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For isoenergetic SLLOD, E.C.M. (1993) proposed
and tested this relation:

µi

µi∗
=

exp
[
−

∑+
n λi,nτ

]
exp

[
−

∑+
n λi∗,nτ

] = exp [Nd〈αi〉ττ ]

i, i∗ conjugate segments length τ ; d = dimension;
λi = finite time Lyapunov exp.
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λi,n ∝ average e.p.r.



{
q̇i = pi/m + nxγyi , i = 1, ..., N
ṗi = Fi − nxγpyi − αpi
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In 1994, Evans and Searles first of papers deriv-
ing relations similar to that of E.C.M. for

e.p.r. or Dissipation Function (DF).

e.p.r. = p.s.c.r. only for Gaussian isoenergetic,
not too far from equilibrium.



In 1994, Evans and Searles first of papers deriv-
ing relations similar to that of E.C.M. for

e.p.r. or Dissipation Function (DF).

e.p.r. = p.s.c.r. only for Gaussian isoenergetic,
not too far from equilibrium.

Original ESR for DF, virtually no hypotheses:
only time reversibility.
Transient: non-invariant, distributions. Numer-
ical and mathematical support for Steady State.



In 1995, Gallavotti and Cohen, inspired by ECM:

Chaotic Hypothesis: A reversible N-particle
system in a stationary state can be regarded
as transitive Anosov system, for calculations
of its macroscopic properties.

Markov partition; attribute weight to cell Ci

Λ−1
wi,u,τ = 1/|Jacobian dynamics restricted to W u|

wi = {Stxi}τ/2
t=−τ/2, large τ , xi ∈ Ci.
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Markov partition; attribute weight to cell Ci

Λ−1
wi,u,τ = 1/|Jacobian dynamics restricted to W u|

wi = {Stxi}τ/2
t=−τ/2, large τ , xi ∈ Ci.

THM for phase space contraction rate.
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Q.: which systems look like Anosov?

Most systems not uniformly hyperbolic; singu-
larities; even not chaotic (LRB, BR);...

Similarly to EH, microscopic dynamics such that
deviations from Anosov unobservable.

Does FR require full knowledge of SRB µ?
Why for p.s.c.r. if so easily verified for
dissipation or e.p.r.? (most often tested)
Could one rely on different mechanisms?



Puzzling result. GCFT hard to verify at low
shear γ, IK–SLLOD.

In fact, harder and harder the closer and closer to
equilibrium (E.S. J. Chem. Phys. 2000, Z.R.A.
cond-mat/0311583, D.K. nlin.CD/0401036),

although closer to equilirium implies higher chaos,
hence CH should have been better verified (M.R.
2003, very high γ).

What happens close to equilibrium?
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Two possibilities (E.S.R. ’05):

1. CH does not apply to systems close to
equilibrium.

2. Convergence times diverge while approaching
equilibrium and GCFR domain shrinks to {0}.

Why? Easy to see in simple systems

σ = σd + σc = O(F 2
e ) + σc(Fe = 0)
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BGGZ ’06: flows not necessarily Anosov-like,
proper Poincaré maps are; boundary terms neg-
ligible;

GCFT would apply with: shrinking range, longer
and longer convergence times.
Outside GCFT domain, p.s.c.r. fluctuations should
go as heat fluctuations of Van Zon - Cohen.

As in ESR & E. To be tested (Gilbert ’06).
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Observation: CH strong, FT for phase space con-
traction rate, restricted to narrow window, far
away in time.
High dissipation ⇒ axiom–C?

Question: For only a few special observables (not
all phase functions), and a special result,
could one do without Anosov structure and full
knowledge of SRB measure?



ES tried a different approach: rely on Liouville
equation only, and extend work on TFR.

Phase space M, evolution Sτ : M→M;

reversibility iSτΓ = S−τ iΓ;

regular measure dµ(Γ) = f (Γ)dΓ;

odd observable φ : M→ IR,



φt0,t0+τ(Γ) =
1

τ

∫ t0+τ

t0

φ(SsΓ)ds =
1

τ
φt0,t0+τ(Γ)

(2)
Dissipation function for TRI f :

Ωt0,t0+τ(Γ) =
1

τ

[
ln

f (St0Γ)

f (St0+τΓ)
−

∫ t0+τ

t0

Λ(SsΓ)ds

]
(3)

Λ = −σ = phase space expansion rate.
Suitable f ⇒ Ω = e.p.r. = FeJ/k

B
T or energy

dissipation rate. f (Γ) = 1/|M| ⇒ Ω = Λ



Let δ > 0, t0 = 0, A+
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Observe that

C(Ω0,τ ∈ A−
δ ) = iSτC(Ω0,τ ∈ A+

δ ) (5)

introduce the transformation Γ = iSτX



∣∣∣∣ dΓ

dX

∣∣∣∣ = exp

(∫ τ

0

Λ(SsX)ds

)
= eΛ0,τ (X) . (6)

Choose f so that f (Γ) = f (iΓ).

Some algebra yields the ESTFR
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∫
C(φt0,t0+τ∈A+
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and take t = t0 + τ + t0. Then
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δ ) (11)



If W ∈ C(φt0,t0+τ ∈ A+
δ ), and Γ = iStW , like

before we have
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δ ))
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= 〈exp (−Ω0,t)〉−1
φt0,t0+τ∈A+

δ

(12)



The special case φt0,t0+τ = Ωt0,t0+τ , yields

µ(C(Ωt0,t0+τ ∈ A+
δ ))

µ(C(Ωt0,t0+τ ∈ A−
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= 〈exp (−Ω0,t)〉−1
Ωt0,t0+τ∈A+

δ

(13)

= e[A+ε(δ,t0,A,τ)]τ
〈
e−Ω0,t0

−Ωt0+τ,2t0+τ
〉−1

Ωt0,t0+τ∈A+
δ

(14)
Exact result, for all t0, τ , δ, and observable pairs
A,−A. It rests only on time reversibility of St,
and f (iStΓ) 6= 0 if f (Γ) 6= 0.



Move now evolution from sets to measures, using

µt0(S
t0E) =

∫
St0E

ft0(W )dW =

=

∫
E

f (X)dX = µ(E)(15)



Some algebra yields
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and letting φt0,t0+τ = Ωt0,t0+τ



1

τ
ln

µt0(C(Ω0,τ ∈ A+
δ ))

µt0(C(Ω0,τ ∈ A−
δ ))

= A + ε(δ, t0, A, τ ) +(17)
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τ
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〈
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−Ωt0+τ,2t0+τ
〉

Ωt0,t0+τ∈A+
δ

(19)

If µt0 → µ∞, should change from statement on
ensemble of trajectories, ft0, however long t0, to
statement concerning also statistics generated by
a single typical trajectory: the ESSFR.



Given any tolerance γ > 0 we would like to write:

A−γ ≤ 1

τ
ln

µt0(C(Ω0,τ ∈ A+
δ ))

µt0(C(Ω0,τ ∈ A−
δ ))

≤ A+γ , (20)

for allowed A,−A, and small δ, large t0, τ .

Some assumption is necessary.
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Chaos/properties of interesting observables help.

But for bounded Ω, as in many situations, no
extra assumptions: |Ω| ≤ Ω∗, for Ω∗ > 0,

e−2t0Ω
∗ ≤

〈
e−Ω0,t0

−Ωt0+τ,2t0+τ
〉

Ωt0,t0+τ∈A+
δ
≤ e2t0Ω

∗

(21)
Taking δ < γ, we have |ε| < γ, hence ESSFR is
satisfied if

τ ≥ 2t0Ω
∗

γ − δ
. (22)



It only remains to ask how C(Ω0,τ ∈ A+
δ ), is

related to support A of µ∞: A∩C(Ω0,τ ∈ A+
δ ).

We consider two cases:

i. A = M: one obtains the ESSFR as
C(Ω0,τ ∈ A+

δ ) = A ∩ C(Ω0,τ ∈ A+
δ )

ii. Unique attractor A (and repeller), mild con-
dition yields same result.



Ω∗ < ∞ not serious restriction: isokinetic elec-
tric or colour current, some isoenergetic, hard
particles, Anosov...
Low probability near Ω-singularities, correlations
decay, large N not exploited: so ESSFR ex-
pected for interesting cases with unbounded Ω.
Bound A∗ on observable fluctuations depends on
system and observable.
At equilibrium, Ω = JFe/kB

T = 0
hence, symmetry of φ = J in whole range.



Conclusions.

1. SSFRs for dissipation function and other
functions (also p.s.c.r.) only from TRI, conver-
gence to steady state and boundedness of Ω.

3. Reasonable approach? If so, TRI suffices:
different perspetcitve, possible different results
(e.g. φ) along with those stemming from CH.


