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MCMC Coupling Harmonic analysis Open problems

Example 1: proper colourings (antiferro Potts)

Instance: a graph G = (V , E ).

A (vertex) colouring of G is a an assignment σ : V → [q] of
q “colours” {0, . . . , q − 1} to the vertices of G ; it is proper if
there are no monochromatic edges. Take “proper” as read.

Problem

Sample a colouring of G uniformly at random (u.a.r.),
efficiently (and certainly in time polynomial in n = |V |).



MCMC Coupling Harmonic analysis Open problems

Example 1: proper colourings (antiferro Potts)

Instance: a graph G = (V , E ).

A (vertex) colouring of G is a an assignment σ : V → [q] of
q “colours” {0, . . . , q − 1} to the vertices of G ; it is proper if
there are no monochromatic edges. Take “proper” as read.

Problem

Sample a colouring of G uniformly at random (u.a.r.),
efficiently (and certainly in time polynomial in n = |V |).



MCMC Coupling Harmonic analysis Open problems

Markov chain Monte Carlo

Repeat:

Choose v ∈ V and c ∈ [q] u.a.r.
Let σ′ : V → [q] be the colouring obtained by
recolouring vertex v with colour c .
If σ′ is a proper colouring then σ := σ′.
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Mixing time

The trial just described defines the transition probabilities P of
a Markov chain (Xt) on state space

Ω = {All (proper) q-colourings of G}.

The Markov chain is irreducible and aperiodic (provided q is
large enough) and its stationary distribution π is uniform.

We are interested in the mixing time τ of the Markov chain,
i.e., the time to convergence to near stationarity:

τ = max
x∈Ω

min
{
t : ‖P t(x , ·)− π‖TV ≤ e−1

}
,

where ‖ϕ‖TV = 1
2

∑
x∈Ω |ϕ(x)|.
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Rough guide to coupling

Space of all colourings of G
x y

Two “coupled” evolutions of the Markov chain on the same
sample space, but with different initial states.
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Space of all colourings of G
x y

Projecting on the blue component we see a faithful copy. . .
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Rough guide to coupling

Space of all colourings of G
x y

Ditto projecting on red.
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Rough guide to coupling

Space of all colourings of G
x y

If the two can be made to coalesce rapidly, then the Markov
chain must be rapidly mixing.
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Basic coupling lemma

Consider a coupling
(
(Xt , Yt) ∈ Ω2 : t ∈ N

)
.

Lemma

Suppose

Pr
(
Xt 6= Yt | (X0, Y0) = (x0, y0)

)
≤ e−1

for all choices of starting states (x0, y0). Then τ ≤ t.

[Doeblin 1938, Aldous 1983.]
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Coupling: How it might be applied to colourings

Consider a pair of colourings (Xt , Yt) ∈ Ω2.

B

A

C

The coupling:

Choose the same vertex v in both copies.

Choose the same colour c in both copies.

Attempt to recolour vertex v in both Xt and Yt with
colour c ; the result is (Xt+1, Yt+1).



MCMC Coupling Harmonic analysis Open problems

Analysis

Assume q = 41 colours and maximum degree 4.

Measure the progress of the coupling in terms of the Hamming
distance H(Xt , Yt).

The are three basic cases, according to which vertex v is
selected.
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Analysis (continued)

B

A

C

Type A. A vertex of disagreement. With probability at
least 33

41
the distance decreases by one.

Type B. A vertex of agreement that is surrounded by
other vertices of agreement. No change.

Type C. A vertex of agreement adjacent to at least one
vertex of disagreement. With probability at most 8

41
the

distance increases by one.
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Analysis (continued)

Observe:
|Type C| ≤ 4× |Type A|.

Therefore

E H(Xt+1, Yt+1 | Xt , Yt)− H(Xt , Yt)

≤
(
−33

41
+ 4× 8

41

)
1

n
H(Xt , Yt),

or

E H(Xt+1, Yt+1 | Xt , Yt) ≤
(

1− 1

41n

)
H(Xt , Yt).
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Analysis (concluded)

E H(Xt , Yt | X0, Y0) ≤
(

1− 1

41n

)t

H(X0, Y0)

≤
(

1− 1

41n

)t

n

≤ e−1,

for t = d41n(1 + ln n)e.

So, by the Coupling Lemma, the mixing time is O(n log n).
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Fewer colours

41 colours seems quite wasteful, and is!

Denote by ∆ the maximum degree of the graph. It is not
difficult to sharpen the coupling in order to establish
O(n log n) mixing time whenever q > 2∆.

With much more effort one can weaken the condition to
q ≥ (2− ε)∆, so 2∆ is not the barrier.

The Markov chain is irreducible when q ≥ ∆ + 2, and there is
no reason not to believe this is also the threshold for
O(n log n) mixing. A lot of effort has gone into this, but
current results are still quite a way short.
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Matching lower bound

That Ω(n log n) should be a lower bound seems obvious by a
coupon-collector argument. But that is an illusion.

Dyer, Goldberg and Jerrum showed an Ω(n log n) lower bound
for a particular family of graphs.

Hayes and Sinclair showed that the same lower bound holds
under quite general conditions, specifically for bounded degree
graphs.
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Sketch of lower bound proof

Specialise to the line (portion of Z).
Top copy has certain vertices clamped to red.

Bottom version is “free”.
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Sketch of lower bound proof (concluded)

Start with both copies in the “clamped” stationary
distribution.

In the clamped stationary distribution, there is a slight
preference for red in the centre of intervals.

This preference for red persists also in the unclamped
version until disagreements percolate from the ends of the
intervals. This takes time Ω(n log n).

Until this happens, the unclamped version cannot be
close to its stationary distribution.
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Example 2: 3-colourings of the line

0 1 2 1 2 0 2 1

+1 +1 -1 +1 +1 -1 -1
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Example 2: 3-colourings of the line

0 1 2 2 0 2 1

+1 +1 +1 -1 -1+1 -1

0
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Harmonic analysis

Introduced by Wilson (in the context of lozenge tilings).

General setting [Dyer, Goldberg & Jerrum]: states are vectors,
and we require E[Xt+1 | Xt ] = A Xt for some matrix A.

Choose eigenvector w of A with eigenvalue λ. Define potential
function Φt = w · Xt . To get an upper on mixing time we
require w > 0 and “monotonicity”. To get a lower bound we
require a uniform bound Var(Φt | Φt−1) ≤ % and we want λ to
be as close as possible to 1.
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Specialising to three-colourings

In our example, A = I − 1
3n

B , where

B =



3 −1
−1 2 −1

−1 2 −1
. . .

−1 2 −1
−1 3


,

and wi = sin
(

(i−1/2)π
n−1

)
> 0, for all i , and 1− λ ∼ 2π2/3n3.
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Lower bound: general considerations

Key facts: E Φt = λtΦ0 and Var Φt ≤ %/(1− λ2). Start at an
initial state with Φ0 large. We know that E Φ∞ = 0.

Decay of potential function 
from an extreme state.

Oscillation of potential function 
in stationarity
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Lower bound: three colourings

Starting at a state with Φ0 = Ω(n), we need t = Ω(n3 log n)
steps for E Φt to be consistent with near-stationarity. Thus we
have a lower bound on mixing time of Ω(n3 log n).

This is for single-site updates. Using a similar but more
involved calculation it is possible to prove a lower bound of
Ω(n2 log n) for “systematic scan”.
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Upper bound: general considerations

Re-scale w so that mini wi = 1. Define metric
d(x , y) =

∑n−1
i=1 wi |xi − yi | for x , y ∈ {−1, +1}n−1.

Consider a monotone coupling (X (t), Y (t)), with initial states
X (0) = (+1, +1, . . . , +1)′ and Y (0) = (−1,−1, . . . ,−1)′.
Then, since X (t) ≥ Y (t),

E[d(X (t), Y (t))] = E[w · (X (t)− Y (t))]

= w ′ A(X (t − 1)− Y (t − 1))

= λ w · (X (t − 1)− Y (t − 1))

= λ d(X (t − 1), Y (t − 1)).
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Upper bound: 3 colourings

After O(n3 log n) steps, X (t) = Y (t) with high probability.

This is not quite the end of the story, since three 3-colourings
map to one “height function”. But a further coupling
argument yield an upper bound of O(n3 log n) for 3-colourings
with single site updates.

With more work, one can show an upper bound of O(n2 log n)
for systematic scan.
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A selection of open problems

Show O(n log n) mixing of q-colourings of a graph of
maximum degree ∆, where q ≥ ∆ + 2.

Mixing time of the bases-exchange walk for general
matroids?

Improved upper and lower bounds for existing Markov
chains.

Which functions arise as mixing times of spin systems
with single-site dynamics: n log n, n3 log n, . . ..
(Admittedly a vague question.)
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