I > a
¯

= −p inf
˘

‖h‖q : h ≥ 0 with ‖Ah‖ ≥ 1
¯

.
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Main result

Theorem 1 (Chen, M 2007)

The upper tail behaviour of the intersection local time I is given as

lim
a↑∞

1

a1/p
log P

˘

I > a
¯

= −p inf
˘

‖h‖q : h ≥ 0 with ‖Ah‖ ≥ 1
¯

.

Remark: The optimal strategy for the random walks is to each spend about a1/p time
units in a bounded domain which does not grow with a. Then we get I ≈ a from
intersections in this domain alone. This strategy makes I large without making J large,
thus explaining the different tail behaviour.
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Selected ideas of the proof
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Selected ideas of the proof

By a Tauberian theorem for any nonnegative X ,

lim
k↑∞

1

k
log E

h X k

(k!)p

i

= −κ ⇐⇒ lim
a↑∞

1

a1/p
log P{X > a} = −pe

κ/p.

Hence it suffices to study the asympotics of high integer moments of I . There is a
(unfortunately rather involved) formula for these moments.
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Selected ideas of the proof

By a Tauberian theorem for any nonnegative X ,

lim
k↑∞

1

k
log E

h X k

(k!)p

i

= −κ ⇐⇒ lim
a↑∞

1

a1/p
log P{X > a} = −pe

κ/p.

Hence it suffices to study the asympotics of high integer moments of I . There is a
(unfortunately rather involved) formula for these moments.

I
k =

h

X

x∈Zd

p
Y

j=1

∞
X

i=1

1{X (j)(i) = x}
ik
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By a Tauberian theorem for any nonnegative X ,

lim
k↑∞

1

k
log E

h X k

(k!)p

i

= −κ ⇐⇒ lim
a↑∞

1

a1/p
log P{X > a} = −pe

κ/p.

Hence it suffices to study the asympotics of high integer moments of I . There is a
(unfortunately rather involved) formula for these moments.

I
k =

h

X

x∈Zd

p
Y

j=1

∞
X

i=1

1{X (j)(i) = x}
ik

=
X

x1,...,xk∈Zd

k
Y

`=1

p
Y

j=1

∞
X

i=1

1{X (j)(i) = x`}
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Selected ideas of the proof

By a Tauberian theorem for any nonnegative X ,

lim
k↑∞

1

k
log E

h X k

(k!)p

i

= −κ ⇐⇒ lim
a↑∞

1

a1/p
log P{X > a} = −pe

κ/p.

Hence it suffices to study the asympotics of high integer moments of I . There is a
(unfortunately rather involved) formula for these moments.

I
k =

h

X

x∈Zd

p
Y

j=1

∞
X

i=1

1{X (j)(i) = x}
ik

=
X

x1,...,xk∈Zd

k
Y

`=1

p
Y

j=1

∞
X

i=1

1{X (j)(i) = x`}

=
X

x1,...,xk∈Zd

p
Y

j=1

∞
X

i1,...,ik=1

k
Y

`=1

1{X (j)(i`) = x`}.

Peter Mörters Intersection of random walks in supercritical dimensions



Selected ideas of the proof

EI
k =

X

x1,...,xk∈Zd

p
Y

j=1

∞
X

i1,...,ik=1

E

k
Y

`=1

1{X (j)(i`) = x`}
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Selected ideas of the proof

EI
k =

X

x1,...,xk∈Zd

p
Y

j=1

∞
X

i1,...,ik=1

E

k
Y

`=1

1{X (j)(i`) = x`}

=
X

x1,...,xk∈Zd

h

X

i1,...,ik

E

k
Y

`=1

1{X (i`) = x`}
ip
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Selected ideas of the proof

EI
k =

X

x1,...,xk∈Zd

p
Y

j=1

∞
X

i1,...,ik=1

E

k
Y

`=1

1{X (j)(i`) = x`}

=
X

x1,...,xk∈Zd

h

X

i1,...,ik

E

k
Y

`=1

1{X (i`) = x`}
ip

=
X

x1,...,xk∈Zd

h

k
X

m=1

X

π∈Em

1{(x1, . . . , xk ) ∈ A(π)}
X

j1,...,jm

distinct

E

m
Y

`=1

1{X (j`) = xπ`
}

ip

where Em is the set of partitions {π1, . . . , πm} of {1, . . . , k} into m nonempty sets and
A(π) is the set of tuples (x1, . . . , xk ) which are constant on the partitions.
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EI
k =
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1{X (i`) = x`}
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=
X

x1,...,xk∈Zd

h

k
X

m=1

X

π∈Em

1{(x1, . . . , xk ) ∈ A(π)}
X

j1,...,jm

distinct

E

m
Y

`=1

1{X (j`) = xπ`
}

ip

=
X

x1,...,xk∈Zd

h

k
X

m=1

X

π∈Em

1{(x1, . . . , xk ) ∈ A(π)}
X

σ∈Sm

m
Y

`=1

G
`

xπσ(`)
− xπσ(`−1)

´

ip

,

where Em is the set of partitions {π1, . . . , πm} of {1, . . . , k} into m nonempty sets and
A(π) is the set of tuples (x1, . . . , xk ) which are constant on the partitions.
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Selected ideas of the proof

Let A ⊂ Z
d be finite. Then we can analyse expressions of the form

X

x1,...,xk∈A

h

k
X

m=1

X

π∈Em

1{(x1, . . . , xk ) ∈ A(π)}
X

σ∈Sm

m
Y

`=1

G
`

xπσ(`)
− xπσ(`−1)

´

ip

using

Peter Mörters Intersection of random walks in supercritical dimensions



Selected ideas of the proof

Let A ⊂ Z
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x1,...,xk∈A

h

k
X

m=1

X

π∈Em

1{(x1, . . . , xk ) ∈ A(π)}
X

σ∈Sm

m
Y

`=1

G
`
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´
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using

large deviations for the empirical measure Lx = 1
k

Pk

j=1 δxj
,
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Selected ideas of the proof

Let A ⊂ Z
d be finite. Then we can analyse expressions of the form

X

x1,...,xk∈A

h

k
X

m=1

X

π∈Em

1{(x1, . . . , xk ) ∈ A(π)}
X

σ∈Sm

m
Y

`=1

G
`

xπσ(`)
− xπσ(`−1)

´

ip

using

large deviations for the empirical measure Lx = 1
k

Pk

j=1 δxj
,

Hölder’s inequality for the lower bound,

the combinatorial fact that

#Em =
1

m!

X

j1,...,jm≥1
j1+···+jm=k

k!

j1! · · · jm!
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d be finite. Then we can analyse expressions of the form
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´
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using

large deviations for the empirical measure Lx = 1
k
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j=1 δxj
,

Hölder’s inequality for the lower bound,

the combinatorial fact that

#Em =
1
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j1,...,jm≥1
j1+···+jm=k

k!

j1! · · · jm!

an easy spectral theorem,
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Selected ideas of the proof

Let A ⊂ Z
d be finite. Then we can analyse expressions of the form

X

x1,...,xk∈A

h

k
X

m=1

X

π∈Em

1{(x1, . . . , xk ) ∈ A(π)}
X

σ∈Sm

m
Y

`=1

G
`

xπσ(`)
− xπσ(`−1)

´

ip

using

large deviations for the empirical measure Lx = 1
k

Pk

j=1 δxj
,

Hölder’s inequality for the lower bound,

the combinatorial fact that

#Em =
1

m!

X

j1,...,jm≥1
j1+···+jm=k

k!

j1! · · · jm!

an easy spectral theorem,

symmetry (and nothing more!) of the function G : Z
d → (0,∞).
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Selected ideas of the proof

We obtain, for finite A ⊂ Z
d that

lim
k→∞

1

k
log

1

k!

X

x1,...,xk∈A

h

k
X

m=1

X

π∈Em

1{(x1,...,xk )∈A(π)}

X

σ∈Sm

m
Y

`=1

G
`

xπσ(`)
− xπσ(`−1)

´

ip

= −p log inf
˘

‖h‖q : h ≥ 0 with ‖AA
h ‖ ≥ 1

¯

,

where the self-adjoint operator A
A
h : L2(A) → L2(A) is defined by

A
A
h g(x) =

p

eh(x) − 1
X

y∈A

G (x − y)
p

eh(y) − 1 g(y) .
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,

where the self-adjoint operator A
A
h : L2(A) → L2(A) is defined by

A
A
h g(x) =

p

eh(x) − 1
X

y∈A

G (x − y)
p

eh(y) − 1 g(y) .

This suffices for the lower bound.
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We obtain, for finite A ⊂ Z
d that

lim
k→∞

1
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log

1
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x1,...,xk∈A
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X
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`=1
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`

xπσ(`)
− xπσ(`−1)

´
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= −p log inf
˘

‖h‖q : h ≥ 0 with ‖AA
h ‖ ≥ 1

¯

,

where the self-adjoint operator A
A
h : L2(A) → L2(A) is defined by

A
A
h g(x) =

p

eh(x) − 1
X

y∈A

G (x − y)
p

eh(y) − 1 g(y) .

This suffices for the lower bound. The extension of the upper bound from finite sets A

to the entire lattice is nontrivial, because the problem is not exponentially tight: Note
that all shifts of A produce the same exponential decay of the upper tails of the
intersection local times.
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Selected ideas of the proof

We obtain, for finite A ⊂ Z
d that

lim
k→∞

1

k
log

1

k!

X

x1,...,xk∈A

h

k
X

m=1

X

π∈Em

1{(x1,...,xk )∈A(π)}

X

σ∈Sm

m
Y

`=1

G
`

xπσ(`)
− xπσ(`−1)

´

ip

= −p log inf
˘

‖h‖q : h ≥ 0 with ‖AA
h ‖ ≥ 1

¯

,

where the self-adjoint operator A
A
h : L2(A) → L2(A) is defined by

A
A
h g(x) =

p

eh(x) − 1
X

y∈A

G (x − y)
p

eh(y) − 1 g(y) .

This suffices for the lower bound. The extension of the upper bound from finite sets A

to the entire lattice is nontrivial, because the problem is not exponentially tight: Note
that all shifts of A produce the same exponential decay of the upper tails of the
intersection local times. To overcome this problem, we need to project the full problem
onto a finite domain by wrapping it around a torus. The problem retains the given
form, but with a different kernel G . We then let the period of the torus go to infinity.
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Main result revisited

The upper tail behaviour of the intersection local time I is given as

lim
a↑∞

1

a1/p
log P

˘

I > a
¯

= −p inf
˘

‖h‖q : h ≥ 0 with ‖Ah‖ ≥ 1
¯

.
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Main result revisited

The upper tail behaviour of the intersection local time I is given as

lim
a↑∞

1

a1/p
log P

˘

I > a
¯

= −p inf
˘

‖h‖q : h ≥ 0 with ‖Ah‖ ≥ 1
¯

.

Remark: It is unsatisfactory that we cannot readily interpret the optimal h in the
variational problem in a probabilistic manner. To some extent this is an artefact which
is due to the discrete time structure of the random walk.
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A related problem
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A related problem

For comparison we therefore now look at independent continuous time random walks

(X (1)(t) : t ≥ 0), . . . , (X (p)(t) : t ≥ 0)

and let A be their generator given by

Af (x) = lim
t↓0

Ex f (Xt) − f (x)

t
.

A is a nonpositive definite, symmetric operator on L2(Zd ).
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A related problem

For comparison we therefore now look at independent continuous time random walks

(X (1)(t) : t ≥ 0), . . . , (X (p)(t) : t ≥ 0)

and let A be their generator given by

Af (x) = lim
t↓0

Ex f (Xt) − f (x)

t
.

A is a nonpositive definite, symmetric operator on L2(Zd ).
We define the intersection local time as

Ĩ :=

Z ∞

0

dt1 · · ·
Z ∞

0

dtp 1{X (1)(t1) = · · · = X
(p)(tp)}.
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A related problem

For comparison we therefore now look at independent continuous time random walks

(X (1)(t) : t ≥ 0), . . . , (X (p)(t) : t ≥ 0)

and let A be their generator given by

Af (x) = lim
t↓0

Ex f (Xt) − f (x)

t
.

A is a nonpositive definite, symmetric operator on L2(Zd ).
We define the intersection local time as

Ĩ :=

Z ∞

0

dt1 · · ·
Z ∞

0

dtp 1{X (1)(t1) = · · · = X
(p)(tp)}.

Again we ask for the upper tail behaviour.
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A related problem

Theorem 2 (Chen, M 2007)

The upper tail behaviour of the intersection local time Ĩ is given as

lim
a↑∞

1

a1/p
log P

˘

Ĩ > a
¯

= −p inf
˘‚

‚

√
−Ag

‚

‚

2

2
: ‖g‖2p = 1

¯

.
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A related problem

Theorem 2 (Chen, M 2007)

The upper tail behaviour of the intersection local time Ĩ is given as

lim
a↑∞

1

a1/p
log P

˘

Ĩ > a
¯

= −p inf
˘‚

‚

√
−Ag

‚

‚

2

2
: ‖g‖2p = 1

¯

.

Remark: The optimal strategy for the random walks is to have a local time field like

`(j)(x) :=

Z ∞

0

1{X (j)(t) = x} ≈ a
1/p

g
2(x),

which implies

Ĩ =
X

x∈Zd

p
Y

j=1

`(j)(x) ≈
X

x∈Zd

p
Y

j=1

a
1/p

g
2(x) = a .

The probability of a random walk achieving such a local time is

≈ exp
˘

− a
1/p

‚

‚

√
−Ag

‚

‚

2

2

¯

,

which resembles the rate functions in Donsker-Varadhan theory.
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How do the limits compare?

Peter Mörters Intersection of random walks in supercritical dimensions



How do the limits compare?

Our proof follows a similar strategy as in the discrete time case, but there is now an
simpler formula for the kth moments

EĨ
k =

X

x1,...,xk∈Zd

h

X

σ∈Sk

k
Y

`=1

G(xσ(`−1) − xσ(`))
ip

.
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How do the limits compare?

Our proof follows a similar strategy as in the discrete time case, but there is now an
simpler formula for the kth moments

EĨ
k =

X

x1,...,xk∈Zd

h

X

σ∈Sk

k
Y

`=1

G(xσ(`−1) − xσ(`))
ip

.

From this we obtain

lim
a↑∞

1

a1/p
log P

˘

Ĩ > a
¯

= −p inf
˘

‖h‖q : h ≥ 0 with ‖Bh‖ ≥ 1
¯

,

where the operator Bh : L2(Zd) → L2(Zd ) is defined by

Bhg(x) =
p

h(x)
X

y∈Zd

G(x − y)g(y)
p

h(y)

and the Green’s function is

G(x) =

Z ∞

0

P{X (t) = x} dt.
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How do the limits compare?

The small change in form allows considerable simplification
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How do the limits compare?

The small change in form allows considerable simplification

inf
˘

‖h‖q : h ≥ 0 with sup
‖g‖2=1

〈g , Bhg〉 ≥ 1
¯
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How do the limits compare?

The small change in form allows considerable simplification

inf
˘

‖h‖q : h ≥ 0 with sup
‖g‖2=1

〈g , Bhg〉 ≥ 1
¯

= inf
˘

b : sup
‖g‖2=1

‖h‖q=1

˙
√

hg , G
√

hg
¸

≥ 1/b
¯

where G is the Green’s operator

Gf (x) :=
X

y∈Zd

G(x − y)f (y) .
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˘

‖h‖q : h ≥ 0 with sup
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〈g , Bhg〉 ≥ 1
¯

= inf
˘

b : sup
‖g‖2=1

‖h‖q=1

˙
√

hg , G
√

hg
¸

≥ 1/b
¯

= 1/ sup
˘

〈f 2p−1, Gf
2p−1〉 : ‖f ‖2p = 1

¯

=: 1/ρ.

where G is the Green’s operator

Gf (x) :=
X

y∈Zd

G(x − y)f (y) .
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How do the limits compare?

The small change in form allows considerable simplification

inf
˘

‖h‖q : h ≥ 0 with sup
‖g‖2=1

〈g , Bhg〉 ≥ 1
¯

= inf
˘

b : sup
‖g‖2=1

‖h‖q=1

˙
√

hg , G
√

hg
¸

≥ 1/b
¯

= 1/ sup
˘

〈f 2p−1, Gf
2p−1〉 : ‖f ‖2p = 1

¯

=: 1/ρ.

where G is the Green’s operator

Gf (x) :=
X

y∈Zd

G(x − y)f (y) .

The maximiser f exists and satisfies ρf = Gf 2p−1.
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How do the limits compare?

The small change in form allows considerable simplification

inf
˘

‖h‖q : h ≥ 0 with sup
‖g‖2=1

〈g , Bhg〉 ≥ 1
¯

= inf
˘

b : sup
‖g‖2=1

‖h‖q=1

˙
√

hg , G
√

hg
¸

≥ 1/b
¯

= 1/ sup
˘

〈f 2p−1, Gf
2p−1〉 : ‖f ‖2p = 1

¯

=: 1/ρ.

where G is the Green’s operator

Gf (x) :=
X

y∈Zd

G(x − y)f (y) .

The maximiser f exists and satisfies ρf = Gf 2p−1. We obtain the final form from
−A ◦ G = id as

1/ρ = − sup
˘

〈f , Af 〉 : ‖f ‖2p = 1
¯

= inf
˘

‚

‚

√
−Af

‚

‚

2

2
: ‖f ‖2p = 1

¯

.
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Concluding remarks

We have obtained exact upper tail constants for the intersection local time of
independent random walks in supercritical dimensions.
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Concluding remarks

We have obtained exact upper tail constants for the intersection local time of
independent random walks in supercritical dimensions.

Our approach allows a direct treatment of the infinite time horizon avoiding the
use of Donsker-Varadhan theory.
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Concluding remarks

We have obtained exact upper tail constants for the intersection local time of
independent random walks in supercritical dimensions.

Our approach allows a direct treatment of the infinite time horizon avoiding the
use of Donsker-Varadhan theory.

We believe that this method has potential to solve some hard problems related
to the intersection of the ranges as well. This work is in progress.
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