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I “On the way from reactants to products, a chemical reaction
passes through what chemists term the transition state – for a
brief moment, the participants in the reaction may look like one
large molecule ready to fall apart.”
from R. A. Marcus. Skiing the Reaction Rate Slopes. Science
256 (1992) 1523

I Transition State Theory (Eyring, Polanyi, Wigner 1930s):
Construct a so called dividing surface in the transition state
region and compute reaction rates from the directional flux
through the dividing surface.

I The dividing surface needs to be a so called ‘surface of no
return’:

I it has to be crossed exactly once by all reactive trajectories
and not crossed at all by non-reactive trajectories
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Subject of the talk:

I How to construct a dividing surface with the desired properties?

I How to formulate a quantum transition state theory?

Applications:

I Chemical reactions (scattering, dissociation, isomerisation)

I Atomic physics (ionisation of Rydberg atoms in crossed fields)

I Condensed matter physics (atom migration in solids, ballistic
electron transport through point contacts)

I Celestial mechanics (capture of moons, asteroid motion)

Holger Waalkens LMS Symposium Durham 2006 Classical and Quantum Reaction Dynamics



Transition State Theory
Classical Phase Space Structures

Quantum Reaction Probabilities

Subject of the talk:

I How to construct a dividing surface with the desired properties?

I How to formulate a quantum transition state theory?

Applications:

I Chemical reactions (scattering, dissociation, isomerisation)

I Atomic physics (ionisation of Rydberg atoms in crossed fields)

I Condensed matter physics (atom migration in solids, ballistic
electron transport through point contacts)

I Celestial mechanics (capture of moons, asteroid motion)

Holger Waalkens LMS Symposium Durham 2006 Classical and Quantum Reaction Dynamics



Transition State Theory
Classical Phase Space Structures

Quantum Reaction Probabilities

Setup: Consider f -degrees-of-freedom Hamiltonian system with phase
space R2f (q1, . . . ,qf ,p1, . . . ,pf ) and Hamilton function H.

Assume that the Hamiltonian vector field has a
saddle-centre-· · · -centre equilibrium point (‘saddle’ for short) at
the origin, i.e. an equilibrium point at which JD2H has one pair
of real eigenvalues ±λ and f − 1 pairs of imaginary eigenvalues
±iωk , k = 2, . . . , f .

Firstly: Linear case

H =
f∑

k=1

1
2

p2
k −

1
2
λ2q2

1 +
f∑

k=2

1
2
ω2

k q2
k
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Linear case for E < 0 :

Rewrite energy equation H = E as

E +
1
2
λ2q2

1 =
f∑

k=1

1
2

p2
k +

f∑
k=2

1
2
ω2

k q2
k︸ ︷︷ ︸

' S2f−2 for q1 ∈ (−∞,−
√
−2E
λ

)

or q1 ∈ (

√
−2E
λ

,∞)

⇒ Energy surface ΣE consist of two disconnected components
(spherical cones) representing “reactants” and “products”

Holger Waalkens LMS Symposium Durham 2006 Classical and Quantum Reaction Dynamics



Transition State Theory
Classical Phase Space Structures

Quantum Reaction Probabilities

Linear case for E < 0 :

Rewrite energy equation H = E as

E +
1
2
λ2q2

1 =
f∑

k=1

1
2

p2
k +

f∑
k=2

1
2
ω2

k q2
k︸ ︷︷ ︸

' S2f−2 for q1 ∈ (−∞,−
√
−2E
λ

)

or q1 ∈ (

√
−2E
λ

,∞)

⇒ Energy surface ΣE consist of two disconnected components
(spherical cones) representing “reactants” and “products”

Holger Waalkens LMS Symposium Durham 2006 Classical and Quantum Reaction Dynamics



Transition State Theory
Classical Phase Space Structures

Quantum Reaction Probabilities

Linear case for E > 0 :
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⇒ ΣE bifurcates at E = 0 from two disconnected components to a
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3-Dimensional model of energy surface ΣE for f = 2 and E > 0

S2 = nothern hemisphere ∪ southern hemisphere ∪ equator
= B2 ∪ B2 ∪ S1

⇒ Energy surface ΣE ' S2 × R ' two solid cylinders B2 × R that
are glued together along their boundaries S1 × R
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project the two solid cylinders to R3(x , y ,py )

px = ±
√

E − 1
2

p2
y +

λ2

2
q2

x −
ω2

2
q2

y

px ≥ 0 px ≤ 0

x

y

p
y

x

p
y

y

“reactants” “products” “reactants” “products”
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Nonreactive trajectories on the side of reactants

px ≥ 0 px ≤ 0

x

y

p
y

x

p
y

y
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Nonreactive trajectories on the side of products

px ≥ 0 px ≤ 0
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p
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Reactive trajectories

px ≥ 0 px ≤ 0

x

y

p
y

x

p
y

y

forward reactive backward reactive
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Lyapunov periodic orbit ' S1

px ≥ 0 px ≤ 0

x

y

p
y

x

p
y

y
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Stable manifolds W s ' S1 × R

px ≥ 0 px ≤ 0

x

y

p
y

x

p
y

y

reactants branch W s
r products branch W s

p
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Unstable manifolds W u ' S1 × R

px ≥ 0 px ≤ 0

x

y

p
y

x

p
y

y

products branch W u
p reactants branch W u

r
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Forward cylinder W s
r ∪W u

p and backward cylinder W s
p ∪W u

r enclose
all the forward and backward reactive trajectories, respectively

px ≥ 0 px ≤ 0

x

y

p
y

x

p
y

y

forward cylinder backward cylinder
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Dividing surface S2:

the Lyapunov periodic orbit forms the equator of the dividing surface

px ≥ 0 px ≤ 0

x

y

p
y

x

p
y

y

forward hemisphere B2
f backward hemisphere B2

b

⇒ Periodic Orbit Dividing Surface PODS (Pechukas, Pollak,
McLafferty 1970s)
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Phase space structures for general case with E > 0

2 DoF 3 DoF f DoF
energy surface S2 × R S4 × R S2f−2 × R
dividing surface S2 S4 S2f−2

NHIM S1 S3 S2f−3

(un)stable manifolds S1 × R S3 × R S2f−3 × R
forward/backward B2 B4 B2f−2

hemispheres

“flux” form ω 1
2ω

2 1
(f−1)!ω

f−1

“action” form p1dq1 + p2dq2 (p1dq1 + p2dq2 + p3dq3) ∧ 1
2 ω

Pf
k=1 pk dqk ∧ 1

(f−1)!
ωf−2
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Unfold dynamics in terms of normal form

I locally:

I nonlinear symplectic transformation to normal form
coordinates (p,q)

I normal form coordinates provide explicit formulae for phase
space structures mentioned above

I given generic non-resonance condition:

H = H(I, J2, . . . , Jf ) = λI + ω2J2 + · · ·+ ωf Jf + h.o.t.

where I = p1q1 “reaction coordinate”
Jk = 1

2 (p2
k + q2

k ) “bath coordinates”

I globally:
“globalise” manifolds by integrating them out of the
neighbourhood of validity of the normal form
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HCN Isomerisation

3 DoF for vanishing total angular
momentum

CN

H

r

R

γ

H =
1

2µ
p2

r +
1

2m
p2

R +
1
2

(
1
µr2 +

1
mR2

)
p2

γ + V (r ,R, γ)

where

µ = mCmN/(mC + mN), m = mH(mC + mN)/(mH + mC + mN)
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Unfolding the dynamics
equipotential surfaces

R
r

HCN

CNH

γ = 0

γ

γ = 180o

saddle(s) at γ = ±67◦

consider energy 0.2 eV
above saddle
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Unfolding the dynamics
equipotential surfaces

q1 q2 q3

p1 p2 p3

R
r

HCN

CNH

γ = 0

γ
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dividing surface S4 NHIM S3 stable/unstable manifolds
S3 × R
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Fibration of the NHIM
Homoclinic and heteroclinic connections

α3

+γI *

α3

0 α2 2π0 α2 2π

0

π

2π

0

α2

α3
2J

0

n = 1

0.025

0.025I−γ*

0

π

2π
α3

0

π

2π

n = 2

n = 3
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Homoclinic and heteroclinic connections
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Homoclinic and heteroclinic connections
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Reactive phase space volumes

only 9 % of initial
conditions are reactive!
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Reactive phase space subvolumes
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Reactive phase space subvolumes
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Quantum Normal Form

General idea: “unfold” local dynamics by approximating the original
Hamilton operator by a ‘simpler’ Hamilton operator

Weyl calculus:
operator Â ↔ phase space function A (symbol)

Âψ(q) =
1

(2π~)f

∫
R2f

e
i
~ 〈q−q′,p〉A(

q + q′

2
,p)ψ(q′) dq′dp .

Examples:

A Â
q q
p −i~ d

dq

J := 1
2 (p2 + q2) Ĵ := −~2

2
d2

dq2 + 1
2 q2

I := pq Î := −i~(q d
dq + 1

2 )
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Consider Hamilton operator Ĥ whose symbol has expansion

H = E0 +
∞∑

s=2

Hs

with
Hs ∈ Ws := span{pαqβ~γ : |α|+ |β|+ 2γ = s}

and quadratic part

H2 = λI + ω2J2 + · · ·+ ωf Jf

Holger Waalkens LMS Symposium Durham 2006 Classical and Quantum Reaction Dynamics
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I Quantum normal form from conjugation by unitary operators

Ĥ =: Ĥ(2) → Ĥ(3) → Ĥ(4) → · · · → Ĥ(N)

with
Ĥ(n) = ei bWn/~Ĥ(n−1)e−i bWn/~, Wn ∈ Wn

I choose W3, . . . ,WN such that the symbol H(N) is up to order N a
function of I = p1q1, Jk = 1

2 (p2
k + q2

k ), k = 2, . . . , f , only

I it remains to quantise the powers of I and Jk . This leads to the
recursion

În+1 = Î În − În−1n2~2/4, Ĵn+1
k = Ĵk Ĵn

k + Ĵn−1
k n2~2/4

Result: Ĥ(N) = H(N)
QNF(̂I, Ĵ2, . . . , Ĵf )

Holger Waalkens LMS Symposium Durham 2006 Classical and Quantum Reaction Dynamics
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Result: Ĥ(N) = H(N)
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QNF(̂I, Ĵ2, . . . , Ĵf )
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Scattering states
eigenfunctions of H(N)

QNF(̂I, Ĵ2, . . . , Ĵf ) are products of the
eigenfunctions of the harmonic oscillators Ĵk and eigenfunctions of

Î = −i~
(

q1∂q1 +
1
2

)
which are outgoing waves

ψout
react/prod(q1) = Θ(∓q1)|q1|−1/2+iI/~

and incoming waves

ψin
react/prod(q1) =

1√
2π~

∫
ψout ∗

prod/react(p1)e
i
~ q1p1 dp1
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S-matrix

S-matrix is block diagonal with blocks

ψin
prod = Sn 11 ψ

out
prod + Sn 12 ψ

out
react

ψin
react = Sn 21 ψ

out
prod + Sn 22 ψ

out
react

Sn(E) =
ei( π

4 −
I
~ ln ~)

√
2π

Γ

(
1
2
− i

I
~

)(
−ie−

π
2

I
~ e

π
2

I
~

e
π
2

I
~ −ie−

π
2

I
~

)
with I being implicitly defined by

H(N)
QNF

(
I, ~(n2 + 1/2), . . . , ~(nf + 1/2)

)
= E
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Cumulative reaction rate

Transmission probability of mode n

Tn(E) = |Sn 12(E)|2 = (1 + e−2π I
~ )−1

cumulative reaction probability

N(E) =
∑

n

Tn(E)
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Resonances

The S-matrix has poles at I = −i~(n1 + 1/2) for nonnegative integers
n1. These give the Gamov-Siegert resonances

H(N)
QNF

(
− i~(n1 + 1/2), ~(n2 + 1/2), . . . , ~(nf + 1/2)

)
= E
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Example: coupled Eckart-Morse-Morse

H =
1
2

(p2
x + p2

y + p2
z ) + VE(x) + VM;1(y) + VM;2(z) +

+ε (pxpy + pxpz + py pz) (“kinetic coupling”)

VE(x) =
A eax

1 + eax +
B eax

(1 + eax)2

VM;y (y) = Dy

(
e(−2αy y) − 2e(−αy y)

)
VM;z(z) = Dz

(
e(−2αz z) − 2e(−αz z)

)

equipotential surface:

-1
-0.5

0
0.5

4 z
3

-1

1
2

-0.5

1.51y 0

0

2
-1

0.5

x

1
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Cumulative reaction probability and resonances:

0
1
2
3
4
5
6
7
8
9

10
11
12

N

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3
Re E

-0.4

-0.3

-0.2

-0.1

0

Im
 E

(2,0)
(1,1)

(1,2)

(0,0)

(1,0)

(0,1)

(0,2)
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errors for cumulative reaction probability
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errors for resonances
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Conclusions

I reaction-type dynamics is controlled by high dimensional phase
space structures:

I NHIM (“activated complex”)
I its stable and unstable manifolds

I they can be explicitly constructed from algorithms based on a
Poincaré-Birkhoff normal form

I this opens the way to investigate key questions in reaction rate
theory

I quantum normal form gives efficient procedure to compute
resonances and reaction rates for high dimensional systems

Outlook

I scattering and resonance states ↔ classical phase space
structures (“quantum bottleneck states”; experimental
observability)
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