Occurrence of normal and anomalous diffusion in polygonal billiard channels

David P. Sanders & Hernán Larralde

Centro de Ciencias Físicas, UNAM Cuernavaca, Mexico

www.fis.unam.mx/~dsanders dsanders@fis.unam.mx

Dynamical Systems and Statistical Mechanics, Durham, 10th July 2006

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

Introduction

- Motivation
- Properties of billiards
- Channels
- Results

Normal diffusion

Anomalous diffusion

Conclusions

Introduction

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

Definition:

• Fixed, hard obstacles – scatterers

Introduction

Motivation

- Properties of billiards
- Channels
- Results

Normal diffusion

Anomalous diffusion

Conclusions

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

Definition:

- Fixed, hard obstacles scatterers
- Non-interacting point particles collide elastically

Introduction

Motivation

- Properties of billiards
- Channels
- Results

Normal diffusion

Anomalous diffusion

Definition:

- Fixed, hard obstacles scatterers
- Non-interacting point particles collide elastically
- □ Motivation: transport processes
 - o electron gas in metal (Lorentz 1905)

Introduction

Motivation

- Properties of billiards
- Channels
- Results

Normal diffusion

Anomalous diffusion

Definition:

- Fixed, hard obstacles scatterers
- Non-interacting point particles collide elastically
- □ Motivation: transport processes
 - o electron gas in metal (Lorentz 1905)
 - o hard-sphere fluid (Sinai 1960s)

Introduction

Motivation

- Properties of billiards
- Channels
- Results

Normal diffusion

Anomalous diffusion

Definition:

- Fixed, hard obstacles scatterers
- Non-interacting point particles collide elastically
- □ Motivation: transport processes
 - o electron gas in metal (Lorentz 1905)
 - hard-sphere fluid (Sinai 1960s)
 - one of simplest physical systems with macroscopic transport

Introduction

Motivation

- Properties of billiards
- Channels
- Results

Normal diffusion

Anomalous diffusion

Properties depend on geometry of scatterers:			
circular	polygonal	• Pro • Ch • Re	
Lorentz gas	Ehrenfest wind-tree model	Norn Anon	

oduction

otivation

operties of billiards

- nannels
- esults

nal diffusion

nalous diffusion

circular	polygonal
Lorentz gas	Ehrenfest wind-tree model
Lyapunov exponent > 0 ("chaotic")	Lyapunov exponent = 0 ("non-chaotic")

Properties depend on geometry of scatterers:

Introduction

- Motivation
- Properties of billiards
- Channels
- Results

Normal diffusion

Anomalous diffusion

Conclusions

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

Properties d	lepend on	geometry	of scatterers:
--------------	-----------	----------	----------------

circular	polygonal
Lorentz gas	Ehrenfest wind-tree model
Lyapunov exponent > 0 ("chaotic")	Lyapunov exponent = 0 ("non-chaotic")
many rigorous results	few rigorous results

Introduction

- Motivation
- Properties of billiards
- Channels
- Results

Normal diffusion

Anomalous diffusion

circular	polygonal
Lorentz gas	Ehrenfest wind-tree model
Lyapunov exponent > 0 ("chaotic")	Lyapunov exponent = 0 ("non-chaotic")
many rigorous results	few rigorous results
strong statistical properties	numerically find strong statistical properties

Introduction

- Motivation
- Properties of billiards
- Channels
- Results

Normal diffusion

Anomalous diffusion

Conclusions

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

D Pr	operties	depend	on	geometry	of scatterers:
------	----------	--------	----	----------	----------------

circular	polygonal
Lorentz gas	Ehrenfest wind-tree model
Lyapunov exponent > 0 ("chaotic")	Lyapunov exponent = 0 ("non-chaotic")
many rigorous results	few rigorous results
strong statistical properties	numerically find strong statistical properties

□ Necessary microscopic conditions for macroscopic transport?

Introduction

• Motivation

Properties of billiards Channels

• Results

Normal diffusion

Anomalous diffusion

Conclusions

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

D P	roperties	depend	on	geometry	of	scatterers:
-----	-----------	--------	----	----------	----	-------------

circular	polygonal
Lorentz gas	Ehrenfest wind-tree model
Lyapunov exponent > 0 ("chaotic")	Lyapunov exponent = 0 ("non-chaotic")
many rigorous results	few rigorous results
strong statistical properties	numerically find strong statistical properties

□ Necessary microscopic conditions for macroscopic transport?

□ Corners separate nearby trajectories: "randomising" effect

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

DSSM, Durham, 10th July 2006 – p. 4

• Motivation

Channels Results

Conclusions

Normal diffusion

Anomalous diffusion

• Properties of billiards

□ Models:

Introduction

- Motivation
- Properties of billiards

• Channels

• Results

Normal diffusion

Anomalous diffusion

Conclusions

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

Channels: periodic in *x*, bounded in *y* (Alonso et al. 2002)

• Properties of billiards

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

- \Box Channels: periodic in *x*, bounded in *y* (Alonso et al. 2002)
- \Box Angles irrational multiples of π : no rigorous results

- \Box Channels: periodic in *x*, bounded in *y* (Alonso et al. 2002)
- \Box Angles irrational multiples of π : no rigorous results
- □ Intuition: more likely to have good ergodic properties

- \Box Channels: periodic in *x*, bounded in *y* (Alonso et al. 2002)
- \Box Angles irrational multiples of π : no rigorous results
- □ Intuition: more likely to have good ergodic properties
- Jepps & Rondoni 2006

Results: polygonal billiards, irrational angles

 \Box Statistical properties: average $\langle \cdot \rangle$ over initial conditions

Introduction

- Motivation
- Properties of billiards
- Channels

• Results

Normal diffusion

Anomalous diffusion

Conclusions

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

Results: polygonal billiards, irrational angles

- \Box Statistical properties: average $\langle \cdot \rangle$ over initial conditions
- □ Diffusion: look at growth of second moment $\sigma^2(t) := \langle x(t)^2 \rangle$

- Motivation
- Properties of billiards
- Channels

• Results

Normal diffusion

Anomalous diffusion

Conclusions

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

Results: polygonal billiards, irrational angles

- \Box Statistical properties: average $\langle \cdot \rangle$ over initial conditions
- □ Diffusion: look at growth of second moment $\sigma^2(t) := \langle x(t)^2 \rangle$

condition	$\sigma^2(t)$ asymptotic	diffusion
generic	t	normal
infinite horizon	$t\log t$	marginal anomalous
parallel scatterers	$t^{\alpha}, \alpha > 1$	anomalous superdiffusion

Introduction

- Motivation
- Properties of billiards
- Channels

• Results

Normal diffusion

Anomalous diffusion

Conclusions

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

Introduction

Normal diffusion

- Horizon
- Fine structure
- Weak convergence
- CLT

Anomalous diffusion

Conclusions

Normal diffusion

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

□ Finite: $\sigma^2(t) \sim 2Dt$; infinite: $\sigma^2(t) \sim t \log t$

Introduction

Normal diffusion

Horizon

- Fine structure
- Weak convergence
- CLT

Anomalous diffusion

Conclusions

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

□ Finite:
$$\sigma^2(t) \sim 2Dt$$
; infinite: $\sigma^2(t) \sim t \log t$
□ $R(t) := \int_0^t \langle v(0)v(\tau) \rangle d\tau = \langle v_0 \Delta x(t) \rangle$

Introduction

Normal diffusion

• Horizon

- Fine structure
- Weak convergence
- CLT

Anomalous diffusion

Conclusions

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

□ Finite: $\sigma^2(t) \sim 2Dt$; infinite: $\sigma^2(t) \sim t \log t$ □ $R(t) := \int_0^t \langle v(0)v(\tau) \rangle d\tau = \langle v_0 \Delta x(t) \rangle$ □ $R(t) \rightarrow D$ if D exists; $R(t) \sim \log t$ if $\langle v(0)v(t) \rangle \sim t^{-1}$

Introduction

Normal diffusion

Horizon

- Fine structure
- Weak convergence
- CLT

Anomalous diffusion

Conclusions

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

Introduction

Normal diffusion

Horizon

- Fine structure
- Weak convergence

Anomalous diffusion

Conclusions

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

□ Diffusion: 'spreading out' of distributions

Introduction

Normal diffusion

- Horizon
- Fine structure
- Weak convergence
- CLT

Anomalous diffusion

Conclusions

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

- □ Diffusion: 'spreading out' of distributions
- **D** Probability density $\rho_t(x)$ of particle positions

Introduction

Normal diffusion

• Horizon

• Fine structure

- Weak convergence
- CLT

Anomalous diffusion

□ Diffusion: 'spreading out' of distributions

□ Probability density $\rho_t(x)$ of particle positions

Introduction

Normal diffusion

• Horizon

• Fine structure

- Weak convergence
- CLT

Anomalous diffusion

Conclusions

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

Introduction

Normal diffusion

• Fine structure

• Weak convergence

Anomalous diffusion

Conclusions

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

Weak convergence (Lorentz gas channel)

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

Central limit theorem

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

Introduction

Normal diffusion

Anomalous diffusion

- Parallel
- Qualitative
- Crossover

Conclusions

Anomalous super-diffusion

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

Parallel scatterers

□ Anomalous diffusion $\sigma^2(t) \sim t^{\alpha}$ when parallel scatterers

Introduction

Normal diffusion

Anomalous diffusion

• Parallel

- Qualitative
- Crossover

Conclusions

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

Parallel scatterers

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

□ What is reason for anomalous diffusion?

Introduction

Normal diffusion

Anomalous diffusion

- Parallel
- Qualitative
- Crossover

Conclusions

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

- □ What is reason for anomalous diffusion?
- □ Families of propagating periodic orbits

Normal diffusion

Anomalous diffusion

- Parallel
- Qualitative
- Crossover

Conclusions

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

- □ What is reason for anomalous diffusion?
- □ Families of propagating periodic orbits

□ Much more likely when parallel scatterers

Normal diffusion

Anomalous diffusion

• Parallel

• Qualitative

• Crossover

Conclusions

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

- □ What is reason for anomalous diffusion?
- □ Families of propagating periodic orbits

- □ Much more likely when parallel scatterers
- Model with continuous-time random walks (DPS+HL 2006, Schmiedeberg & Stark 2006)

Introduction

Normal diffusion

Anomalous diffusion

• Parallel

• Qualitative

• Crossover

Crossover from normal to anomalous

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

Introduction

Normal diffusion

Anomalous diffusion

Conclusions

- Conclusions
- Acknowledgements

Conclusions

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

Conclusions:

• Numerics give reasonably clear picture

Introduction

Normal diffusion

Anomalous diffusion

Conclusions

Conclusions

• Acknowledgements

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

Conclusions:

- Numerics give reasonably clear picture
- Diffusion generically normal;

Introduction

Normal diffusion

Anomalous diffusion

Conclusions

Conclusions

• Acknowledgements

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

Conclusions:

- Numerics give reasonably clear picture
- Diffusion generically normal; superdiffusion if parallel

Introduction

Normal diffusion

Anomalous diffusion

Conclusions

• Conclusions

• Acknowledgements

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

Conclusions:

- Numerics give reasonably clear picture
- Diffusion generically normal; superdiffusion if parallel
- Fine structure in densitites; remove by demodulating

Introduction

Normal diffusion

Anomalous diffusion

Conclusions

• Conclusions

Conclusions:

- Numerics give reasonably clear picture
- Diffusion generically normal; superdiffusion if parallel
- Fine structure in densitites; remove by demodulating
- \circ Crossover: normal \rightarrow anomalous, approaching parallel

Introduction

Normal diffusion

Anomalous diffusion

Conclusions

• Conclusions

□ Conclusions:

- Numerics give reasonably clear picture
- Diffusion generically normal; superdiffusion if parallel
- Fine structure in densitites; remove by demodulating
- \circ Crossover: normal \rightarrow anomalous, approaching parallel
- Parallel \Rightarrow propagating orbits \Rightarrow anomalous diffusion

Introduction

Normal diffusion

Anomalous diffusion

Conclusions

• Conclusions

Conclusions:

- Numerics give reasonably clear picture
- Diffusion generically normal; superdiffusion if parallel
- Fine structure in densitites; remove by demodulating
- \circ Crossover: normal \rightarrow anomalous, approaching parallel
- Parallel \Rightarrow propagating orbits \Rightarrow anomalous diffusion

Outlook:

Analytical understanding beyond random walks

Introduction

Normal diffusion

Anomalous diffusion

Conclusions

Conclusions

Conclusions:

- Numerics give reasonably clear picture
- Diffusion generically normal; superdiffusion if parallel
- Fine structure in densitites; remove by demodulating
- \circ Crossover: normal \rightarrow anomalous, approaching parallel
- Parallel \Rightarrow propagating orbits \Rightarrow anomalous diffusion

Outlook:

Analytical understanding beyond random walks

Introduction

Normal diffusion

Anomalous diffusion

Conclusions

Conclusions

Universidad Nacional Autónoma de México

Introduction

Normal diffusion

Anomalous diffusion

Conclusions

• Conclusions

• Acknowledgements

Normal and anomalous diffusion in polygonal billiards – David P. Sanders

- Universidad Nacional Autónoma de México
- □ University of Warwick

Introduction

Normal diffusion

Anomalous diffusion

Conclusions

• Conclusions

- Universidad Nacional Autónoma de México
- **University of Warwick**
- Robert MacKay

Introduction

Normal diffusion

Anomalous diffusion

Conclusions

• Conclusions

- Universidad Nacional Autónoma de México
- **University of Warwick**
- Robert MacKay
- □ Thanks for your attention!

Introduction

Normal diffusion

Anomalous diffusion

Conclusions

• Conclusions

- Universidad Nacional Autónoma de México
- □ University of Warwick
- Robert MacKay
- □ Thanks for your attention!

References

- 1. D.P. Sanders & H. Larralde (2006). *Phys. Rev. E* **73** 026205 (Anomalous diffusion)
- 2. D.P. Sanders (2005). *Phys. Rev. E* **71** 016220 (Fine structure)
- 3. O.G. Jepps & L. Rondoni (2006). J. Phys. A 39 1311
- 4. M. Schmiedeberg & H. Stark (2006). Phys. Rev. E 73 031113

Introduction

Normal diffusion

Anomalous diffusion

Conclusions

• Conclusions