EQUIDISTRIBUTION AND DIRECTIONS IN HOMOLOGY FOR ANOSOV FLOWS

RICHARD SHARP (JOINT WORK WITH DAVID COLLIER)

University of Manchester

Setting. $\phi_t : M \to M$ transitive Anosov flow (*M* a smooth compact Riemannian manifold).

The flow ϕ_t has

- (1) topological entropy $h_{\text{top}} > 0$;
- (2) a countable infinity of prime periodic orbits γ , with period l_{γ} .

One may recover h_{top} from the periodic orbit data:

Margulis (1969): If ϕ_t is weak-mixing then

$$\#\{\gamma: l_{\gamma} \le T\} \sim \frac{e^{h_{\text{top}}T}}{h_{\text{top}}T}, \text{ as } T \to +\infty.$$

(\sim means that the ratio tends to 1).

There is a modified version if ϕ_t is not weak-mixing.

Examples.

- (1) suspension of an Anosov diffeomorphism $f: N \to N$ (e.g. CAT map $\mathbb{T}^2 \to \mathbb{T}^2$): $M = N \times [0, 1]/(x, 1) \sim (fx, 0)$. (modify the velocity to make it weak-mixing);
- (2) the geodesic flow on the unit tangent bundle M = SV over a negatively curved manifold V.

Homology.

$$H_1(M,\mathbb{Z})/\text{torsion} \cong \mathbb{Z}^d$$

(fixed isomorphism).

Assume $d \ge 1$.

For a periodic orbit γ define:

$$[\gamma] \in \mathbb{Z}^d$$
 (homology class);

if
$$[\gamma] \neq 0, \ \theta(\gamma) := [\gamma] / \|[\gamma]\|_2 \in S^{d-1} = \{x \in \mathbb{R}^d : \|x\|_2 = 1\}$$
 (direction).

Homology directions (Fried):

$$\mathcal{D}_{\phi} = \overline{\{\theta(\gamma) : \gamma \text{ periodic orbit, } [\gamma] \neq 0\}} \subset S^{d-1}.$$

(There is a more general definition for arbitrary flows.)

Topological view.

Theorem (Fried, 1982). \mathcal{D}_{ϕ} contained in an open hemisphere $\implies \phi_t$ is the suspension of an Anosov diffeomorphism (with a velocity change).

Theorem (Sharp, 1993). \mathcal{D}_{ϕ} not contained in a closed hemisphere $\iff \mathcal{D}_{\phi} = S^{d-1} \iff \forall \alpha \in \mathbb{Z}^d \exists \gamma : [\gamma] = \alpha$. If the latter holds, we say that ϕ_t is homologically full.

Furthermore, if ϕ_t is homologically full then $\exists 0 < h^* \leq h_{top}$:

$$\#\{\gamma : l_{\gamma} \leq T, \ [\gamma] = \alpha\} \sim C_{\alpha} \frac{e^{h^*T}}{T^{1+d/2}}.$$

(For geodesic flows, $h^* = h_{top}$.)

Measure theoretic view.

$$\nu_{\phi}^{T} := \frac{1}{\#\{\gamma : l_{\gamma} \leq T, [\gamma] \neq 0\}} \sum_{\substack{l_{\gamma} \leq T \\ [\gamma] \neq 0}} \delta_{\theta(\gamma)} \to ?, \text{ as } T \to +\infty.$$

 μ_0 = measure of maximal entropy for ϕ_t .

Define $\Phi_{\mu_0} \in H_1(M, \mathbb{R})$ by its action on de Rham classes of closed 1-forms:

$$\Phi_{\mu_0}([\omega]) = \int \omega(X_\phi) d\mu_0$$

(well-defined).

Theorem (Collier & Sharp, 2006).

- (1) If $\Phi_{\mu_0} \neq 0$ then $\nu_{\phi}^T \rightarrow \delta_{\Phi_{\mu_0}/||\Phi_{\mu_0}||_2}$, as $T \rightarrow +\infty$ (weak*).
- (2) If $\Phi_{\mu_0} = 0$ then $\nu_{\phi}^T \to \nu_{\phi}$, which is fully supported on $\mathcal{D}_{\phi} = S^{d-1}$. The measure ν_{ϕ} is given by an (inner product) norm $\|\cdot\|$ on \mathbb{R}^d :

$$\nu_{\phi}(D) = \frac{\operatorname{Vol}_d(S(D) \cap B_{\|\cdot\|}(1))}{\operatorname{Vol}_d(B_{\|\cdot\|}(1))}$$

where S(D) is the sector based on D and $B_{\parallel \cdot \parallel}(1) = \{x \in \mathbb{R}^d : \|x\| \le 1\}.$

More generally, if $\Phi_{\mu_0} = 0$ and $A \subset \mathbb{Z}^d$ has a density with respect to $\|\cdot\|$ then

$$\lim_{T \to +\infty} \frac{\#\{\gamma : l_{\gamma} \le T, \ [\gamma] \in A\}}{\#\{\gamma : l_{\gamma} \le T\}}$$

exists and is equal to the $\|\cdot\|$ -density of A. (Petridis and Risager have shown this in the special case of closed geodesics on hyperbolic surfaces.)

References

- 1. D. Collier and R. Sharp, *Directions and equidistribution in homology for periodic orbits*, preprint (2006).
- 2. Y. Petridis and M. Risager, Equidistribution of geodesics in homology classes and analogues for free groups, preprint (2006).